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Twins ofk-Free Numbers and
Their Exponential Sum

J. Brüder n, A. Perell i , & T. D. Wooley

1. Introduction

For any integerk ≥ 2, let µk(n) denote the characteristic function on the set of
k-free numbers; that is,µk(n) = 0 if there is a primep with pk

∣∣n, andµk(n) =
1 otherwise. A twin ofk-free numbers is a natural numbern such thatµk(n) =
µk(n + 1) = 1. It has long been known that the set of these twins has positive
density

% = %k =
∏
p

(
1− 2

pk

)
; (1.1)

although the first explicit reference to an asymptotic formula for the counting
function

Ak(x) =
∑
n≤x

µk(n)µk(n+1)

seems to be a paper by Carlitz [2], the estimate

Ak(x) = %x +O(x2/(k+1)+ε) (1.2)

is at least implicit in the work of Evelyn and Linfoot [4] and Estermann [3]. The
latter formula (1.2) was then proved in refined form, withxε replaced by(logx)4/3,

by Mirsky [7]. More recently, Heath-Brown [5] considered the casek = 2 and
obtained (1.2) withO(x7/11+ε) in place ofO(x2/3+ε).

In this paper we study the exponential sum

S(α) = Sk(α) =
∑
n≤x

µk(n)µk(n+1)e(αn) (1.3)

associated withk-free twins. In recent years there has been an increased interest
in theL1-norm of exponential sums over reasonably dense sets of which thek-free
twins form an example. Our first theorem adds to the small stock of such sums for
which a nontrivial estimate can be obtained.

Theorem 1. Letk ≥ 2. Then∫ 1

0
|Sk(α)| dα � x1/(k+1)+ε.
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The trivial upper bound for this integral isO(
√
x ), which is obtained through the

Cauchy–Schwarz inequality and Parseval’s identity∫ 1

0
|Sk(α)|2 dα = Ak(x). (1.4)

According to general principles, theL1-norm is bounded below by a function not
much smaller than

√
x if the underlying sequence is not well distributed among a

fair share of the arithmetic progressions. Conversely, if the sequence is well and
(reasonably) equidistributed in most arithmetic progressions, then theL2-norm
(1.4) tends to be concentrated on the major arcs in a standard Hardy–Littlewood
dissection of the unit interval. Not unexpectedly, thek-free twins fall into the lat-
ter category, as the next theorem shows.

Let 1≤ Q ≤ 1
2

√
x, and letM =M(Q) denote the union of the intervals

M(q, a) = {α ∈ [Q−1,1+Q−1] : |qα − a| < Q/x},
with 1≤ a ≤ q ≤ Q and(a, q) = 1. Moreover, let

m = m(Q) = [Q−1,1+Q−1]\M(Q).

Theorem 2. Letk ≥ 2. Then∫
m(Q)

|Sk(α)|2 dα � x1+εQ1/k−1+Q3−2/kx2/k−1+ε + x4/(k+1)−1+εQ2.

These estimates should be compared with the results of a recent investigation by
Brüdern et al. [1], where the exponential sum overk-free numbers was studied. In
particular, it was shown that one has∫ 1

0

∣∣∣∣∑
n≤x

µk(n)e(αn)

∣∣∣∣ dα � x1/(k+1)+ε, (1.5)

∫
m(Q)

∣∣∣∣∑
n≤x

µk(n)e(αn)

∣∣∣∣2 dα � x1+εQ1/k−1+ x2/k−1+εQ3−2/k. (1.6)

These estimates seem to be the first instances whereL1-norms andL2-norms
over minor arcs allowed for a breaking through the familiar “square root cancella-
tion” barrier, leaving aside trivial examples such as arithmetic progressions. The
results of this paper show that such is possible even if the underlying sequence is
not multiplicative. We refer the reader to Perelli [8] for a more exhaustive survey
of this matter.

Note that the estimates (1.5) and in Theorem 1 are of the same strength. The
proof of (1.5) in [1] is elementary and depends mainly on the convolution formula

µk(n) =
∑
dk|n

µ(d ). (1.7)

In the new context of twins, we make use of (1.7) forn andn+ 1. By Schwarz’s
inequality applied to a suitable portion of the resulting exponential sum, it is pos-
sible to link theL1-norm ofS(α) to an upper bound for the number of solutions of
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the Diophantine equationsvk − ruk = 1, with all four variables in certain ranges.
An elaboration of the ideas of [1] then leads to Theorem 1. We present the details
in Section 2.

