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1. Introduction

Recently, the Einstein—Dirac—Yang/Mills (EDYM) equations were derived for a
static, spherically symmetric system of a Dirac particle that interacts with both a
gravitational field and the magnetic component of aiBWYang/Mills field [5].

This system was constructed by choosing a representation of the rotation group
that acts nontrivially on the YM index and by making ansatzinvolving two

real functions for the Dirac wave function, which is invariant under this group
representation. The resulting equations were shown to admit stable particle-like
solutions for physically relevant values of the coupling constants. In this paper,
we study black-hole solutions of these EDYM equations.

We prove that the only black-hole solutions of our EDYM equations are the
Bartnik—McKinnon (BM) black holes; that is, the spinors must vanish identically.
In other words, the EDYM equations do not admit normalizable black-hole solu-
tions. Thus, in the presence of quantum mechanical Dirac particles, static and
spherically symmetric black-hole solutions do not exist. Another interpretation
of our result is that Dirac particles can only either disappear into the black hole
or escape to infinity. These results are proved under very weak regularity as-
sumptions on the form of the event horizon; see assumptiprélil) in the next
section.

Our work here is a continuation of [3], where we showed that the Einstein—
Dirac—Maxwell (EDM) equations do not admit normalizable black-hole solutions.
However, in contrast to the EDM system [3], where an electric field is present,
here we consider the influence of a magnetic field—more precisely, the influence
of the magnetic component of a non-abelian gauge field. Furthermore, we point
out that the Dirac particle considered here has zero total angular momentum. In
analogy to [3], one could also form a spherically symmetric system a@tjof 1)

Dirac particles each having angular momentygm = 1,2, .... However, the
EDYM equations for such a system would involve four real spinor functions. This
is a considerably more difficult problem, which we are presently investigating.
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2. The Coupled EDYM Equations

In [5] we derived the spherically symmetric, static EDYM system of a Dirac parti-
cle and an S2) YM field with vanishing electric component. We shall not repeat
this derivation here, but merely write down the EDYM equations. We consider a
Lorentzian metric in polar coordinatés r, 9, ¢) of the form

1 2
= dt® — ——
T(r)? A(r)
with positive functionsA and7. The Dirac wave function is described by two real

functions(«(r), B(r)), and the potentialv(r) corresponds to the magnetic com-
ponent of an S(R) YM field. Then the EDYM equations are

ds? dr? — r2(dv? + sirf 9 dp?)

VA = Za - (m + oT)p, (2.1)
r
VAR = (—=m + wT)a — %,8, 2.2)
11— w?? 2
A =1-A- =S our26? 4 g7 - 2w, 2.3)
e r e
T’ 13d-w?? 2 2 2,2 2
2rA— =—1+A+—2—2+2mT(a — B9 — 20T “(a“ + B°)
e r
T 2
+4—wap — S Aw'?, (2.4)
r e
A'T — 2AT’
r?Aw” = —(1— wdw + e*rTap — rsz’. (2.5)

Equations (2.1) and (2.2) are the Dirac equations, (2.3) and (2.4) are the Einstein
equations, and (2.5) is the Yang/Mills equation. Here the constants, ande
are (respectively) the rest mass of the Dirac particle, its energy, and the YM coup-
ling constant.

We shall here consider black-hole solutions of this EDYM system. Thus we as-
sume (as in [3]) that the surface= p > 0 is a black-hole event horizon:

A(p) =0, A(r) >0 if r > p. (2.6)
In addition, we assume the following conditions:
o T
/ (a®+ 132)“/7_ dr < oo foreveryrg> p 2.7)
ro
(the spinors are normalizable),
lim %(1— A(r)) < 00 (2.8)
(finite ADM mass),
im T@(r)=1

r—oo
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(the gravitational field is asymptotically flat Minkowskian), and
lim (w(r), w'(r)) is finite (2.9)

(well-behavedness of the Yang/Mills field).
Concerning the event horizon= p, we make the following three regularity
assumptions (cf. [3]).
(1) The volume elemen/|detg;;| = |sin?|r2A~1T 2 is smooth and nonzero
on the horizon; that is,

T2A7Y T?A e CY([ p, 20)).
(I1) The strength of the Yang/Mills field; is given by

2Aw'?  (1—w??
,.2 + 4

Tr(F;F7) =

,
(cf. [2]). We assume that this scalar is bounded near the horizon; that is, we
assume that outside the event horizon and nearp,

w and Aw’? are bounded. (2.10)

(111) The function A(r) is monotone increasing outside of and near the event
horizon.

