ON LOCAL BALANCE AND N-BALANCE IN SIGNED GRAPHS
Frank Harary

A signed grvaph or s-graph [2] is obtained from a linear graph when some of its
lines are regarded as positive and the remaining lines as negative. The sign of a
cycle is the product of the signs of its lines. An s-graph is balanced if all its cycles
are positive. Two characterizations of balanced s-graphs were given in [2], Theo-
rems 2 and 3. The definitions of all terms used here may be found in [2].

For certain applications of the theory of signed graphs to problems in social
psychology, one is interested only in the cycles through a designated point. For
other psychological considerations, one considers only cycles of length not exceed-
ing N. These viewpoints lead to the definitions of local balance and N-balance in
s-graphs. Some properties of these kinds of balance will be derived in this note. A
detailed discussion of the relevance of the notion of balance of s-graphs to psycho-
logical theory is given in [1].

An s-graph G is locally balanced at the point P, or briefly, G is balanced at P,
if all cycles containing P are positive. Theorem 1 below shows the interdependence
of local balance and articulation points. An articulation point of a connected graph is
a point whose removal results in a disconnected graph. We first require an exten-
sion of the sign of a path or cycle to any set of lines of G. Let L, be a subset of L,
the set of all lines of G. The sign of L, is the product of the signs of the lines of
L,. The previous definitions of the sign of a path or a cycle are of course speciali-
zations of this one. If L,, L, are subsets of L, then L, @ L., denotes the symmetric
difference, or set union modulo 2, of L, and L,. Let s(L,) denote the sign of L,. It
is convenient to prove two lemmas before taking up the theorem on local balance.

LEMMA 1. s(L, ® L, ® ... & L) =s(L,)-s(L,): - s(Ly).

Proof. For n =1, the lemma is trivial. When n = 2, we make use of the usual
formula L, + L, = (L, - L,) y (L, -L,), which expresses L, @ L, as a union of dis-
joint sets. By def1n1t1on of the sign of L,, we have s(L,) = II, L, s(A). Now L, can
be expressed as the union of two disjoint sets:

L,= (L, - L)U(@L,NL,).
Thus
s(L,) = s(L,, - L,)-s(L;NL,) and s(L,)=s(L,-L,)-s(L,NL,).
Hence

s(L,)- s(L,) = s(L, - L,)-s{L, -L,)- (s(L,N L,))?

s(L, - L,) - s(L, -L,)

s, ® L,).
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The proof of the inductive step is immediate when one writes
LieL,® -0 Lo Lk+1 =L, oL, ® - @ Ly) ® Lyyy

and applies both the inductive hypothesis and the result for n = 2.

LEMMA 2. If z and z' ave any two cycles of a linear graph G, regarc
sels of lines, then K =z @ z' is the union of paivwise disjoint cycles.

Proof. Case (i). We first consider the case in which each point on botk
z', is a point of a common line of z and z'. For this case, one can show tl
line A in K lies in a unique cycle y(A) all of whose lines are in K, by con:
this cycle.

If A e€kK, then A € z or X € z', but not both; say A € z. Let a, be the
maximal length in z containing A but no lines of z'. Then the distinct end]
Ay and A, of a4 are points through which both cycles z, z' pass. Let o,
path of maximal length in z' which has A, as one endpoint and contains no
z. Let A, be the other endpoint of a,. If A, =A,, then a,Ua, is the cycl
containing A. If A, # A,, form the path @, of maximal length in z which h
one endpoint and is disjoint from z'. Let A; be the other endpoint of «,.
A, # Ay, A,; for otherwise a, would not be of maximal length. Similarly, ¢
the maximal path oy in z' with endpoints A; and A, such that a;Nz is e:
Then A, # A,, A,, because of the maximality of a;. If A, = A,, then

aUa,ua,ua,

is the cycle in K containing A. If A, # A,, continue this process. Since th
G is finite, there exists a smallest positive even integer k such that Ay =
y\) = agU a¢,Ua,U--Uyax_; is a cycle in K containing A. Clearly, this c
tion defines an equivalence relation on the lines of K such that the lines in
equivalence class form a cycle. Hence the cycle y(A) is the unique cycle i
taining A, and K is the union of pairwise disjoint cycles.