Theorem 2 compares easily with the very similar bound (1.6). The strategy is
the same as in [1], though in the present context we must examine the distribution
of k-free twins in arithmetic progression. By standard methods, this information
can be transported to an asymptotic formula for the major arc contribution to (1.4).
This takes the form ∫

M

|S(α)|2 dα ∼ %2Sx, (1.8)

whereS is the singular series associated naturally with the trivial equationn = m
in k-free twins (see (4.4) for a precise definition). A comparison of Euler products
shows thatS = %−1, and from (1.8), (1.4), and (1.2) one finds∫

m

|S(α)|2 dα = o(x)
asx →∞. Explicit control of error terms in this argument yields Theorem 2.

As in [1], from Theorem 2 one can deduce results for binary additive problems
with twins of k-free numbers. We content ourselves with just one example. For
k ≥ l ≥ 2, let

rk,l(n) =
∑
a+b=n

µk(a)µk(a +1)µl(b)µl(b +1)

denote the number of representations ofn as the sum of ak-free twin and anl-free
twin. Let Sk,l(n) denote the natural singular series associated with this binary
problem (see (6.6) for a definition).

Theorem 3. Letk ≥ l ≥ 2. Then

rk,l(n) = Sk,l(n)%k%ln+O(n9/10+ε).

We are certainly not asserting that this asymptotic formula could not be obtained
by an elementary argument, or that the error term is the sharpest obtainable. The
point is the relative ease with which the result is obtained and that the circle method
succeeds at all with a binary additive problem, contrary to a widely held belief.
As we shall see in Section 6, the circle method neatly disentangles the different
multiplicative constraints on the two summands.

One might ask whether the results of this paper persist in more general situa-
tions such asr-tuples ofk-free numbers—that is, integersn such thatn, n+b1, . . . ,

n + br−1 are allk-free. This is indeed the case, and at least this particular exam-
ple can be treated by the ideas in this paper (at the cost of extra complication in
detail). The arguments in Section 2 may be extended to establish the bound∫ 1

0

∣∣∣∣∑
n≤x

µk(n)µk(n+ b1) . . . µk(n+ br−1)e(αn)

∣∣∣∣ dα � x1/(k+1)+ε.

Similarly, the conclusions of Theorem 2 can be validated for exponential sums
overr-tuples by working along the lines of Tsang [9]. However, there is a grander
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design underneath the surface of the present article, one that relates the study of
exponential sums cognate to their prototype (1.3) with a sieve theory that we hope
to present in a forthcoming publication.

Our notation is standard or otherwise explained at the appropriate stage of the
argument. Statements involving anε are true for allε > 0,with implicit constants
in Vinogradov or Landau symbols depending onε.

2. TheL1-Norm

We prepare for the proof of Theorem 1 with a simple lemma, which will also be
of use in the next section when we deal with the distribution ofk-free numbers in
arithmetic progressions.

Lemma 2.1. Let1≤ y ≤ x2/k, and let2(x, y) denote the number of quadruples
r, s, u, v satisfying the conditions

svk − ruk = 1, ruk ≤ x (2.1)

anduv ≥ y. Then
2(x, y)� x2+εy−k (2.2)

and
2(x, y)� x1+εy1−k + x2/(k+1)+ε. (2.3)

Proof. From (2.1) we haveruksvk ≤ x(x+1), whencers ≤ x(x+1)y−k for any
quadruple counted by2(x, y). The total number of choices forr, s is therefore
bounded byO(x2+εy−k), by a divisor argument. For any such choice ofr, s, the
number of solutions inu, v of the equationsvk − ruk = 1 isO(xε) (see e.g. [3]),
and (2.2) follows.

To derive (2.3) we note that, fory ≥ x2/(k+1), one hasx2y−k ≤ x2/(k+1),

whence (2.3) follows from (2.2). Therefore, we may suppose thaty < x2/(k+1).

Then, counting those quadruples whereuv > x2/(k+1) again by (2.2), we find that

2(x, y)� x2/(k+1)+ε +2∗,
where2∗ is the number of quadruplesr, s, u, v satisfying (2.1) and

y ≤ uv ≤ x2/(k+1).

From (2.1) we have(u, v) = 1. For any fixed choice ofu, v, it follows thatruk ≡
−1 (modvk), which fixes the value ofr modulovk. By (2.1), the total number of
possibilities forr is O(1+ x(uv)−k). But for any givenr, u, v, the value ofs is
fixed by the equation in (2.1). Hence,

2∗ �
∑

y≤uv≤x2/(k+1)

(1+ x(uv)−k)� x2/(k+1)+ε + x1+εy1−k,

which implies (2.3).
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The proof of Theorem 1 is now swiftly overwhelmed. To simplify notational ob-
stacles, letI(r, s, u, v) denote the condition thatr, s, u, v satisfy (2.1). Then, by
(1.3) and the convolution formula (1.7), imported forµk(n) andµk(n+1), we in-
fer that

S(α) =
∑

I(r,s,u,v)

µ(u)µ(v)e(αruk).

