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Geometric Properties of Pluricomplex Green
Functions with One or Several Poles inCn

Stéphanie Nivoche

0. Introduction and Statement of Results

In this paper we study the infinitesimal behavior near poles and the boundary be-
havior of pluricomplex Green functions with one or several logarithmic poles.

On the one hand, we prove a min-max principle for the Azukawa pseudomet-
ric that is related to the pluricomplex Green function. On the other hand, we find
a new proof of effective formulas for the pluricomplex Green function with two
poles of equal weights in the unit ball inC2.With these formulas, we show that the
sublevel sets of this function are not (lineally) convex, no matter how close to the
boundary they are situated. This fact is surprising, especially since this convexity
property is lost in the case of several poles even when the domain is the unit ball
(the sublevel sets of the pluricomplex Green function with one pole of a bounded
convex domain are always convex). Moreover, this provides a counterexample to
a recently published statement.

Let us recall first the definition of thepluricomplex Green functionwith one or
several logarithmic poles in a domainD in Cn. Let m be a positive integer and
letP = {(p1, c1), . . . , (pm, cm)} be a set ofm distinct polespj in D with positive
weightscj, j = 1, . . . , m. Following Lelong (see [Le1] and [Le2]), the pluricom-
plex Green function with poles inP is defined onD by

gD(P, z) = sup{u(z) : u∈PSH(D, [−∞,0[) andu(z)− cj log‖z− pj‖
is bounded from above forz nearpj, j = 1, . . . , m},

where PSH(D) denotes the set of plurisubharmonic (psh) functions onD. If m =
1 andc1 = 1, thengD(p, ·) is the well-known pluricomplex Green function with
one logarithmic pole inp, introduced by Klimek (see [K1]). The pluricomplex
Green function has a connection to the complex Monge–Ampère operator. This
operator acts on locally bounded psh functions (see [BT1] and [BT2]) and it ap-
plies also for psh functionsu such thatu−1(−∞) is relatively compact (see [C;
D1; Ki; Si]).

Let us consider the following Dirichlet problem for the complex Monge–
Ampère operator:
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u∈PSH(D, [−∞,0]) ∩ C(D̄),
u|bD ≡ 0,

(ddcu)n = 0 onD \ P,
for any j = 1, . . . , m, u(z)− cj log‖z− pj‖ is bounded from above

for z nearpj,

whered = ∂ + ∂̄ anddc = i(∂̄ − ∂). If D is bounded, then a necessary and suffi-
cient condition to obtain a unique solution to this problem is thatDmust be hyper-
convex (i.e., there exists a continuous psh exhaustion function% : D→]−∞,0[).
This result was obtained by Demailly (see [D2] and also [Le1; Le2]). In this case
(ddcu)n = (2π)n∑m

j=1c
n
j δpj , whereδpj is the Dirac measure atpj . The resolu-

tion of this Dirichlet problem has been also studied in details by Lempert [L1],
who obtained this result with regularity properties whenD is strictly convex with
smooth boundary. Lempert’s method uses the study of extremal analytic discs in
D for the Kobayashi metric.

In Section 1 we study the behavior of a pluricomplex Green function with one
logarithmic pole locally near its pole in a bounded hyperconvex domain inCn.
More precisely, we look for a connection between the Azukawa pseudometric
associated to the pluricomplex Green function and the Kobayashi–Royden pseu-
dometric. For that we will use Poletsky’s definition of the pluricomplex Green
function. This problem is the dual version of another problem solved in [N2],
where it was proved that the sequence ofkth Reiffen pseudometrics, generalizing
the Carathéodory–Reiffen one, converges to the Azukawa pseudometric. We will
now prove a min-max principle for the Azukawa pseudometric.

Recall the classical definitions of these different pseudometrics. Letw be a
point in a domainD in Cn and letX be a “tangent vector” inCn. Then Azukawa
[A1] has introducedAD(w,X) as

logAD(w,X) = lim sup
λ→0

(gD(w,w + λX)− log|λ|).

