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1. Introduction

Recently, the Einstein–Dirac–Yang/Mills (EDYM) equations were derived for a
static, spherically symmetric system of a Dirac particle that interacts with both a
gravitational field and the magnetic component of an SU(2)Yang/Mills field [5].
This system was constructed by choosing a representation of the rotation group
that acts nontrivially on the YM index and by making anansatzinvolving two
real functions for the Dirac wave function, which is invariant under this group
representation. The resulting equations were shown to admit stable particle-like
solutions for physically relevant values of the coupling constants. In this paper,
we study black-hole solutions of these EDYM equations.

We prove that the only black-hole solutions of our EDYM equations are the
Bartnik–McKinnon (BM) black holes; that is, the spinors must vanish identically.
In other words, the EDYM equations do not admit normalizable black-hole solu-
tions. Thus, in the presence of quantum mechanical Dirac particles, static and
spherically symmetric black-hole solutions do not exist. Another interpretation
of our result is that Dirac particles can only either disappear into the black hole
or escape to infinity. These results are proved under very weak regularity as-
sumptions on the form of the event horizon; see assumptions(I)–(III) in the next
section.

Our work here is a continuation of [3], where we showed that the Einstein–
Dirac–Maxwell (EDM) equations do not admit normalizable black-hole solutions.
However, in contrast to the EDM system [3], where an electric field is present,
here we consider the influence of a magnetic field—more precisely, the influence
of the magnetic component of a non-abelian gauge field. Furthermore, we point
out that the Dirac particle considered here has zero total angular momentum. In
analogy to [3], one could also form a spherically symmetric system out of(2j +1)
Dirac particles each having angular momentumj, j = 1,2, . . . . However, the
EDYM equations for such a system would involve four real spinor functions. This
is a considerably more difficult problem, which we are presently investigating.
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2. The Coupled EDYM Equations

In [5] we derived the spherically symmetric, static EDYM system of a Dirac parti-
cle and an SU(2)YM field with vanishing electric component. We shall not repeat
this derivation here, but merely write down the EDYM equations. We consider a
Lorentzian metric in polar coordinates(t, r, ϑ, ϕ) of the form

ds2 = 1

T(r)2
dt 2 − 1

A(r)
dr 2 − r 2(dϑ2 + sin2 ϑ dϕ2)

with positive functionsA andT . The Dirac wave function is described by two real
functions(α(r), β(r)), and the potentialw(r) corresponds to the magnetic com-
ponent of an SU(2)YM field. Then the EDYM equations are

√
Aα ′ = w

r
α − (m+ ωT )β, (2.1)

√
Aβ ′ = (−m+ ωT )α − w

r
β, (2.2)

rA′ = 1− A− 1

e2

(1− w2)2

r 2
− 2ωT 2(α2 + β2)− 2

e2
Aw ′2, (2.3)

2rA
T ′

T
= −1+ A+ 1

e2

(1− w2)2

r 2
+ 2mT(α2 − β2)− 2ωT 2(α2 + β2)

+ 4
T

r
wαβ − 2

e2
Aw ′2, (2.4)

r 2Aw ′′ = −(1− w2)w + e2rTαβ − r 2A
′T − 2AT ′

2T
w ′. (2.5)

Equations (2.1) and (2.2) are the Dirac equations, (2.3) and (2.4) are the Einstein
equations, and (2.5) is the Yang/Mills equation. Here the constantsm, ω, ande
are (respectively) the rest mass of the Dirac particle, its energy, and the YM coup-
ling constant.

We shall here consider black-hole solutions of this EDYM system. Thus we as-
sume (as in [3]) that the surfacer = ρ > 0 is a black-hole event horizon:

A(ρ) = 0, A(r) > 0 if r > ρ. (2.6)

In addition, we assume the following conditions:∫ ∞
r0

(α2 + β2)

√
T

A
dr <∞ for every r0 > ρ (2.7)

(the spinors are normalizable),

lim
r→∞

r

2
(1− A(r)) <∞ (2.8)

(finite ADM mass),
lim
r→∞ T(r) = 1
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(the gravitational field is asymptotically flat Minkowskian), and

lim
r→∞(w(r), w

′(r)) is finite (2.9)

(well-behavedness of the Yang/Mills field).
Concerning the event horizonr = ρ, we make the following three regularity

assumptions (cf. [3]).