Let 1≤ y ≤ x2/k, and write

T1(α) =
∑

I(r,s,u,v)
uv≤y

µ(u)µ(v)e(αruk), T2(α) =
∑

I(r,s,u,v)
uv>y

µ(u)µ(v)e(αruk).

Then, by Schwarz’s inequality,∫ 1

0
|S(α)| dα ≤

∫ 1

0
|T1(α)| dα +

(∫ 1

0
|T2(α)|2 dα

)1/2

. (2.4)

To estimate the second summand on the right-hand side, we observe that the num-
ber of quadruplesr, s, u, v satisfying (2.1) with a prescribed value ofruk isO(xε),
by an immediate divisor argument. Hence, by Parseval’s identity and Lemma 2.1,∫ 1

0
|T2(α)|2 dα � xε2(x, y)� x1+εy1−k + x2/(k+1)+ε.

The treatment of the first term on the right-hand side of (2.4) is different. We
pick up the conditionsvk = ruk +1 implicit in I(r, s, u, v) by orthogonality, and
we rewriteT1(α) as

T1(α) =
∑
uv≤y

µ(u)µ(v)

∫ 1

0
V((α + β)uk, xu−k)V(−βvk, (x +1)v−k)e(β) dβ,

where
V(γ, z) =

∑
m≤z

e(γm).

It follows that∫ 1

0
|T1(α)| dα ≤

∑
uv≤y

∫ 1

0

∫ 1

0
|V((α + β)uk, xu−k)V(−βvk, (x +1)v−k)| dα dβ.

The functionV(γ, z) has period 1 inγ. By a change of variable, we infer that∫ 1

0
|T1(α)| dα ≤

∑
uv≤y

∫ 1

0

∫ 1

0
|V((α + β), xu−k)V(−β, (x +1)v−k)| dα dβ

�
∑
uv≤y

∫ 1

0

∫ 1

0
min(x, ‖α + β‖−1)min(x, ‖β‖−1) dα dβ

� y(logy)(logx)2.

Choosingy = x1/(k+1), Theorem 1 now follows from (2.4).
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3. Twins of k-Free Numbers in Arithmetic Progressions

The relevance of the distribution in arithmetic progressions for the success of our
method has already been stressed. Neither an asymptotic formula for the counting
function

Ak(x; q, a) =
∑
n≤x

n≡a (modq)

µk(n)µk(n+1) (3.1)

nor an estimate for the variance of the ensuing error terms seem to be available in
the literature. We therefore proceed by supplying such formulas. Let

g(q, a) =
∞∑

u,v=1
(uk,q)|a
(vk,q)|a+1

µ(uv)

ukvk
(q, ukvk). (3.2)

We then have the following elementary estimates.

Lemma 3.1. Uniformly ina andq, one has

Ak(x; q, a) = q−1g(q, a)x +O(x2/(k+1)+ε).

Once a main term forAk(x; q, a) has been determined, it is natural to consider
the variance

ϒk(x,Q) =
∑
q≤Q

q∑
a=1

|Ak(x; q, a)− q−1g(q, a)x|2.

Lemma 3.2. When1≤ Q ≤ x, one has

ϒk(x,Q)� x2/k+εQ2−2/k + x4/(k+1)+ε.

Both lemmata follow from a common principle. We continue to use the notational
conventions introduced in Section 2. Then, writingn = ruk andn + 1= svk in
(3.1), we infer from (1.7) that

Ak(x; q, a) =
∑

I(r,s,u,v)

ruk≡a (modq)

µ(u)µ(v) = B1(q, a)+ B2(q, a), (3.3)

whereB1(q, a) is the portion of the central sum withuv ≤ y andB2(q, a) is
the complementary part withuv > y. Here 1≤ y ≤ x2/k is a parameter at our
disposal.

We evaluateB1(q, a) by counting, for any given pairu, v with uv ≤ y, the num-
ber ofr, s such thatruk ≡ a (modq) andI(r, s, u, v) holds. Fromsvk − ruk = 1
one has(u, v) = 1. Moreover, the congruencesruk ≡ a (modq) andsvk ≡ a+1
(modq) imply that(uk, q)

∣∣a and(vk, q)
∣∣a+1. Thus, the simultaneous conditions

I(r, s, u, v) andruk ≡ a (modq) necessitate that

(u, v) = 1, (uk, q)
∣∣a, (vk, q)

∣∣a +1, (3.4)
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as we henceforth assume. Subject to these extra conditions, we note that for a
givenr there will be an integers such thatsvk − ruk = 1 if and only if ruk ≡ −1
(modvk).