ThisAD is a pseudometric onD; that is,AD is [0,+∞)-valued onCn satisfy-
ingAD(w, λX) = |λ|AD(w,X) and is called in [JP] theAzukawa pseudometric.
At about the same time, Lelong [Le1; Le2] introducedA−1

D as the capacitative in-
dicatrice ofD. In fact, %D(w,X) = logAD(w,X) is the Robin function ofD,
introduced by Bedford and Taylor in [BT3].

TheCarathéodory–Reiffen pseudometricCD is defined by

CD(w,X) = sup{|f(1)(w)X| : f ∈O(D,1), f(w) = 0},
where1 = {λ ∈C : |λ| < 1} is the open unit disc inC, O(D,1) is the space of
holomorphic functions inD bounded by 1 in modulus, and

f(1)(w)X = f (1)(w)X =
∑
|ν|=1

1

ν!
D(ν)f(w)Xν.

TheKobayashi–Royden pseudometricKD is defined by

KD(w,X) = inf {|t |−1 : ∃ϕ ∈O(1,D) s.t.ϕ(0) = w, ϕ ′(0) = tX},



Geometric Properties of Pluricomplex Green Functions 35

whereO(1,D) is the space of analytic dics inD. The metricA1 coincides with
the Poincaré metric on1, which implies (see [A1]) that

CD ≤ AD ≤ KD onD × Cn.
Now let us define two sequences of pseudometrics. For all integerp greater

than 1, thepth Reiffen pseudometricγp of D, introduced in [N1] and [JP], is de-
fined by

γp(w,X) = sup{|f(p)(w)X|1/p : f ∈ Ep(w,D)},
wheref(p)(w)X = 1

p!f
(p)(w)X = ∑

|ν|=p
1
ν!D

(ν)f(w)Xν andEp(w,D) is the
following compact set ofO(D):
Ep(w,D) = {f ∈O(D,1) : D(ν)f(w) = 0 ∀ν ∈Nn with |ν| ≤ p −1}.

If we denoteFp(w,X) the subset ofO(1,D) defined by

Fp(w,X) = {ϕ ∈O(1,D) : ϕ(0) = w, ϕ(k)(0) = 0, 1≤ k ≤ p −1,

ϕ(p)(0) = p! tX, wheret ∈C},
then thepth Royden pseudometric0p is defined by

0p(w,X) = inf

{∣∣∏
λ 6=0,ϕ(λ)=w λ

∣∣
|t | : ∃ϕ ∈Fp(w,X), 1

p!
ϕ(p)(0) = tX

}
.

In the 1-dimensional case, we always takeX equal to 1 and writeAD(w) instead
of AD(w,1), and so on. Then we obtain the following theorem.

Theorem 1 (Min-max Principle for the Pseudometrics).LetD be a bounded hy-
perconvex domain inCn, w a point inD, andX a vector inCn.
(1) If D is strictly hyperconvex then we have, quasi-everywhere inCn (i.e., except

for a pluripolar set),

AD(w,X) = sup
p

γp(w,X) = lim
p
γp(w,X).

(2) If n ≥ 2 andD is strictly hyperconvex then we have, everywhere inCn,

AD(w,X) = 0p(w,X) ∀p ≥ 1.

If n = 1, there existsϕ ∈F1(w) such that∣∣∏
λ 6=0,ϕ(λ)=0 λ

∣∣
|ϕ ′(0)| = 01(w) = AD(w).

We recall that a bounded domainD in Cn is said to be “strictly hyperconvex” if
there exists a bounded domain� and a function% ∈ C(�, ]−∞,1[) ∩ PSH(�)
such thatD = {z∈� : %(z) < 0}, % is exhaustive for�, and the open set{z∈� :
%(z) < c} is connected for all real numbersc ∈ [0,1].