As discussed in [3], if assumption (1) Oil) were violated then an observer freely
falling into the black hole would feel strong forces when crossing the horizon.
Assumption(l1l) is considerably weaker than the corresponding assumption in
[3]; indeed, in [3] we assumed that the functiartr) obeyed a power law(r) =

c(r — p)* + O((r — p)**Y), with positive constants ands, for r > p.

3. Nonexistence of Black-Hole Solutions
Our main result is the following theorem.

THeoreM 3.1. Every black-hole solution of the EDYM equatid¢@sl)—(2.5)sat-
isfying the regularity conditiongl), (I1), and (I11) cannot be normalized and
coincides with a BM black hole of the corresponding Einstein—Yang/Mills (EYM)
equations; that is, the spinors and g must vanish identically outside the event
horizon.

REMARKS. (A)In[6], itwas proved that any black-hole solution of the EYM equa-
tions that has finite (ADM) mass (i.e., that satisfies (2.8)) must be one of the BM
black-hole solutions whose existence was first demonstrated in [7]. Thus, amend-
ing the EYM equations by taking quantum mechanical effects into account—in
the sense that we allow both the gravitational and Yang/Mills fields to interact
with Dirac particles—does not yield any new types of black-hole solutions.

(B) In [3] we studied black-hole solutions of the Einstein—Dirac—Maxwell equa-
tions, and we proved a corresponding result for this EDM system. As mentioned
before, in [3] we assumed that near the event horizon,
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A(r) = c(r — p)* + O((r — p)* ™,

wherec > 0 ands > 0. We were able to prove that if £ 2 then the spinors
must vanish outside of the event horizony i 2, we could only obtain this re-

sult numerically. Theorem 3.1 thus gives an even stronger result in the case of a
YM field.

In the remainder of this paper, we shall give the proof of Theorem 3.1. We assume
that we have a black-hole solution of the EDYM equations (2.1)—(2.9), with event
horizon atr = p, satisfying the regularity assumptiofi3—(I11), and where the
spinors(«(r), B(r)) do not vanish identically in the region> p. We will show

that this leads to a contradiction. We consider two cases: eithéf is integrable

near the horizon oA~Y2 fails to be integrable near the horizon.

Case 1:A Y2 Is Integrable Near = p

In order to obtain the desired contradiction, we shall need a few preliminary re-
sults as follows.

Lemma 3.2. If A=Y2isintegrable near = p, then there exist positive constants
¢, € such that

cgaz(r)—i-ﬂz(r)f} if p<r<p+e. 3.1
c

Proof. If we multiply (2.1) by« and (2.2) byg and then add, we obtain
ﬂi(a2+ﬂ2)=2<“)r<w/’ —n )(“) 3.2)
dr B —-m  —w/r B )

w2, 2
<2 m2+7(a + B,

where in the last estimate we computed the eigenvalues of the precedir®y 2
matrix. Sincg, ) is a nontrivial solution, the uniqueness theorem for ODEs im-
plies that(a? + 82)(r) # 0 on all intervals of the fornip, p + ). Thus, dividing
(3.2) by/A(? + p?) and integrating from > p to p + ¢ gives

llog(a? + B%)(p + &) — log(a? + B2)(r)]

+e 2
< 2/[) AY2(5) m2 + 2 gs) ds. (3.3)
- s

Sincew(r) is bounded near the event horizon (by assumptiof) and A=Y2 is
integrable near the event horizon, we can take the kmit o in (3.3) to achieve
the desired result. O

CoRrOLLARY 3.3. If A=Y2is integrable near = p, thenw = 0.
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Proof. Combining (2.3) and (2.4), we have
r(AT?)

= —doT*(?+ %) + T3[2m(a2 - B3+ 4wa,3} — ;'Z(Aw/z)Tz. (3.4)

-
From assumptiofll) and Lemma 3.2, we see that the coefficientgdt 73, and
T2 on the right-hand side of (3.4) are bounded. From assumption (I) we see that
the left-hand side of (3.4) is bounded near the event horizon. Jige—~ oo as
r \¢ p (again by (1)), we conclude from (3.4) and Lemma 3.2 that 0. O

In view of this last result, we can write the Dirac equations (2.1) and (2.2) as
VAo = %a —mB, (3.5)
VAR = —ma — %,3. (3.6)
If we multiply (3.5) by and (3.6) byx and then add, we obtain
VA@B) = —m@®+p?) <0, (3.7)

so thate 8 is monotone decreasing. Thugs)(r) has a limit forr — oo (which
might be—oo). Sincea? + 82 > 2|ap|, we see that the normalization condition
(2.7) will be satisfied only if this limit is zero. We thus have proved the following
lemma.