Next, since(u, v) = 1anda ≡ −1(mod(q, vk)), the simultaneous congruences

r
uk

(uk, q)
≡ a

(uk, q)

(
mod

q

(uk, q)

)
and ruk ≡ −1 (modvk) (3.5)

are compatible and combine to a single congruence to modulus

qvk

(uk, q)(vk, q)
.

It follows that the congruences (3.5) have

x(q, uk)(q, vk)

qukvk
+O(1)

solutionsr with 1≤ r ≤ xu−k, provided that (3.4) holds. Thus we have

B1(q, a) =
∑
uv≤y

(3.4) holds

(
x(q, ukvk)

qukvk
µ(u)µ(v)+O(1)

)
.

Finally, we note thatµ(uv) = 0 if (u, v) > 1, so that we may replaceµ(u)µ(v) by
µ(uv) and then drop(u, v) = 1 from the summation condition. In order to com-
plete the sum overuv ≤ y to an infinite series, we proceed as follows. For 1≤
i < k we define the integers

πi =
∏

pi ||(q,a)
p, $i =

∏
pi ||(q,a+1)

p,

as well as
πk =

∏
pk|(q,a)

p, $k =
∏

pk|(q,a+1)

p.

By invoking the simple bound∑
U<u≤2U
(uk,q)|a

∑
V<v≤2V
(vk,q)|a+1

µ2(uv)
(q, ukvk)

ukvk

≤ (UV )−k
∑
e1|π1

f1|$1

· · ·
∑
ek|πk
fk|$k

UV

e1f1 · · · ekfk
k∏
i=1

(eifi)
i

� qε(UV )1−k
k∏
i=1

(πi$i)
i−1,

we find that
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∑
uv>y
(uk,q)|a
(vk,q)|a+1

µ2(uv)
(q, ukvk)

ukvk
� qεy1−k

k∏
i=1

(πi$i)
i−1

(the reader may care to compare this argument with that on [1, pp. 744–745]). We
then find that

B1(q, a)− x
q

∞∑
u,v=1
(uk,q)|a
(vk,q)|a+1

µ(uv)

ukvk
(q, ukvk)� y1+ε + xy1−k+εqε−1

k∏
i=1

(πi$i)
i−1.

This confirms the asymptotic formula

B1(q, a) = xq−1g(q, a)+O
(
y1+ε + qε−1xy1−k+ε

k∏
i=1

(πi$i)
i−1

)
. (3.6)

To complete the proof of Lemma 3.1, we merely observe thatB2(q, a) ≤
2(x, y), in the notation of Lemma 2.1. By (2.2), (3.6), and (3.3), it follows that

Ak(x; q, a) = xq−1g(q, a)+O(x2+εy−k + y1+ε),

from which Lemma 3.1 is obtained by choosingy = x2/(k+1).

To derive Lemma 3.2, we observe that (3.6) and (3.3) yield

|Ak(x; q, a)− q−1g(q, a)x|2

� y2+ε + qε−2x2y2−2k+ε
k∏
i=1

(πi$i)
2i−2 + |B2(q, a)|2.

Now
q∑
a=1

|B2(q, a)|2 ≤ U(q),

whereU(q) is the number ofrj, sj, uj, vj (j = 1,2) satisfyingI(rj, sj, uj, vj ) for
j = 1,2 and

r1u
k
1 ≡ r2u

k
2 (modq), u1v1 > y, u2v2 > y.

We sum overq and find that∑
q≤Q

q∑
a=1

|B2(q, a)|2 ≤
∑

I∗(rj,sj,uj,vj )
j=1,2

∑
q≤Q

q|r1uk1−r2uk2

1

≤ Q
∑

I∗(rj,sj,uj,vj )
r1u

k
1=r2uk2

1+ xε
∑

I∗(rj,sj,uj,vj )
r1u

k
1 6=r2uk2

1,

whereI ∗ indicates thatI is supplemented byuv > y. For the first remaining sum
we note thatr1u

k
1 = r2u

k
2 implies thats1vk1 = s2v

k
2. Hence, ifI ∗(r1, s1, u1, v1)
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holds, there are at mostO(xε)quadruplesr2, s2, u2, v2 satisfyingI ∗(r2, s2, u2, v2)

andr1u
k
1 = r2u

k
2. In the notation of the statement of Lemma 2.1, we thus have∑
q≤Q

q∑
a=1

|B2(q, a)|2� Qxε2(x, y)+ xε2(x, y)2

and therefore, by (2.3) and an argument similar to that straddling pp. 746–747
of [1],

ϒk(x,Q)� Q2y2+ε + x2+εy2−2k +Q(x1+εy1−k + x2/(k+1)+ε)+ x4/(k+1)+ε,

from which Lemma 3.2 follows by choosingy = (x/Q)1/k.
ForQ > x, a simple bound suffices for our needs. Since

g(q, a)� qε
k∏
i=1

(πi$i)
i−1

andAk(x; q, a) ≤ xq−1+1 by obvious estimates, in this case we have

ϒk(x,Q)�
∑
q≤Q

q∑
a=1

(
xqε−1

k∏
i=1

(πi$i)
i−1+1

)2

� x2Qε +Q2.