(I) The volume element
√|detgij | = |sinϑ |r 2A−1T −2 is smooth and nonzero

on the horizon; that is,

T −2A−1, T 2A∈C1([ρ,∞)).
(II) The strength of the Yang/Mills fieldFij is given by

Tr(FijF
ij ) = 2Aw ′2

r 2
+ (1− w

2)2

r 4

(cf. [2]). We assume that this scalar is bounded near the horizon; that is, we
assume that outside the event horizon and nearr = ρ,

w andAw ′2 are bounded. (2.10)

(III) The function A(r) is monotone increasing outside of and near the event
horizon.

As discussed in [3], if assumption (I) or(II) were violated then an observer freely
falling into the black hole would feel strong forces when crossing the horizon.
Assumption(III) is considerably weaker than the corresponding assumption in
[3]; indeed, in [3] we assumed that the functionA(r) obeyed a power lawA(r) =
c(r − ρ)s +O((r − ρ)s+1), with positive constantsc ands, for r > ρ.

3. Nonexistence of Black-Hole Solutions

Our main result is the following theorem.

Theorem 3.1. Every black-hole solution of the EDYM equations(2.1)–(2.5)sat-
isfying the regularity conditions(I), (II), and (III) cannot be normalized and
coincides with a BM black hole of the corresponding Einstein–Yang/Mills (EYM)
equations; that is, the spinorsα and β must vanish identically outside the event
horizon.

Remarks. (A) In [6], it was proved that any black-hole solution of the EYM equa-
tions that has finite (ADM) mass (i.e., that satisfies (2.8)) must be one of the BM
black-hole solutions whose existence was first demonstrated in [7]. Thus, amend-
ing the EYM equations by taking quantum mechanical effects into account—in
the sense that we allow both the gravitational and Yang/Mills fields to interact
with Dirac particles—does not yield any new types of black-hole solutions.

(B) In [3] we studied black-hole solutions of the Einstein–Dirac–Maxwell equa-
tions, and we proved a corresponding result for this EDM system. As mentioned
before, in [3] we assumed that near the event horizon,
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A(r) = c(r − ρ)s +O((r − ρ)s+1),

wherec > 0 ands > 0. We were able to prove that ifs 6= 2 then the spinors
must vanish outside of the event horizon; ifs = 2, we could only obtain this re-
sult numerically. Theorem 3.1 thus gives an even stronger result in the case of a
YM field.

In the remainder of this paper, we shall give the proof of Theorem 3.1. We assume
that we have a black-hole solution of the EDYM equations (2.1)–(2.9), with event
horizon atr = ρ, satisfying the regularity assumptions(I)–(III), and where the
spinors(α(r), β(r)) do not vanish identically in the regionr > ρ. We will show
that this leads to a contradiction. We consider two cases: eitherA−1/2 is integrable
near the horizon orA−1/2 fails to be integrable near the horizon.

Case 1:A−1/2 Is Integrable Nearr = ρ
In order to obtain the desired contradiction, we shall need a few preliminary re-
sults as follows.

Lemma 3.2. If A−1/2 is integrable nearr = ρ, then there exist positive constants
c, ε such that

c ≤ α2(r)+ β2(r) ≤ 1

c
if ρ < r < ρ + ε. (3.1)

Proof. If we multiply (2.1) byα and (2.2) byβ and then add, we obtain

√
A
d

dr
(α2 + β2) = 2

(
α

β

)T(
w/r −m
−m −w/r

)(
α

β

)
(3.2)

≤ 2

√
m2 + w

2

r 2
(α2 + β2),

where in the last estimate we computed the eigenvalues of the preceding 2× 2
matrix. Since(α, β) is a nontrivial solution, the uniqueness theorem for ODEs im-
plies that(α2+ β2)(r) 6= 0 on all intervals of the form(ρ, ρ + ε). Thus, dividing
(3.2) by

√
A(α2 + β2) and integrating fromr > ρ to ρ + ε gives

|log(α2 + β2)(ρ + ε)− log(α2 + β2)(r)|

≤ 2
∫ ρ+ε

r

A−1/2(s)

√
m2 + w

2(s)

s2
ds. (3.3)

Sincew(r) is bounded near the event horizon (by assumption(II)) andA−1/2 is
integrable near the event horizon, we can take the limitr ↘ ρ in (3.3) to achieve
the desired result.