LemMma 3.4. If w =0, then(aB)(r) is a positive decreasing function tending to
Oasr — oo.

REMARK. We did not use the fact that~2 is integrable to prove this lemma.

The YM equation (2.5) can be written equivalently as an equatiod for,
(VAT)ap  ,(AT?)
JA 2AT?2

SinceAw’? is bounded, we see thafw’? — 0 asr \ p and thusAw’ — 0 as
r \¢ p. Inview of Lemma 3.4 together with assumption (I), we see that fugar
o we can write (3.8) in the form

F2(Aw') = —w(l— w?) + 2 (Aw).  (3.8)

c(r)
VA@)
whered(r) is bounded and(r) is a positive function bounded away from zero
near the event horizon. It thus follows from (3.9) that we have
C

VA(r)

forr > p (r nearp), whered andc are constants and> 0. In order to analyze
this inequality, we shall need the following lemma.

(Aw") =d(r) +

(3.9)

(Aw")'(r) = d + (3.10)



204 FELIX FINSTER, JOEL SMOLLER, & SHING-TUNG YAU

Lemma 3.5. If A(r)~Y? is integrable near = p, then there exists a function
g(r)with0 < lim,« , g(r) < oo and such that, for nearp,

A(r) = (r — p)g(r). (3.11)

Proof. First note thatA cannot have a zero of infinite orderat p. Indeed, were
this not true then we could write — p)2 > A(r) for r nearp, so thatdA=%2(r) >
(r — p)~% thereby violating the integrability oA=¥2. Hence there exists an>
0 such that

A(r)

g(r) = 40 asr\p (3.12)
(r—p)°

while for anye, s > ¢ > 0,

(r—p)gr) = L — 0 asr\ p. (3.13)
(r—p)-*

According to (3.12), there is a positive constgrguch that, for alr (p < r <
p+mn,
1 1
=(r—p) P —; (3.14)

VA(r) Ve

sinceA > 0, we see that =2 > 0. Pick anyr in the interval(p, p + ). Setting
8 =r — p, (3.14) yields that

1 _ 3—s/2 1

VAR e
SinceA N\, 0 monotonically as \, p, we haveA~Y2 tending monotonically to
infinity and so

(3.15)

1 -~ 8—s/2 1
VA(r) Ve

If we now integrate (3.10) frorp to 7 and note thatAw’)(p) = 0, we obtain

p<r<r. (3.16)

1
(Aw)(F) > d(F — p) + 6™ /2——=(F — p)
NAG)
= ds + ———§1/2, (3.17)

Ver)

where we have used (3.16). On the other hand, wriBiig) := (VAw')(F), we
see thatB is uniformly bounded near the horizon because of (2.10). Then (3.15)

gives
(Aw)(F) = VAG) (VAW')(F) = By/g(F)8"2.

Using this together with (3.17), for sufficiently smaland fore > 0 we have
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dsl—s/2+¢e/2 cSl-s+e 51—s+8[d 5sg(f)5(s—s)/2+c]
+ = -
V/82g(F) 5°g(r) 8cg(r)
51,§+g[_(_2f +C]
8°g(r)

C
> 81—3‘4—8_’
- 2
sothat 1- s 4+ ¢ > 0 and thus

B =

(if 8 is small)

(3.18)

1>s.
To obtain the reverse inequality, let0¢ < 1 and note that
Ar) A(r)
r—pF  (r—p)

asr \{ p, because (2.3) (with = 0) shows thatd’ is bounded ap; thus,s > 1.
We know A(r) = (r — p)g(r) and that lim-_ ,(r — p)YA(r) exists. Hence

lim,~, g(r) exists and is finite. Since (3.12) shows that lim,supg(r) > 0, we

see that lim\ , g(r) > 0. O

r=p)'" =0

From (3.11) we have
A(p) =0, A'(p) > 0,

and A'(p) is finite. Our Einstein metric thus has the same qualitative features
as the Schwarzschild metric. Hence, the metric singularity can be removed via
a Kruskal transformation [1]. In these Kruskal coordinates, the Yang/Mills po-
tential is continuous and bounded (as is easily verified). As a consequence, the
arguments from [4] go through and show that the spinors must vanish identically
outside the horizon. For this, one must notice that continuous zero-order terms in
the Dirac operator are irrelevant for the derivation of the matching conditions in
[4, Sec. 2.4]. Thus, the matching conditions [4, (2.31), (2.34)] are valid without
changes in the presence of our YM field. Using conservation of the (electromag-
netic) Dirac current and its positivity in time-like directions, the arguments of [4,
Sec. 4] all carry over. Thus, the proof of Theorem 3.1 in the case4htt is
integrable near the event horizon is considered complete.