Perhaps it is worth pointing out that our approach toϒk(x,Q) is rather crude
and susceptible to various improvements. WhenQ is small, the methods of [5] and
[9] will provide a better estimate, at least whenk = 2. Indeed, whenk = 2,Heath-
Brown [5] has shown that2(x, y)� x7/6+εy−5/6 wheny > x1/2. Using this in the
foregoing argument, the error term in Lemma 3.1 may be reduced toO(x7/11+ε),
and also Lemma 3.2 may be improved in certain ranges ofQ. Furthermore, the
work of Vaughan [11] is likely to yield superior bounds when

√
x < Q < x. In

the ranges forQ that are of interest in arithmetic applications such as Theorem 3,
such improvements seem to have little impact.

A noticeable feature of our variance estimate is that the functiong(q, a) does
not depend only onq and(a, q), unlike most sequences investigated hitherto. We
draw the reader’s attention to [6], part X of Hooley’s acclaimed series on this sub-
ject matter, where situations of this kind are analyzed in an abstract set-up.

We close this section with a brief analysis ofg(q, a). By (3.2),

g(q, a) =
∞∑
n=1

µ(n)
(q, nk)

nk
ψk(n; q, a),

whereψk(n; q, a) denotes the number of pairsu, v of natural numbers withuv =
n that satisfy (3.4). It is immediate that, for any fixeda, q, the functionψk(n; q, a)
is multiplicative inn. Henceg(q, a) can be written as an Euler product that takes
the provisional form

g(q, a) =
∏
p

(
1− (p

k, q)

pk
ψk(p; q, a)

)
.

By (3.4), we haveψk(p; q, a) = 2 for allp -q. It is therefore convenient to intro-
duce the functions
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f(q) =
∏
p|q

(
1− 2

pk

)−1

, h(q, a) =
∏
p|q

(
1− (p

k, q)

pk
ψk(p; q, a)

)
, (3.7)

so that from(1.1) we can nowinfer the basic identity

g(q, a) = %f(q)h(q, a). (3.8)

For anyp
∣∣q, let pν

∣∣∣∣q; thenψk(p; q, a) = ψk(p;pν, a). The equationuv = p
admits the solutionsu = p, v = 1 andu = 1, v = p. However, forν ≥ 1, we
cannot have(pk, pν)

∣∣a and(pk, pν)
∣∣a + 1 simultaneously. By (3.4), it follows

thatψk(p;pν, a) = 1 if (pk, pν)
∣∣a(a+1) andψk(p;pk, a) = 0 otherwise. Con-

sequently, we have

h(q, a) =
∏
pν ||q

(pν,pk)|a(a+1)

(
1− (p

k, pν)

pk

)
=

∏
p|q

(pk,q)|a(a+1)

(
1− (p

k, q)

pk

)
. (3.9)

From this handier formula one readily confirms the quasi-multiplicative property
that, for any co-prime natural numbersq1, q2 and any integersa1, a2,

h(q1q2, a1q2 + a2q1) = h(q1, a1q2)h(q2, a2q1). (3.10)

4. Gaussian Sums and Singular Series

Recalling (3.2) and (3.7), we now form the sums of Gaussian type

G(q, a) =
q∑
b=1

g(q, b)e

(
ab

q

)
, H(q, a) =

q∑
b=1

h(q, b)e

(
ab

q

)
, (4.1)

which by (3.8) are related by

G(q, a) = %f(q)H(q, a). (4.2)

Then we introduce the sum

H(q) =
q∑
a=1

(a,q)=1

|H(q, a)|2, (4.3)

which is used in turn to define the singular series

S =
∞∑
q=1

q−2f(q)2H(q). (4.4)

Lemma 4.1. The functionH(q) is multiplicative. For all primesp, one has:

H(p) = 2p3−2k

(
1− 2

p

)
;

H(pν) =
{

2p3ν−2k
(
1− 1

p

)
if 2 ≤ ν ≤ k,

0 if ν > k.
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Proof. The multiplicative property follows from the Chinese remainder theorem,
(3.10), (4.1), and (4.3) by a standard argument (see [10, Lemma 2.11] for a model);
we omit the details.