Case (ii). In general, however, the cycles z and z' may pass through
which do not lie on a line of zn z'. For each such point P, there exist fou.
points Q,, Q,, R,, R, such that PQ,,PQ, are lines of z, and PR,, PR, are
z'. This case (ii) can be transformed to case (i) by splitting each of these
into two points P, and P, and adding the additional line P,P, to both cycle
The points Q,, R, are then joined to P, by a line, and the points Q,, R, ar
to P,. Applying the result of case (i), and then identifying each pair of poir
we obtain a separation of K into pairwise disjoint cycles. We note that thi
tion need not be unique, since each new common line P,P, can be introducc
essentially different ways. ’

The s-graph in Figure 1 (in which the dashed line is negative) shows th
hypothesis that Q is not an articulation point is needed in the following the

THEOREM 1. If the connected s-grvaph G is balanced at P, Q is a poi
cycle z passing thrvough P, and Q is not ar articulation point, then G is t

at Q.

Proof. Assume that G is not balanced at Q. Then there exists a negai
cycle z' through Q. Since G is balanced at P, the cycle z is positive. W
sider separately the cases in which zn z' is empty or not empty, where ea
cycles z, z' is regarded as a set of lines.
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Case 1. zN z' is not empty. Consider the set of lines K, =z & z'. It follows
from Lemma 1 that K, is negative, and from Lemma 2 that K, can be written as
the union of pairwise disjoint cycles z,,, z,,, **, Zir, (r, > 1). Since K, is negative

and K; =2,,® 2, ® - ® 211, Lemma 1 shows that at least one of these cycles is

negative. Now z' does not pass through P, since z' is negative and G is balanced
at P. Therefore exactly one of the cycles in K,, say z,,, passes through P. If

r, = 1, then z,, is negative and we have a contradiction to the hypothesis that G is

balanced at P. If r, > 1, then z,, is positive since it passes through P, and one of
the other cycles in K,, say z 1, is negative.

For any two cycles x, y, let n(x, y) be the number of connected components of
the subgraph xNy of G. Each such component is either a path of maximal length
all of whose lines are in xNy, or it consists of a single point. Then

n(z, z') = n(z, z,,) + n(z, z,,) + -+ + n(z, erl)’

for the right-hand member is the number of connected components of the subgraph
z - z' (set difference) of G. Clearly each cycle z;; has a line in common with z,
so that n(z, z;;) > 0 for all j. Since r,> 1, we see that n(z, zh‘1) < n(z, z'). This

fact provides the basis for an inductive proof of Case 1.

We continue this process by forming the set
K.=z @ Zlr, T2 @ Z2 ® @ Zp,, (ry > 1)

Since K, is negative, we have a contradiction if r, = 1. Otherwise, let Z2r, be a
negative cycle and note that n(z, z;_rz) < n(z, zy,,). Eventually one must neces-

sarily obtain a set Ky for which rg = 1. Then K=z, is a negative cycle through
P, which is a contradiction.

Case 2. zN z'is empty. By hypothesis, Q is not an articulation point of G.
Hence, for each point Rj # Q on z', there exists a path p(R;) joining R; with P
which does not pass through Q. It is clear that there exists a point R on z' for
which the path p(R) passes through no point of z' other than R. Let p be the path
p@R). Let ¢ denote a fixed one of the two paths joining Q and R along the cycle z'.
Let S be the first point of z on the path p in the direction from R to P.

