ON LOCAL BALANCE AND N-BALANCE IN SIGNED GRAPHS

Frank Harary

A signed graph or s-graph [2] is obtained from a linear graph when some of its lines are regarded as positive and the remaining lines as negative. The sign of a cycle is the product of the signs of its lines. An s-graph is balanced if all its cycles are positive. Two characterizations of balanced s-graphs were given in [2], Theorems 2 and 3. The definitions of all terms used here may be found in [2].

For certain applications of the theory of signed graphs to problems in social psychology, one is interested only in the cycles through a designated point. For other psychological considerations, one considers only cycles of length not exceeding N. These viewpoints lead to the definitions of local balance and N-balance in s-graphs. Some properties of these kinds of balance will be derived in this note. A detailed discussion of the relevance of the notion of balance of s-graphs to psychological theory is given in [1].

An s-graph G is locally balanced at the point P, or briefly, G is balanced at P, if all cycles containing P are positive. Theorem 1 below shows the interdependence of local balance and articulation points. An articulation point of a connected graph is a point whose removal results in a disconnected graph. We first require an extension of the sign of a path or cycle to any set of lines of G. Let L_1 be a subset of L_1 , the set of all lines of G. The sign of L_1 is the product of the signs of the lines of L_1 . The previous definitions of the sign of a path or a cycle are of course specializations of this one. If L_1 , L_2 are subsets of L_1 , then $L_1 \oplus L_2$ denotes the symmetric difference, or set union modulo 2, of L_1 and L_2 . Let $s(L_1)$ denote the sign of L_1 . It is convenient to prove two lemmas before taking up the theorem on local balance.

LEMMA 1.
$$s(L_1 \oplus L_2 \oplus \cdots \oplus L_n) = s(L_1) \cdot s(L_2) \cdot \cdots \cdot s(L_n)$$
.

Proof. For n = 1, the lemma is trivial. When n = 2, we make use of the usual formula $L_1 + L_2 = (L_1 - L_2) \cup (L_2 - L_1)$, which expresses $L_1 \oplus L_2$ as a union of disjoint sets. By definition of the sign of L_1 , we have $s(L_1) = \prod_{\lambda \in L_1} s(\lambda)$. Now L_1 can be expressed as the union of two disjoint sets:

$$L_1 = (L_1 - L_2) \cup (L_1 \cap L_2).$$

Thus

$$s(L_1) = s(L_1 - L_2) \cdot s(L_1 \cap L_2)$$
 and $s(L_2) = s(L_2 - L_1) \cdot s(L_1 \cap L_2)$.

Hence

$$s(L_1) \cdot s(L_2) = s(L_1 - L_2) \cdot s(L_2 - L_1) \cdot (s(L_1 \cap L_2))^2$$

$$= s(L_1 - L_2) \cdot s(L_2 - L_1)$$

$$= s(L_1 \oplus L_2).$$

Received February 24, 1955. Presented to the American Mathematical Society, April 15, 1955.

This work was supported by a grant from the Rockefeller Foundation to the Research Center for Group Dynamics, University of Michigan.

The proof of the inductive step is immediate when one writes

$$L_1 \oplus L_2 \oplus \cdots \oplus L_k \oplus L_{k+1} = (L_1 \oplus L_2 \oplus \cdots \oplus L_k) \oplus L_{k+1}$$

and applies both the inductive hypothesis and the result for n = 2.

LEMMA 2. If z and z' are any two cycles of a linear graph G, regard sets of lines, then $K = z \oplus z'$ is the union of pairwise disjoint cycles.

Proof. Case (i). We first consider the case in which each point on both z', is a point of a common line of z and z'. For this case, one can show the line λ in K lies in a unique cycle $y(\lambda)$ all of whose lines are in K, by contains cycle.

If $\lambda \in K$, then $\lambda \in z$ or $\lambda \in z'$, but not both; say $\lambda \in z$. Let α_0 be the r maximal length in z containing λ but no lines of z'. Then the distinct end A_0 and A_1 of α_0 are points through which both cycles z, z' pass. Let α_1 path of maximal length in z' which has A_1 as one endpoint and contains no z. Let A_2 be the other endpoint of α_1 . If $A_2 = A_0$, then $\alpha_0 \cup \alpha_1$ is the cycle containing λ . If $A_2 \neq A_0$, form the path α_2 of maximal length in z which hone endpoint and is disjoint from z'. Let A_3 be the other endpoint of α_2 . $A_3 \neq A_0$, A_1 ; for otherwise α_2 would not be of maximal length. Similarly, $\alpha_1 \neq \alpha_2 \neq \alpha_3$ in $\alpha_1 \neq \alpha_4 \neq \alpha_4$, $\alpha_3 \neq \alpha_4 \neq \alpha_5$, because of the maximality of α_3 . If $\alpha_4 \neq \alpha_5$, then

