SOME POINT SETS ASSOCIATED WITH TAYLOR SERIES
Fritz Herzog and George Piranian

1. INTRODUCTION

Let P be a property which a function f(z) (regular in |z|< 1) or its Taylor
series Ta,z™ may or may not possess at a point z = eif on the unit circle C. And
let K(P) be the class of point sets E on C for which there exists a function f = fg
(again regular in Izl < 1) possessing the property P at each point of E and at no
point of C — E. In the case where P is the property of convergence of the Taylor
series of f, Sierpifiski [11] (see also Steinhaus [13, pp. 435-436]) pointed out that for
reasons of cardinality the class K(P) cannot contain every set on C: indeed, there

are 2€ point sets on C, but only cND = ¢ analytic functions f; in the application of
this argument it is, of course, quite irrelevant what the property P may be.

The problem of obtaining a characterization of the sets of convergence of Taylor
series was attacked with considerable success by Lusin [7], Steinhaus [13] and [14],
Neder [10], and Mazurkiewicz [9]. Recently, further advances have been made by the
present authors, partly in collaboration with Paul Erdds [1], [4], [6]. In particular, it
was shown in [4, I] that K(P) contains every set of type Fg, that is, every set which
can be represented as the union of countably many closed sets. The same is true (see
[5]) if P denotes the property that the function f possesses a radial limit on the
radius vector of the point e'Y,

In the present paper, we consider the problem of determining the class K(P) in
the case in which P denotes boundedness of the sequence {s,,(e!?)}, where
sm(z) = er:loak zk; also, in the case in which P denotes boundedness of f on the

radius z = relf (0 <r< 1). In both cases, the problem is amenable to complete solu-
tion: K(P) consists of all sets of type Fy.

In both of these instances, the proof that every set of type Fg on C is in K(P)
could be obtained by appropriate modifications of the construction in [5]. However,
we prefer giving a proof based on a new construction. This construction avoids the
appeal which had previously been made to Hermite’s and Hurwitz’s theorem on the
approximation of real numbers by rationals (see [3] and [6]), and it is simpler in de-
tail than the earlier constructions. Its simplicity is due Iargely to the introduction of
the polynomials [ - 1)/(z - 1)]?; the substitution of these functions for Lusin’s poly-
nomials (z™ - 1)/(z - 1), which had previously been used, was suggested by Paul
Erdds in a conversation on sets of convergence.
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2. SOME PRELIMINARY ESTIMATES

The basic functions in our construction are polynomials of the form g(z,
where n is a positive integer, t denotes a point on the unit circle C, and

glz,n)=[@"-1)/(z-1)12=1+z+2z%+ - +z0°1)2

n-1 2n-2

=1+ 22+ 322 + «+ + nz +M=-1)224 - + 2

From the relation

|g(z,n)|=%£;.‘rgi(’;79§g (z=ef, 0<|0|<m)

it follows that
(1) lg(z, n)| > Anz2  (z=¢'% 0< |6]< w/n)

(Here and in what follows, A,, A,, --- denote positive universal constants.) '
other direction we have the inequality

) lg(z, n)| < A,/62 (z=ei9,0< |0]|< n).

We also need an estimate on the modulus of the sum g*(z, n) of an arbitrar
consecutive terms from the polynomial g(z, n). To obtain this, we use Abe
mation: for 1 <m < m + k <n we have

m+ (m+ 1)z + - + (m + k)z¥

k
=m+K)A+z++25) - T Q+z+eee+zHD)
u=1

k
=@- D Hm+ 0 -1)- = @*-1).
‘ ' p=1

Thué the modulus of the sum of k + 1 consecutive terms taken from the fir
of g(elf, n) does not exceed A;n/ { |. And since the same estimate holds
second “half” of g(e1 n), we conclude that