For any primep and anyν ≥ 1, the orthogonality of characters together with
(4.1) and (4.3) yield

H(pν) =
pν∑
a=1

∣∣∣∣ p
ν∑

b=1

h(pν, b)e

(
ab

pν

)∣∣∣∣2 − pν∑
a=1
p|a

∣∣∣∣ p
ν∑

b=1

h(pν, b)e

(
ab

pν

)∣∣∣∣2

= pνK1(p
ν)− pν−1K2(p

ν), (4.5)

where

K1(p
ν) =

pν∑
a=1

h(pν, a)2,

K2(p
ν) =

pν∑
a,b=1

a≡b (modpν−1)

h(pν, a)h(pν, b).

(4.6)

We dispose of the caseν > k first. By (3.9), one hash(pν, a) = h(pν, b)when-
evera ≡ b (modpk). Hence, forν > k,

K2(p
ν) =

pν∑
a=1

h(pν, a)2
pν∑
b=1

a≡bmodpν−1

1= pK1(p
ν),

and (4.5) yieldsH(pν) = 0, as required.
We may now suppose that 1≤ ν ≤ k. By (3.9),

h(pν, a) =
{

1− pν−k if pν
∣∣a(a +1),

1 otherwise.
(4.7)

From (4.6), we now find that

K1(p
ν) = 2(1− pν−k)2 +

pν−2∑
a=1

1= 2(1− pν−k)2 + pν − 2. (4.8)

Similarly, whenν = 1, we deduce from (4.6) and (4.7) that

K2(p) =
( p∑
a=1

h(p, a)

)2

= (2(1− p1−k)+ p − 2)2 = p2(1− 2p−k)2.

When combined with (4.8) forν = 1, the identityH(p) = 2p3−2k(1− 2/p) is
readily confirmed from (4.5).

It remains to consider the case where 2≤ ν ≤ k. By (4.6), terms witha = b
will contribute exactlyK1(p

ν) toK2(p
ν). Hence, on writing
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K3(p
ν) =

pν∑
a,b=1

a≡b (modpν−1)
a 6=b

h(pν, a)h(pν, b),

we infer from (4.5) that

H(pν) = pν
(

1− 1

p

)
K1(p

ν)− pν−1K3(p
ν). (4.9)

Since a formula forK1(p
ν) is already available, we proceed to evaluateK3(p

ν).

By (4.7), we haveh(pν, a) = 1 for 1≤ a ≤ pν − 2. We therefore split the sum
K3(p

ν) into the subsumK4(p
ν), where 1≤ a ≤ pν −2 and 1≤ b ≤ pν −2, and

its complementK5(p
ν), where one at least ofa andb is eitherpν −1 orpν. Now

K4(p
ν) = #{(a, b) : 1≤ a, b ≤ pν − 2, a 6= b, a ≡ b (modpν−1)}
= (pν − 2p)(p −1)+ (2p − 2)(p − 2)

= (pν − 4)(p −1).

In order to evaluateK5(p
ν), note that by the symmetry betweena andb, one has

K5(p
ν) = 2

pν∑
a=pν−1

h(pν, a)

pν∑
b=1

b≡a (modpν−1)
b 6=a

1= 4(1− pν−k)(p −1).

SinceK3(p
ν) = K4(p

ν)+K5(p
ν),we deduce from (4.8) and (4.9) and a straight-

forward computation thatH(pν) = 2p3ν−2k(1− 1/p), as claimed. The proof of
Lemma 4.1 is complete.

Lemma 4.2. For anyQ ≥ 1,∑
Q<q≤2Q

q−2f(q)2H(q)� Q1/k−1+ε.

The singular seriesS defined by(4.4) converges absolutely, and one hasS =
%−1.

Proof. By (3.7) one hasf(q)� 1, and therefore we begin with∑
Q<q≤2Q

q−2f(q)2H(q)� Q1/k−1
∑
q≤2Q

q−1−1/kH(q).

By Lemma 4.1, we haveH(q) = 0 unlessq is (k + 1)-free. Any(k + 1)-free in-
tegerq has a unique representationq = q1q

2
2 · · · qkk with pairwise co-prime and

square-free natural numbersqj (1≤ j ≤ k). By Lemma 4.1 again, together with
an elementary estimate for the divisor function, we have∑

q≤2Q

q−1−1/kH(q)� Qε
∑

q1q
2
2···qkk≤2Q

k∏
ν=1

q2ν−ν/k−2k
ν � Q2ε,
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which confirms the first statement of the lemma. The absolute convergence ofS
is an immediate corollary, and the general term in the series (4.4) is multiplica-
tive as a consequence of (3.7) and Lemma 4.1. Therefore,S can be rewritten as
an Euler product, say

S =
∏
p

χp,

where by another application of (3.7) and Lemma 4.1, the Euler factorχp is

χp = 1+
∞∑
ν=1

p−2νf(pν)2H(pν)

= 1+ 2

(
1− 2

pk

)−2(
p1−2k

(
1− 2

p

)
+

k∑
ν=2

pν−2k

(
1− 1

p

))

=
(

1− 2

pk

)−1

.