Let us remark that Poletsky [PS] considered another generalization of the
Kobayashi–Royden pseudometric for any domainD in Cn:
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0̃p(w,X) = inf

{
|t |−1 : ∃ϕ ∈Fp(w,X), 1

p!
ϕ(p)(0) = tX

}
;

0̃1 = KD andAD ≤ 0p ≤ 0̃p ≤ KD onD × Cn. Unfortunately, the sequence
(0̃p)p does not, in general, have good properties of convergence toAD, as illus-
trated in the following proposition and corollary.

Proposition 2. If D is a Dirichlet domain inC, then 0̃1(w) = 0̃p(w) for all
p ≥ 1. In addition,AD(w) = 0̃1(w) if and only ifD is simply connected.

Corollary 3. There exist bounded hyperconvex domains inCn (n > 1) that are
lineally convex and such that(i) their pluricomplex Green function with one log-
arithmic pole is symmetric with respect to the pole and the variable and(ii) nev-
ertheless(0̃p(w,X))p does not converge toAD(w,X) everywhere onD × Cn.
Finally, let us remark that we always have the following inequalities onD × Cn:

CD = γ1 ≤ γq ≤ AD ≤ 0q ≤ 0̃q ≤ 0̃1= KD.
For some domains, all these inequalities are equalities—for example, whenD is
convex or strictly lineally convex. Indeed, this is an immediate consequence of a
very strong Lempert’s theorem [L1; L2] concerning the pluricomplex Green func-
tion with one logarithmic pole in strictly convex or strictly lineally convex domains
with smooth boundary(C∞ or real analytic). The foregoing min-max principle
(Theorem 1) generalizes the following.

Theorem 4. If D is a convex or strictly lineally convex domain inCn, then for
all integersq ≥ 1 we have

CD = γ1= γq = AD = 0q = 0̃q = 0̃1= KD onD × Cn.
We recall that a bounded domainD inRm is strictly convex if there exists a neigh-
borhoodU of ∂D and aC2-function r : U → R such thatU ∩ D = {r < 0},
U ∩ ∂D = {r = 0}, gradr 6= 0 onU, and

m∑
j,k=1

∂2r

∂xj ∂xk
(x)ξj ξk > 0 for x ∈U and ξ ∈ (Rm)∗.

Moreover, aC2-bounded domainD in Cn is strictly lineally convex if the com-
plex tangent hyperplanes ofD to ∂D are disjoint fromD̄ save for the unique point
of contact. These tangents have no higher than first-order contact with∂D; that is,
the distance to∂D, restricted to a complex tangent, has a nondegenerate critical
point at the point of contact.

In Section 2 we study the boundary behavior of some pluricomplex Green func-
tions with two logarithmic poles. We know [L2] that ifD is a bounded convex
domain inCn then the sublevel sets{z ∈D : gD(w, z) < c} of gD(w, ·) are again
convex for anyc ≤ 0. If, in addition,D is strictly convex with smooth boundary



Geometric Properties of Pluricomplex Green Functions 37

(C∞ or real analytic), thengD(w, ·) has the same regularity onD \ {w} as the
boundary.

In fact, this situation is quite special, and it is very different when the pluricom-
plex Green function has several poles. Indeed, there exist strictly convex domains
inC2 (respectively inCn)with pluricomplex Green functionsg with two (or more)
logarithmic poles such that any connected sublevel set ofg is not lineally convex.
Recall that the notion of lineal convexity has been introduced by Martineau (see
[H; M]) and that a domainD in Cn is called lineally convexif, for every z ∈
Cn \D, there exists an affine complex hyperplane5 such thatz ∈5 ⊂ Cn \D.
Obviously, any convex domain is lineally convex.

We also calculate explicitly (with other methods than used by Coman [Co]) the
pluricomplex Green functiongB2(0,1) in B2(0,1), the open unit ball inC2, with
two logarithmic poles of weight 1. Then the sublevel sets of this function are not
lineally convex, no matter how close to the boundary they are situated.