There are two possibilities: (i) S=P, (ii) S#P. (i)If S=P, let o be either
of the two paths joining P and Q along the cycle z, and form the cycle z" = pU ocU ¢.
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(i) If S # P, let p, be the subpath of p joining R and S; let p, be that patl
S and P along the cycle z which does not pass through Q; and let p, be th
joining P and Q along z on which S does not lie. Then form the cycle

z" = p,Up,UpsU .

In either of the two possibilities (i) or (ii), z" is a cycle through P suc
z"Nz' = ¢. Since G is balanced at P, z" is positive. Therefore z = z" @
negative cycle through P, since z' is negative and z" is positive. Since th
contradiction, G is balanced at Q.

It was shown in [2] that the following condition (C) is necessary and suff
an s-graph G to be balanced:

(C) The set of all points of G can be separated into two disjoint subset:
that each positive line of G joins two points of the same subset and each ne
line joins points of different subsets.

A subgraph of G is a graph all of whose points and lines are in G. A b
graph G is a maximal connected subgraph containing no articulation points
In these terms, the theorem can be restated:

THEOREM 1°. An s-graph G is balanced at P if and only if each block
containing P is balanced.

Thus to determine whether a given s-graph G is balanced at a designat
P, one tests each block of G containing P for balance, using condition (C).

An s-graph G is called N-balanced if each cycle of G whose length doe
ceed N is positive. We obtain a characterization of N-balanced s-graphs.
simplicity, we discuss the case N = 3. A 3-cycle is a cycle of length 3. Gi
cycles z, z' of G, we say that z' is 3-7eachable from z if there exists a «
of 3-cycles z,, z,, +-+, z, such that z, = z, z, # 2, and z,N z, is not empty,

"ty Zktl # Zy, Zyy o0, 2 aNd ZpqN (2,U 2,U - Uz)) is not empty, -+, 2y :
Obviously, 3-reachability is an equivalence relation on the set of all 3-cycl
The union of all cycles in an equivalence class of 3-reachability is a subgr:
a 3-cluster. Similarly one can define the equivalence relation of N-reachal
all r-cycles (r < N) and N-clusters.

In Theorem 2 on N-balance, we require a lemma on cycle bases. A cyc
. pends on a set of cycles {zl, Z,, **+, Zt if it can be written in the form

Z = Elzl + 8222 + eee + Enlzm’

where ¢€; denotes 0 or 1, 0z; is the empty set, and 1z; is z;. A set of cy
independent if each cycle in the set does not depend on the remaining ones.
basis of a graph is a maximal collection of independent cycles.

LEMMA 3. An s-graph is balanced if and only if all the cycles in each
basis arve positive.

Proof. The necessity is immediate. The sufficiency follows from Lem
the fact that each cycle of a graph depends on each cycle basis.

THEOREM 2. An s-gvaph is N-balanced if and only if each N-cluster i
Proof. We give the proof for N = 3; that for N> 3 is analogous.

The sufficiency is trivial, for each 3-cycle is contained in a 3-cluster.
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To prove the necessity we need to show that each 3-cluster Y is balanced under
the hypothesis that all 3-cycles are positive. It remains to show that all cycles of
Y of length greater than 3 are positive. Since Y is a 3-cluster, any maximal col-
lection of independent cycles from the set of all 3-cycles of Y constitutes a cycle
basis for Y. Thus Y has a cycle basis consisting entirely of 3-cycles, which are
positive. Hence by Lemma 3, Y is balanced.

One can combine the notions of local balance and N-balance, and it is this com-
bination which may be fruitful for the psychological study of large structures. An s-
graph G is N-balanced at P if each cycle of length not greater than N through P is
positive. We state without proof two theorems on local N-balance, since their proofs
are similar to those of Theorems 1 and 2.

I. If G is N-balanced at P, and if Q is a point on an N-clustev containing P,
and is not an avticulation point of the subgraph Gy of G formed by the union of all
the N-clusters of G, then G is N-balanced at Q.

II. The s-grvaph G is N-balanced at P if and only if all N-clusters containing P
arve balanced.
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