A comparison with(1.1)yields the identityS = %−1, as required.

5. The Major Arc Contribution

It is time to embark on the main argument. We follow [1] in spirit and provide
an asymptotic formula for the integral (1.8). With this end in view, let 1≤ Q ≤
1
2

√
x andM = M(Q) be the set of major arcs defined prior to the statement of

Theorem 2. When|qα − a| ≤ Q/x with 1≤ a ≤ q ≤ Q and(a, q) = 1, define

S ∗(α) = q−1G(q, a)I

(
α − a

q

)
, (5.1)

where
I(β) =

∑
n≤x

e(βn)

andG(q, a) is given by (4.1). This defines a functionS ∗ onM which serves as an
approximation toS(α). The next lemma controls the error betweenS andS ∗ in
mean square.

Lemma 5.1. Suppose that1≤ Q ≤ 1
2

√
x. Then∫

M(Q)

|S(α)− S ∗(α)|2 dα � Q3−2/kx2/k−1+ε + x4/(k+1)−1+εQ2.

Proof. This lemma should be compared with [1, Lemma 3.2]. The proof is al-
most identical save that the functionG(q, a) in (5.1) is, in the context of [1], only
a function ofq. The slightly more general situation hardly affects the argument,
so we content ourselves with a few hints on the necessary changes. The definition
(3.8) in [1] now takes the form

u(n; q, a) =
{
µk(n)µk(n+1)e(an/q)− q−1G(q, a) when 1≤ n ≤ x,
0 otherwise.
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Then the proof of [1, Lemma 3.2] still applies in the new context and yields∫
M

|S(α)− S ∗(α)|2 dα

� Qε max
1≤R≤Q

(
Q2

xR2
G(R)+ Q

x
ϒk(x,2R)+ Q2

x2R

∫ x

0
ϒk(y,2R) dy

)
(cf. [1, (3.15)]), whereϒk(x,Q) is the variance estimated in Lemma 3.2 and where

G(R) =
∑

R<q≤2R

q−2

q∑
a=1

(a,q)=1

|G(q, a)|2.

By (4.2), (4.3), and Lemma 4.2,

G(R)� R1/k−1+ε. (5.2)

Lemma 5.1 follows by invoking Lemma 3.2 to boundϒk.

Lemma 5.2. For 1≤ 2R ≤ Q ≤ 1
2

√
x,∫

M(2R)\M(R)

|S ∗(α)|2 dα � xR1/k−1+ε.

Proof. Note that, for|β| ≤ 1
2, one has

|I(β)| � x(1+ x|β|)−1. (5.3)

Hence, the integral in question is

� G(R)
∫ ∞
−∞

x2(1+ x|β|)−2 dβ +
∑
q≤R

q−2

q∑
a=1

(a,q)=1

|G(q, a)|2
∫ ∞
R/(qx)

β−2 dβ.

The conclusion of the lemma is now readily verified by recalling (5.2).

To establish Theorem 2, we integrate the identity

|S(α)|2 − |S ∗(α)|2 = |S(α)− S ∗(α)|2 + 2 ReS ∗(α)(S(α)− S ∗(α))
overM(Q). By Lemma 5.1 and a dyadic splitting argument, it follows that∫

M(Q)

|S(α)|2 dα −
∫

M(Q)

|S ∗(α)|2 dα

� xε(Q3−2/kx2/k−1+ x4/(k+1)−1Q2 + E), (5.4)

where

E = max
1≤R≤Q

∫
M(2R)\M(R)

|S ∗(α)(S(α)− S ∗(α))| dα.

By Schwarz’s inequality, Lemma 5.1, and Lemma 5.2,
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E � max
R≤Q

(xR1/k−1+ε)1/2(R3−2/kx2/k−1+ε + x4/(k+1)−1+εR2)1/2

� x1/k+εQ1−1/2k + x2/(k+1)+εQ1/2+1/2k.

The second integral on the left-hand side of (5.4) is evaluated by recalling (5.3).
Since ∫ 1/2

−1/2
|I(β)|2 dβ = [x],

we deduce that∫
M(Q)

|S ∗(α)|2 dα =
∑
q≤Q

q−2

q∑
a=1

(a,q)=1

|G(q, a)|2
(

[x] +O
(
xq

Q

))
.

By (5.2) it follows that∫
M(Q)

|S ∗(α)|2 dα = x
∞∑
q=1

q−2

q∑
a=1

(a,q)=1

|G(q, a)|2 +O(xQ1/k−1+ε).

By (4.2) and (4.4), the infinite sum on the right is%2S, and Lemma 4.2 yields∫
M(Q)

|S ∗(α)|2 dα = %x +O(xQ1/k−1+ε).