3) le*(z, n)| < Asn/|0] (@=elf,0<|0|<m.
The functions which we shall construct in the following sections will be

o0

h
(4) Z b,z Yglz/t,, n,),
v=1

where the t;, are points on C, the n, are positive integers, and the b, ar
coefficients. The exponents h,, are nonnegative integers selected in such :
no two terms on the right side of (4) have like powers of z.
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3. THE BASIC TECHNIQUE

In this section we exhibit our simplest result. In later sections we indicate modi-
fications in the construction which lead to more general theorems.
THEOREM 1. Let E be a set of type Fy on C. Then there exists a function

f(z)=2 amz  with the Jollowing properties:

(i) at each point of E, the sequence {s.,(z)} converges;

(ii) at each point of C - E, the sequence. {s,(z)} is unbounded.

In the proof we disregard the trivial case where E = C. We write C - E= n Gj,
where Gj is open and G;D Gjy) (G=1,2, ). Each of the sets G; is the union of
non-overlapping open arcs Ijk- It will be convenient to assume that the lengths ]Ijk]
satisfy the restriction

(5) ] <27

If that is not the case, we replace each arc I;. which is of length greater than 2]
by the union of a finite number of adjacent open arcs of length less than or equal to
27). This is accomplished by dropping a finite number of points from Gj, which can
be done in such a manner that no point on C is dropped from more than one of the
sets Gj. The notations G;j and I will be used in the following for the sets and arcs
altered in the manner just described. The fact that the condition G;5 G;4; may no
longer hold will not affect the validity of the proof. '

Let w, and w, be the endpoints of the arc Ijx. Then, for each positive integer p
for which p-¥2 < |ILjx|/2, we denote by tjp that point of Ijx which lies at an angular
distance p~*/2 from w, or from w,, according as p is odd or even. We conclude
from (5) that each p occurring in this construction satisfies the inequality

(6) ' p > 2232 > 18,
If z is any point in Ijk, there exists an integer p such that the angular distance
from z to tjxp is less than (p - 2)"¥2 - p~¥2, which by the use of (6) is easily seen

to be less than 2p~3/2, It follows from (1) that, for each z in Ik, there exists an in-
teger p such that

(1) le(2/tikp, [P*2D)] > A [P > Asp®.

On the other hand, for each z in C - Ijc and for each p selected for Ik, the in-
equality (2) gives the estimate

(8) . |g(z/tjkp: [ps/z])l < A;p,
and the inequality (3) implies that
(9) |g*(z/tjxp, [P¥2])] < Ap2,

for z in C - jk and any block g* of consecutive terms in g.

We now define our function f by the formula
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(10) f(z) = ZiZ 2 p~*2" gz /tjip [p%/2)).
j kp

Here the exponents h = hjx, are to be chosen in accordance with the remarl
the end of Section 2.

To show that the function f has the property (ii), we note that if z, lies
it lies in each of the sets G; with one possible exception. This implies that
index j, except possibly one, there exist integers k and p and a block of cc
terms in the Taylor series of f, namely, the corresponding polynomial jp~3
whose sum has, by (7), a modulus greater than Agj at the point z,.

To show that f has the property (i), let z, be a point in E. Then z, lie:
most finitely many of the arcs Ijx. The sum of the moduli of the terms in (
correspond to arcs Ij. that do not contain z, is by (8) not greater than

(11) AZiZZp 2 < ATiT |Lf.
j kp j k

It follows from (5) that, for each index j,

2 1 < 272 15l < 2m27.

Hence the series in (11) converge.

We now consider the sum of those terms in (10) which correspond to the
many arcs Iji that contain z,. We only have to show that each correspondi
Zp p~3 zb g converges at z,, and this follows at once from the fact that, for
large p, the inequality (2) implies that lgl < A,/(6/2)?, where & is the ang
tance of z, from the nearer of the two endpoints of Ijx. This completes the
the convergence of the triple series in (10) at the point z,.