If β ∈ ]0,1[ andw = (w1, w2) is any point inC2, denote byCw the open com-
plex cone with vertex atw:

Cw = {z = (z1, z2)∈C2 : β|z2 − w2| > |z1− w1|}.
Theorem 5 [Co]. Let β ∈ ]0,1[. Let p = (β,0) andq = (−β,0) ∈ B2(0,1).
Then the following formula holds for the pluricomplex Green function onB2(0,1)
with the two logarithmic polesp andq of weight1:

gB2(0,1)(p, q; z)

=



1
2 log

(
|β−z1|2+(1−β2)|z2|2

|1−βz1|2

)
if z∈ C̄p ∩ B2(0,1),

1
2 log

(
|β+z1|2+(1−β2)|z2|2

|1+βz1|2

)
if z∈ C̄q ∩ B2(0,1),

1
2 log

(
|β2−z2

1|2+β 4|z2|4+2(1−β 4)|z2|2+
√
1(z2

1,z2)

2|1−β2z2
1|2

)
if z∈B2(0,1) \ (Cp ∪ Cq),

where

1(w) = (β 4|w2|4 − |β2 − w1|2)2 + 4(1− β 4)|w2|2|β2|w2|2 − (β2 − w1)|2.
While writing this paper the author learned that these formulas have also been re-
cently obtained, with the same method, by Edigarian and Zwonek [EZ].

Let c ∈ ]−∞,0] and letBc = {z ∈ B2(0,1) : gB2(0,1)(p, q; z) < c}, a sublevel
set of the pluricomplex Green functiongB2(0,1)(p, q; ·) of Theorem 5. The setBc
is connected if and only if 2 logβ < c ≤ 0 andBc has two connected components
if c ≤ 2 logβ. Finally, we obtain the following proposition, which contradicts a
recent result of Einstein-Matthews [EM, Prop. 3.7].

Proposition 6. If 2 logβ < c < 0, thenBc is connected and not lineally convex.

I would like to thank the referee for precious remarks concerning this paper.
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1. Infinitesimal Behavior of a Pluricomplex Green Function
in a Neighborhood of Its Unique Logarithmic Pole

LetD be a domain inCn, w a point inD, andgD(w, ·) the pluricomplex Green
function onD with one logarithmic pole inw of weight 1. There are two ways to
reconstruct this function with holomorphic maps. The first method uses holomor-
phic functions onD with values in1 and is, in fact, a precise version of Lelong
and Bremermann’s theorem for this function; the second is a theorem of Poletsky
that uses analytic discs ofD, that is, holomorphic maps on1 with values inD.
With the first (resp. second) method, we put in relation the Carathéodory–Reiffen
(resp. Kobayashi–Royden) pseudometric with the Azukawa pseudometric associ-
ated to this pluricomplex Green function.

Let us recall briefly the first method using holomorphic functions onD valued
in 1, with a zero inw of “large order”. For any positive integerp, define onD
the psh Hartogs functionhp(w, ·) by

hp(w, z) = sup

{
1

p
log|f(z)| : f ∈ Ep(w,D)

}
.

We call exp(hp) the pth Möbius function(introduced in [N1] and [JP]), and
logγp(w, ·) is theRobin functionof hp(w, ·). We have obtained in [N2] the fol-
lowing theorem, which is the first part of our min-max principle. In this paper we
also find some applications of this theorem.

Theorem 1.1. If D is a strictly hyperconvex domain inCn then, for everyw ∈D,
gD(w, z) = lim

p→∞hp(w, z) = sup
p≥1

hp(w, z) onD,

AD(w,X) = lim
p→∞ γp(w,X) = sup

p≥1
γp(w,X) quasi-everywhere onCn.