$$\alpha_0 \cup \alpha_1 \cup \alpha_2 \cup \alpha_3$$

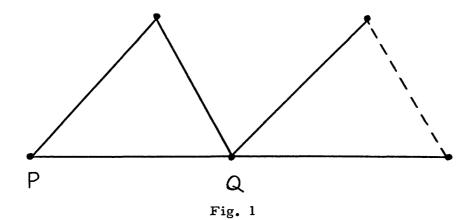
is the cycle in K containing λ . If $A_4 \neq A_0$, continue this process. Since th G is finite, there exists a smallest positive even integer k such that $A_k = y(\lambda) = \alpha_0 \cup \alpha_1 \cup \alpha_2 \cup \cdots \cup \alpha_{k-1}$ is a cycle in K containing λ . Clearly, this c tion defines an equivalence relation on the lines of K such that the lines in equivalence class form a cycle. Hence the cycle $y(\lambda)$ is the unique cycle i taining λ , and K is the union of pairwise disjoint cycles.

Case (ii). In general, however, the cycles z and z' may pass through which do not lie on a line of $z \cap z'$. For each such point P, there exist fou points Q_1 , Q_2 , R_1 , R_2 such that PQ_1 , PQ_2 are lines of z, and PR_1 , PR_2 are z'. This case (ii) can be transformed to case (i) by splitting each of these into two points P_1 and P_2 and adding the additional line P_1P_2 to both cycle The points Q_1 , R_1 are then joined to P_1 by a line, and the points Q_2 , R_2 are to P_2 . Applying the result of case (i), and then identifying each pair of poin we obtain a separation of K into pairwise disjoint cycles. We note that thi tion need not be unique, since each new common line P_1P_2 can be introduce essentially different ways.

The s-graph in Figure 1 (in which the dashed line is negative) shows th hypothesis that Q is not an articulation point is needed in the following the

THEOREM 1. If the connected s-graph G is balanced at P, Q is a polycycle z passing through P, and Q is not an articulation point, then G is t at Q.

Proof. Assume that G is not balanced at Q. Then there exists a negative cycle z' through Q. Since G is balanced at P, the cycle z is positive. We sider separately the cases in which $z \cap z'$ is empty or not empty, where eacycles z, z' is regarded as a set of lines.



Case 1. $z \cap z'$ is not empty. Consider the set of lines $K_1 = z \oplus z'$. It follows from Lemma 1 that K_1 is negative, and from Lemma 2 that K_1 can be written as the union of pairwise disjoint cycles z_{11} , z_{12} , ..., z_{1r_1} $(r_1 \ge 1)$. Since K_1 is negative and $K_1 = z_{11} \oplus z_{12} \oplus \cdots \oplus z_{1r_1}$, Lemma 1 shows that at least one of these cycles is negative. Now z' does not pass through P, since z' is negative and P is balanced at P. Therefore exactly one of the cycles in R_1 , say R_1 , passes through R_2 . If $R_1 = 1$, then R_2 is negative and we have a contradiction to the hypothesis that R_2 is balanced at R_3 . If $R_4 > 1$, then R_4 is positive since it passes through R_4 , and one of the other cycles in R_4 , say R_4 , is negative.

For any two cycles x, y, let n(x, y) be the number of connected components of the subgraph $x \cap y$ of G. Each such component is either a path of maximal length all of whose lines are in $x \cap y$, or it consists of a single point. Then

$$n(z, z') = n(z, z_{11}) + n(z, z_{12}) + \cdots + n(z, z_{1r_1}),$$

for the right-hand member is the number of connected components of the subgraph z - z' (set difference) of G. Clearly each cycle z_{1j} has a line in common with z, so that $n(z, z_{1j}) > 0$ for all j. Since $r_1 > 1$, we see that $n(z, z_{1r_1}) < n(z, z')$. This fact provides the basis for an inductive proof of Case 1.

We continue this process by forming the set

$$K_2 = z \oplus z_{1r_1} = z_{21} \oplus z_{22} \oplus \cdots \oplus z_{2r_2} \ (r_2 \ge 1).$$

Since K_2 is negative, we have a contradiction if $r_2 = 1$. Otherwise, let z_{2r_2} be a negative cycle and note that $n(z, z_{2r_2}) < n(z, z_{1r_1})$. Eventually one must necessarily obtain a set K_s for which $r_s = 1$. Then $K_s = z_{s1}$ is a negative cycle through P, which is a contradiction.

Case 2. $z \cap z'$ is empty. By hypothesis, Q is not an articulation point of G. Hence, for each point $R_i \neq Q$ on z', there exists a path $\rho(R_i)$ joining R_i with P which does not pass through Q. It is clear that there exists a point R on z' for which the path $\rho(R)$ passes through no point of z' other than R. Let ρ be the path $\rho(R)$. Let ϕ denote a fixed one of the two paths joining Q and R along the cycle z'. Let S be the first point of z on the path ρ in the direction from R to P.