Corollary 3.3. If A−1/2 is integrable nearr = ρ, thenω = 0.
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Proof. Combining (2.3) and (2.4), we have

r(AT 2)′

= −4ωT 4(α2 + β2)+ T 3

[
2m(α2 − β2)+ 4w

r
αβ

]
− 4

e2
(Aw ′2)T 2. (3.4)

From assumption(II) andLemma 3.2, we see that the coefficients ofT 4, T 3, and
T 2 on the right-hand side of (3.4) are bounded. From assumption (I) we see that
the left-hand side of (3.4) is bounded near the event horizon. SinceT(r)→∞ as
r ↘ ρ (again by (I)), we conclude from (3.4) and Lemma 3.2 thatω = 0.

In view of this last result, we can write the Dirac equations (2.1) and (2.2) as
√
Aα ′ = w

r
α −mβ, (3.5)

√
Aβ ′ = −mα − w

r
β. (3.6)

If we multiply (3.5) byβ and (3.6) byα and then add, we obtain
√
A(αβ)′ = −m(α2 + β2) < 0, (3.7)

so thatαβ is monotone decreasing. Thus(αβ)(r) has a limit forr →∞ (which
might be−∞). Sinceα2 + β2 ≥ 2|αβ|, we see that the normalization condition
(2.7) will be satisfied only if this limit is zero. We thus have proved the following
lemma.

Lemma 3.4. If ω = 0, then(αβ)(r) is a positive decreasing function tending to
0 asr →∞.
Remark. We did not use the fact thatA−1/2 is integrable to prove this lemma.

The YM equation (2.5) can be written equivalently as an equation forAw ′,

r 2(Aw ′)′ = −w(1− w2)+ e2 r
(√
AT

)
αβ√

A
+ r 2 (AT

2)′

2AT 2
(Aw ′). (3.8)

SinceAw ′2 is bounded, we see thatA2w ′2 → 0 asr ↘ ρ and thusAw ′ → 0 as
r ↘ ρ. In view of Lemma 3.4 together with assumption (I), we see that forr near
ρ we can write (3.8) in the form

(Aw ′)′ = d(r)+ c(r)√
A(r)

, (3.9)

whered(r) is bounded andc(r) is a positive function bounded away from zero
near the event horizon. It thus follows from (3.9) that we have

(Aw ′)′(r) ≥ d + c√
A(r)

(3.10)

for r > ρ (r nearρ), whered andc are constants andc > 0. In order to analyze
this inequality, we shall need the following lemma.
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Lemma 3.5. If A(r)−1/2 is integrable nearr = ρ, then there exists a function
g(r) with 0< lim r↘ρ g(r) <∞ and such that, forr nearρ,

A(r) = (r − ρ)g(r). (3.11)

Proof. First note thatA cannot have a zero of infinite order atr = ρ. Indeed, were
this not true then we could write(r − ρ)2 > A(r) for r nearρ, so thatA−1/2(r) >

(r − ρ)−1, thereby violating the integrability ofA−1/2. Hence there exists ans >
0 such that

g(r) ≡ A(r)

(r − ρ)s 6→ 0 asr ↘ ρ (3.12)

while for anyε, s > ε > 0,

(r − ρ)εg(r) = A(r)

(r − ρ)s−ε → 0 asr ↘ ρ. (3.13)

According to (3.12), there is a positive constantη such that, for allr (ρ < r <

ρ + η),
1√
A(r)

= (r − ρ)−s/2 1√
g(r)
; (3.14)

sinceA > 0, we see thatg−1/2 > 0. Pick anyr̄ in the interval(ρ, ρ + η). Setting
δ = r̄ − ρ, (3.14) yields that

1√
A(r̄)

= δ−s/2 1√
g(r̄)

. (3.15)

SinceA ↘ 0 monotonically asr ↘ ρ, we haveA−1/2 tending monotonically to
infinity and so

1√
A(r)

> δ−s/2 1√
g(r̄)

, ρ < r < r̄. (3.16)

If we now integrate (3.10) fromρ to r̄ and note that(Aw ′)(ρ) = 0, we obtain

(Aw ′)(r̄) ≥ d(r̄ − ρ)+ cδ−s/2 1√
g(r̄)

(r̄ − ρ)

= dδ + c√
g(r̄)

δ1−s/2, (3.17)

where we have used (3.16). On the other hand, writingB(r̄) := (√Aw ′)(r̄), we
see thatB is uniformly bounded near the horizon because of (2.10). Then (3.15)
gives

(Aw ′)(r̄) =
√
A(r̄)

(√
Aw ′

)
(r̄) = B

√
g(r̄)δs/2.