Finally, in order to show that also the Taylor series of f converges at
Z,, we use the inequality (9), which shows that, for all but finitely many ter
series in (10), the modulus of the sum of any block of consecutive terms in
does not exceed A jp~!. Since

. =1 : 2 .o -2j-2
ipT <l |74 <27
we conclude that A,jp~! can exceed a given positive number for at most fir
of the triplets (j, k, p) entering in (10). This completes the proof of Theor
For the terminology used in the following Theorem, we refer to the Intx
THEOREM 2. If P denotes boundedness of the sequence {sm(eie )}, the
set E on C belongs to K(P) if and only if E is of type Fg.

Theorem 1 implies the sufficiency of the condition, and we refer to [2, |
a proof of the necessity. As a matter of fact, only the continuity of the func
s,,(e'?) is needed in that proof.
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4. EXTENSION TO TOEPLITZ TRANSFORMS OF {s_ . (z)}

Mazurkiewicz [8] showed that if B is a sequence-to-sequence transformation
represented by a regular Toeplitz matrix, there exists a Taylor series T a,, 2™ with
am > 0 and with the transform B{s.,(z)} diverging at every point of C. Minor modi-
fications of his proof yield the corresponding proposition for regular sequence-to-
function transformations

(12) t(x) = 530 a(x, m)s,,

m=o0
such as the Abel transformation. We will discuss briefly an extension of Theorem 1
in the direction of these results.

Let B denote a regular Toeplitz transformation or a transformation of the form
(12), and let £ be the function (4) constructed in the proof of Theorem 1. If the ex-
ponents h;, in the series (4) are chosen so as to create sufficiently long gaps between
the polynomials under the summation sign, then f has the property that at each point
of C - E the sequence B{s,(z)} is unbounded. The proof is similar to the proofs of
Steinhaus’ classical theorem [12] on sequences of 0’s and 1’s, of Mazurkiewicz’s
theorem mentioned above, and of the authors’ main result in [5]. We omit details,
since they are typographically tedious but conceptually elementary.

A further generalization can be made by means of the diagonal process:

THEOREM 3. Let E be a set of type Fg on C, and let {By} be a denumevrable
set of regular Toeplitz tvansformations. Then there exists a function £(z) = T a,z™
with the property that at each point of E the sequence {s m(2)} converges and, for
each k, the sequence B {s,,(z)} exisis and is unbounded at every point of C - E.

Again, the theorem remains true if the Toeplitz transformations B, are re-
placed by regular sequence-to-function transformations of the form (1213.
5. FUNCTIONS OF BOUNDED MEAN SQUARE MODULUS

THEOREM 4. If the set E in Theovems 1 and 3 has measure 2w, then the func-
tion £(z) can be constructed in such a way that =|a P < .

To prove this, we begin by finding an upper bound for the sum S jkp= 2 Iam|2 s
extended over those terms that arise from one of the polynomials

ip~% 2" g(2/tjrp, [D¥2]).
From the relations
Sjkp = PP~ (17 + 2% + -+ 4 [p%2]2 + «-v + 12)
and
124224 -+ + - +12=qR? + 1)/3< ¢

it follows that
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Sip < PP [pY?P < P73
The sum Sji of all these quantities associated with the interval Ijix is not ¢
than
Pz p—s/z < 2j2 (pjk - 1)"V2 <352 pjk—1/2 ,

where pjx is the least of the integers p associated with Ij.. Since pjl'gl/2 <
it follows that

Siic < 35 [Lik |/2,

and if each set G; is chosen so that its measure is less than j~4, then Zg’
This concludes the proof. :

6. TRIGONOMETRIC SERIES

For the purpose of transferring some of our results on power series to
metric series, we apply the “doubling process” which we first used in Secti
4 of [1]. In other words, we replace (4) by the series

h 2h
Zb,(z ¥ +z Y)glz/t,, ny),
and we obtain immediately the following result.

THEOREM 5. Let E be a set of type Fg on 1= [0, 2n). Then there ex
series T a_,cos mx which converges at each point of E and has unbounded
sums at each point of 1 - E. If E has measure 2w, the servies can be chose
Za 2< o,
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