There are two possibilities: (i) S = P, (ii) $S \neq P$. (i) If S = P, let σ be either of the two paths joining P and Q along the cycle z, and form the cycle $z'' = \rho \cup \sigma \cup \phi$.

(ii) If $S \neq P$, let ρ_1 be the subpath of ρ joining R and S; let ρ_2 be that path S and P along the cycle z which does not pass through Q; and let ρ_3 be the joining P and Q along z on which S does not lie. Then form the cycle

$$\mathbf{z}'' = \rho_1 \cup \rho_2 \cup \rho_3 \cup \phi.$$

In either of the two possibilities (i) or (ii), z'' is a cycle through P suc $z'' \cap z' = \phi$. Since G is balanced at P, z'' is positive. Therefore $\bar{z} = z'' \oplus \phi$ negative cycle through P, since z' is negative and z'' is positive. Since th contradiction, G is balanced at Q.

It was shown in [2] that the following condition (C) is necessary and suff an s-graph G to be balanced:

(C) The set of all points of G can be separated into two disjoint subsets that each positive line of G joins two points of the same subset and each ne line joins points of different subsets.

A subgraph of G is a graph all of whose points and lines are in G. A b graph G is a maximal connected subgraph containing no articulation points In these terms, the theorem can be restated:

THEOREM 1'. An s-graph G is balanced at P if and only if each block containing P is balanced.

Thus to determine whether a given s-graph G is balanced at a designat P, one tests each block of G containing P for balance, using condition (C).

An s-graph G is called N-balanced if each cycle of G whose length doe ceed N is positive. We obtain a characterization of N-balanced s-graphs. simplicity, we discuss the case N = 3. A 3-cycle is a cycle of length 3. Gi cycles z, z' of G, we say that z' is 3-reachable from z if there exists a of 3-cycles z_1, z_2, \cdots, z_n such that $z_1 = z, z_2 \neq z_1$ and $z_2 \cap z_1$ is not empty, \cdots , $z_{k+1} \neq z_1, z_2, \cdots, z$ and $z_{k+1} \cap (z_1 \cup z_2 \cup \cdots \cup z_k)$ is not empty, \cdots , $z_n \in C$ Obviously, 3-reachability is an equivalence relation on the set of all 3-cycle The union of all cycles in an equivalence class of 3-reachability is a subgraph a 3-cluster. Similarly one can define the equivalence relation of N-reachability and N-clusters.

In Theorem 2 on N-balance, we require a lemma on cycle bases. A cyc pends on a set of cycles $\{z_1, z_2, \dots, z_m\}$ if it can be written in the form

$$z = \varepsilon_1 z_1 + \varepsilon_2 z_2 + \cdots + \varepsilon_m z_m,$$

where ε_i denotes 0 or 1, $0z_i$ is the empty set, and $1z_i$ is z_i . A set of cy *independent* if each cycle in the set does not depend on the remaining ones. basis of a graph is a maximal collection of independent cycles.

LEMMA 3. An s-graph is balanced if and only if all the cycles in each basis are positive.

Proof. The necessity is immediate. The sufficiency follows from Lem the fact that each cycle of a graph depends on each cycle basis.

THEOREM 2. An s-graph is N-balanced if and only if each N-cluster i

Proof. We give the proof for N = 3; that for N > 3 is analogous.

The sufficiency is trivial, for each 3-cycle is contained in a 3-cluster.

To prove the necessity we need to show that each 3-cluster Y is balanced under the hypothesis that all 3-cycles are positive. It remains to show that all cycles of Y of length greater than 3 are positive. Since Y is a 3-cluster, any maximal collection of independent cycles from the set of all 3-cycles of Y constitutes a cycle basis for Y. Thus Y has a cycle basis consisting entirely of 3-cycles, which are positive. Hence by Lemma 3, Y is balanced.

One can combine the notions of local balance and N-balance, and it is this combination which may be fruitful for the psychological study of large structures. An sgraph G is N-balanced at P if each cycle of length not greater than N through P is positive. We state without proof two theorems on local N-balance, since their proofs are similar to those of Theorems 1 and 2.

- I. If G is N-balanced at P, and if Q is a point on an N-cluster containing P, and is not an articulation point of the subgraph G_N of G formed by the union of all the N-clusters of G, then G is N-balanced at Q.
- II. The s-graph G is N-balanced at P if and only if all N-clusters containing P are balanced.

REFERENCES

- 1. D. Cartwright and F. Harary, A generalization of Heider's theory of balance. To be submitted to Psychological Review.
- 2. F. Harary, On the notion of balance of a signed graph, Michigan Math. J. 2 (1953-54), 143-146.
- 3. D. König, Theorie der endlichen und unendlichen Graphen. Leipzig, 1936 (reprinted New York, 1950).

University of Michigan