Using this together with (3.17), for sufficiently smallδ and forε > 0 we have
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B ≥ dδ
1−s/2+ε/2√
δεg(r̄)

+ cδ
1−s+ε

δεg(r̄)
= δ1−s+ε[d√δεg(r̄)δ(s−ε)/2 + c]

δεg(r̄)

≥ δ
1−s+ε[− c

2 + c
]

δεg(r̄)
(if δ is small)

≥ δ1−s+ε c
2
, (3.18)

so that 1− s + ε ≥ 0 and thus
1≥ s.

To obtain the reverse inequality, let 0< ε < 1 and note that

A(r)

(r − ρ)ε =
A(r)

(r − ρ)(r − ρ)
1−ε → 0

asr ↘ ρ, because (2.3) (withω = 0) shows thatA′ is bounded atρ; thus,s ≥ 1.
We knowA(r) = (r − ρ)g(r) and that limr↘ρ(r − ρ)−1A(r) exists. Hence

lim r↘ρ g(r) exists and is finite. Since (3.12) shows that lim supr↘ρ g(r) > 0, we
see that limr↘ρ g(r) > 0.

From (3.11) we have
A(ρ) = 0, A′(ρ) > 0,

andA′(ρ) is finite. Our Einstein metric thus has the same qualitative features
as the Schwarzschild metric. Hence, the metric singularity can be removed via
a Kruskal transformation [1]. In these Kruskal coordinates, the Yang/Mills po-
tential is continuous and bounded (as is easily verified). As a consequence, the
arguments from [4] go through and show that the spinors must vanish identically
outside the horizon. For this, one must notice that continuous zero-order terms in
the Dirac operator are irrelevant for the derivation of the matching conditions in
[4, Sec. 2.4]. Thus, the matching conditions [4, (2.31), (2.34)] are valid without
changes in the presence of our YM field. Using conservation of the (electromag-
netic) Dirac current and its positivity in time-like directions, the arguments of [4,
Sec. 4] all carry over. Thus, the proof of Theorem 3.1 in the case thatA−1/2 is
integrable near the event horizon is considered complete.

Case 2:A(r)−1/2 Is Not Integrable Nearr = ρ
We break the proof up into two subcases:

(i) ω 6= 0,
(ii) ω = 0.

Suppose first that we are in case (i),ω 6= 0. We begin with the following lemma.

Lemma 3.6. The function[|(m/ωT )′| + |(w/rωT )′|] is integrable near the hori-
zonr = ρ.
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Proof. We first consider|(1/T )′|. Toward this end, we write 1/T = √A/√AT
and compute∣∣∣∣( 1

T

)′∣∣∣∣ =
∣∣(√AT )(√A)′ − √A(√AT )′∣∣

AT 2
≤
∣∣∣∣
(√
AT

)(√
A
)′

AT 2

∣∣∣∣+ ∣∣∣∣
√
A
(√
AT

)′
AT 2

∣∣∣∣.
According to assumption (I), near the event horizonr = ρ, AT 2 is bounded away
from zero and

∣∣(√AT )′∣∣ is bounded and thus integrable. Moreover, sinceA is in-
creasing nearr = ρ, we see that

∣∣√AT (√A)′∣∣ = (√AT )(√A)′, and sinceA′ >
0, this term too is integrable nearr = ρ. Thus|(1/T )′| is integrable nearr = ρ.

We handle|(w/rT )′| similarly; namely, write

w

rT
=
√
Aw

r(
√
AT )

.

Then∣∣∣∣( wrT
)′∣∣∣∣ =

∣∣(r√AT )(√Aw)′ − (√Aw)(r√AT )′|
r 2AT 2

=
∣∣r(√AT )[√Aw ′ + (√A)′w]− (√Aw)[r(√AT )′ + √AT ]∣∣

r 2AT 2
.