Case 2:A(r)"¥? Is Not Integrable Near = p

We break the proof up into two subcases:

() o #0,
(i) w=0.

Suppose first that we are in case ()# 0. We begin with the following lemma.

LemMma 3.6. The functior]|(m/wT)’| + |(w/rwT)'|] is integrable near the hori-
zonr = p.
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Proof. We first considet(1/T)’|. Toward this end, we write/Il = A/AT
and compute

(1) - (AT - AGATY] | CATIGAY | VRLATY )

AT? - AT? AT?
According to assumption (1), near the event horizea p, AT? is bounded away
from zero and(+AT)'| is bounded and thus integrable. Moreover, sifde in-
creasing near = p, we see thafvAT(vA)'| = (VAT)(vA)', and sinceA’ >
0, this term too is integrable near= p. Thus|(1/T)’| is integrable near = p.
We handlg (w/rT)’| similarly; namely, write

w _ VAw
rT  r(VAT)
Then
w | _ [(rVAT)(VAw) — (VAw)(rvAT)
T/ r2AT?
B |r(VAT)[VAw' + (VA) w] — (VAw)[r(VAT) + VAT]
B r2AT? '
SinceAT?, w, and Aw'? are bounded and’ > 0 nearr = p, we see as before
that|(w/rT)’| is integrable near = p; this proves the lemma. O

ProposiTioN 3.7. Assume thaty # 0. Then there exist constants > 0 and
g1 > 0 such that

1
< @+BHr <= forp<r<p+er (3.19)
C1

Proof. We rewrite the Dirac equations (2.1) and (2.2) in matrix form:

; w/r —(m + oT)
VAP = (_m t T g )CID, (3.20)
where® = («, 8)7. Furthermore, let
a = wT, b=£, c=—-m,
r
and define the matrigB(r) by
1.6 b j_m W
a a oT roT
B(r) = =
b c w m
-~ 1-= —— 14—
a a roT T

Our proofis based on an extension of [4, Lemma 5.1]. In this earlier paper we used
the fact thath/a andc/a are monotone near the horizon. In the case considered
here, we do not have these hypotheses and must therefore work harder.
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SinceT (r) — oo asr N\, p andw(r) is bounded (by assumptidil)), we see
that bothm/wT andw/roT tend to zero as \, p. Thus, B(r) is close to the
identity matrix wherr is nearp. If we defineF(r) by

F(r) = (®(r), B(r)®(r))
(where(-, -) denotes the usual Euclidean inner product), then we can find constants
¢ > 0 ande; > 0 such that

1
SO < Fi) <cl®m)? p<r<pter (3.21)
C

Furthermore, an easy calculation using the Dirac equation (3.20) yields that
F'(r) = (®(r), B'(nN®(n);

thus,ifp <r < p + €1,
N L2 o < #
2| |+ | o) o= o
r m / w /
<2[|(7) |+ ()
because the sup-norm of the matBikis bounded by

=5+ ) )

From (3.21) we therefore obtain
m Y n w Y F'(r)
¢ T roT J2
- m / + w /
=¢ oT roT

onp < r < p + &. Dividing this inequality byF(r) and applying Lemma 3.6,
we obtain P

—a(r) < —F((:)) <af(r), (3.23)
wherea(r) is integrable near the event horizor= p. If we integrate (3.23) from
o to p + €1, we see that lo@'(r) is bounded from above and below neae p.
Upon exponentiating and substituting into (3.21), we see (as in the proof of Lemma
3.2) that (3.19) holds. O

}F(r)i

:|F(r) (3.22)

We return now to the proof of Theorem 3.1 f4rY/? not integrable near = p and
w # 0 (subcase (i)). Toward this end, we consider the differential equation for
(AT?), (3.4); we observe that, as\, p, the right-hand side tends teco while
the left-hand side is bounded. This contradiction implies ¢hat O cannot hold.

For subcase (ii) ofi~¥? not integrable near the event horizen= 0, we note
that Lemma 3.4 holds (cf. the remark following the statement of that lemma). As
in Case 1, we find that (3.10) holds neat= p. Integrating this inequality from
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r > pto p + &, we see that for nearp, the left-hand side is bounded while the
right-hand side can be made arbitrarily large. This contradiction completes the
proof of Theorem 3.1.
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