We substitute back into (5.4) and subtract the resulting formula from (1.4). Invok-
ing (1.2), we then find that∫

m(Q)

|S(α)|2 dα � xε(xQ1/k−1+Q3−2/kx2/k−1+ x4/(k+1)−1Q2

+ x1/kQ1−1/2k + x2/(k+1)Q1/2+1/2k).

Here the last two terms on the right-hand side are always dominated by the others,
and Theorem 2 follows.

6. A Binary Additive Problem

We briefly sketch a proof of Theorem 3. It will now be useful to takex = N in the
previous analysis and to fix the value ofQ asQ = N1/5. Then, withm = m(Q)
andM =M(Q), by Theorem 2 one has∫

m

|Sr(α)|2 dα � x9/10+ε

for all r ≥ 2. Since

rk,l(N ) =
∫ 1

0
Sk(α)Sl(α)e(−αN ) dα



188 J. Brüder n, A. Perell i , & T. D. Wooley

by orthogonality, we may conclude from the Cauchy–Schwarz inequality that

rk,l(N ) =
∫

M

Sk(α)Sl(α)e(−αN ) dα +O(N 9/10+ε). (6.1)

We now replaceSk andSl by their approximationsS ∗k andS ∗l defined in (5.1).
Here it is advisable to make the dependence onk andl explicit; we also apply this
convention to the sums (4.1) by writingGk(q, a) andHk(q, a) and similarlyfk(q)
instead off(q). For 1≤ R ≤ Q,∫

M(2R)\M(R)

|(Sk(α)− S ∗k (α))Sl(α)| dα

≤
(∫

M(2R)
|Sk(α)− S ∗k (α)|2 dα

)1/2(∫
m(R)

|Sl(α)|2 dα
)1/2

,

whence by Lemma 5.1, Theorem 2, and a dyadic splitting argument, we find that∫
M

|(Sk(α)− S ∗k (α))Sl(α)| dα � x9/10. (6.2)

Similarly, by applying Lemmata 5.1 and 5.2, one confirms the estimate∫
M

|S ∗k (α)(Sl(α)− S ∗l (α))| dα � x9/10. (6.3)

We now substituteS ∗k (α) for Sk(α) in (6.1), and control the error with (6.2).
Then we substituteS ∗l (α) for Sl(α) and deduce from (6.3) that

rk,l(N ) =
∫

M

S ∗k (α)S
∗
l (α)e(−αN ) dα +O(N 9/10+ε)

=
∑
q≤Q

q−2

q∑
a=1

(a,q)=1

Gk(q, a)Gl(q, a)e

(
−aN
q

)
J ∗(q)+O(N 9/10+ε),

where we write

J ∗(q) =
∫ Q/(qN )

−Q/(qN )
I(β)2e(−βN ) dβ.

By (5.2) and Schwarz’s inequality,∑
R<q≤2R

q−2

q∑
a=1

(a,q)=1

|Gk(q, a)Gl(q, a)| � R(1/2)(1/k+1/l)−1+ε (6.4)

and

J ∗(q) =
∫ 1/2

−1/2
I(β)2e(−βN ) dβ +O

(
qN

Q

)
= N +O

(
qN

Q

)
. (6.5)

By (6.4) and (6.5), we routinely deduce that

rk,l(N ) = N
∞∑
q=1

q−2

q∑
a=1

(a,q)=1

Gk(q, a)Gl(q, a)e

(
−aN
q

)
+O(N 9/10+ε).
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The infinite series on the right-hand side converges absolutely and, by (4.2), fac-
tors as%k%lSk,l(N ), where

Sk,l(N ) =
∞∑
q=1

q−2fk(q)fl(q)

q∑
a=1

(a,q)=1

Hk(q, a)Hl(q, a)e

(
−aN
q

)
. (6.6)

This proves Theorem 3. We remark that arguments such as those used in the
proof of Lemma 4.1 can be used to show that the innermost sum in (6.6) is a multi-
plicative function ofq. Therefore, the singular series can be rewritten as an Euler
product. Moreover, as in the proof of Lemma 4.1, one confirms that forν > k ≥
l ≥ 2 one has

pν∑
a=1
p-a

Hk(p
ν, a)Hl(p

ν, a)e

(
−aN
pν

)
= 0,

irrespective of the value ofN. Hence

Sk,l(N ) =
∏
p

(1+ ωk,l(p)),

where

ωk,l(p) =
(

1− 2

pk

)−1(
1− 2

pl

)−1 k∑
ν=1

p−2ν

pν∑
a=1
p-a

Hk(p
ν, a)Hl(p

ν, a)e

(
−aN
pν

)
.

One can now follow the pattern laid down in the proof of Lemma 4.1 to compute
the Euler factors explicitly. We spare the reader the tedious details.
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