SinceAT 2, w, andAw ′2 are bounded andA′ > 0 nearr = ρ, we see as before
that|(w/rT )′| is integrable nearr = ρ; this proves the lemma.

Proposition 3.7. Assume thatω 6= 0. Then there exist constantsc1 > 0 and
ε1 > 0 such that

c1 ≤ (α2 + β2)(r) ≤ 1

c1
for ρ < r < ρ + ε1. (3.19)

Proof. We rewrite the Dirac equations (2.1) and (2.2) in matrix form:

√
A8′ =

(
w/r −(m+ ωT )

−m+ ωT −w/r
)
8, (3.20)

where8 = (α, β)T . Furthermore, let

a = ωT, b = w

r
, c = −m,

and define the matrixB(r) by

B(r) =

1+ c

a
−b
a

−b
a

1− c

a

 =
1− m

ωT
− w

rωT

− w

rωT
1+ m

ωT

.
Our proof is based on an extension of [4, Lemma 5.1]. In this earlier paper we used
the fact thatb/a andc/a are monotone near the horizon. In the case considered
here, we do not have these hypotheses and must therefore work harder.
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SinceT(r)→∞ asr ↘ ρ andw(r) is bounded (by assumption(II)), we see
that bothm/ωT andw/rωT tend to zero asr ↘ ρ. Thus,B(r) is close to the
identity matrix whenr is nearρ. If we defineF(r) by

F(r) = 〈8(r), B(r)8(r)〉
(where〈·, ·〉 denotes the usual Euclidean inner product), then we can find constants
c > 0 andε1 > 0 such that

1

c
|8(r)|2 ≤ F(r) ≤ c|8(r)|2, ρ < r < ρ + ε1. (3.21)

Furthermore, an easy calculation using the Dirac equation (3.20) yields that

F ′(r) = 〈8(r), B ′(r)8(r)〉;
thus, ifρ < r < ρ + ε1,

−
√

2

[∣∣∣∣( m

ωT

)′∣∣∣∣+ ∣∣∣∣( w

rωT

)′∣∣∣∣]|8|2 ≤ F ′(r)
≤
√

2

[∣∣∣∣( m

ωT

)′∣∣∣∣+ ∣∣∣∣( w

rωT

)′∣∣∣∣]|8|2,
because the sup-norm of the matrixB ′ is bounded by

|B ′| ≤
√

2

[∣∣∣∣( m

ωT

)′∣∣∣∣+ ∣∣∣∣( w

rωT

)′∣∣∣∣].
From (3.21) we therefore obtain

−c
[∣∣∣∣( m

ωT

)′∣∣∣∣+ ∣∣∣∣( w

rωT

)′∣∣∣∣]F(r) ≤ F ′(r)√2

≤ c
[∣∣∣∣( m

ωT

)′∣∣∣∣+ ∣∣∣∣( w

rωT

)′∣∣∣∣]F(r) (3.22)

on ρ < r < ρ + ε1. Dividing this inequality byF(r) and applying Lemma 3.6,
we obtain

−a(r) ≤ F
′(r)
F(r)

≤ a(r), (3.23)

wherea(r) is integrable near the event horizonr = ρ. If we integrate (3.23) from
ρ to ρ + ε1, we see that logF(r) is bounded from above and below nearr = ρ.
Upon exponentiating and substituting into (3.21), we see (as in the proof of Lemma
3.2) that (3.19) holds.

We return now to the proof of Theorem 3.1 forA−1/2 not integrable nearr = ρ and
ω 6= 0 (subcase (i)). Toward this end, we consider the differential equation for
(AT 2), (3.4); we observe that, asr ↘ ρ, the right-hand side tends to−∞ while
the left-hand side is bounded. This contradiction implies thatω 6= 0 cannot hold.

For subcase (ii) ofA−1/2 not integrable near the event horizon,ω = 0, we note
that Lemma 3.4 holds (cf. the remark following the statement of that lemma). As
in Case 1, we find that (3.10) holds nearr = ρ. Integrating this inequality from
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r > ρ to ρ + ε, we see that forr nearρ, the left-hand side is bounded while the
right-hand side can be made arbitrarily large. This contradiction completes the
proof of Theorem 3.1.
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