This result generalizes a previous result, which is an immediate consequence of
a very strong theorem of Lempert (see [L1; L2]) concerning strictly convex or
strictly lineally convex domains with smooth boundary.

Theorem 1.2. If D is a bounded strictly convex domain or a strictly lineally con-
vex domain inCn with smooth boundary(C∞ or real analytic), then

gD(w, z) = hp(w, z) onD ×D,
AD(w,X) = γp(w,X) onD × Cn.

Note that we can obtain the same result as in Theorem 1.2 for any convex domain
and for any strictly lineally convex domain inCn, since the former can be ap-
proximated internally by a sequence of strictly convex domains and the latter by a
sequence of strictly lineally convex domains with analytic boundary. However, it
is not possible in general to approximate internally a lineally convex domain by a
sequence of strictly lineally convex domains (see [H] and [Zn]).
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Now our question is as follows.

Question 1.3. Does there exist a sequence of pseudometrics onD × Cn that
generalizes the Kobayashi–Royden one and such that it converges in some sense
to the Azukawa pseudometric?

This problem is dual to the previous one, solved in Theorem1.1. There already
exists a sort of generalizatioñ0p(w,X) of the Kobayashi–Royden pseudometric,
introduced by Poletsky [PS]. In Section 1.1 we study its properties and show that
it is not a good choice for our problem. In Section 1.2 we introduce another gen-
eralization0p(w,X) of the Kobayashi–Royden pseudometric and prove that this
one is a good choice for our problem.

1.1

First we remark that̃01(w,X) = KD(w,X). According to the Schwarz lemma
we can easily prove that, for all integersp andq greater than 1 and for allX inCn,
γp(w,X) ≤ 0̃q(w,X). Let kq,D(w,X, ·) be the following function defined on1
by kq,D(w,X, λ) = sup{gD(w, ϕ B θq(λ)) : ϕ ∈ Fq(w,X), θq ∈2q}, where2q

is the set of all continuous determinationsθq of the power 1/q defined on an open
set1 \ S in C, whereS is a closed line segment of length 1 with origin 0. Then
we obtain the following lemma.

Lemma 1.4. LetD be a bounded hyperconvex domain inCn, letw be a point in
D, and letr, R > 0 be such thatB(w, r) ⊂ D ⊂ B(w,R). Thenkq,D(w,X, ·) is
a subharmonic function on1, continuous on1̄, with values in[−∞,0]. On 1̄,
these functions(p andq are two integers greater than1) verify

log|λ| + logr − logR ≤ kq,D(w,X, λ) ≤ kpq,D(w,X, λ) ≤ log|λ|.
In addition, for allX ∈Cn, AD(w,X) ≤ 0̃pq(w,X) ≤ 0̃q(w,X) and

lim sup
λ→0

(kq,D(w,X, λ)− log|λ|) = log

(
AD(w,X)

0̃q(w,X)

)
.

Proof. In order to prove the first part of this lemma, we just use the continuity and
the maximality ofgD(w, ·) and the fact that any bounded hyperconvex domain in
Cn is taut. A domainD in Cn is taut if O(1,D) is normal—that is, if whenever
we start with a sequence(ϕj )j ⊂ O(1,D) there exists a subsequence(ϕjν ) with
ϕjν that converges inO(1,D) toϕ ∈O(1,D) or there exists a subsequence(ϕjν )
that diverges uniformly on compact sets (i.e., for any two compact setsK ⊂ 1
andL ⊂ D there is an indexν0 such thatϕjν (K) ∩ L = ∅ if ν ≥ ν0 (see [KR])).

To prove that

lim sup
λ→0

(kq,D(w,X, λ)− log|λ|) = log

(
AD(w,X)

0̃q(w,X)

)
,
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it is sufficient to use the following property of Azukawa [A1]:the upper limit
lim supλ→0(gD(w, ϕ(λ)) − p log|λ|) = log(AD(w,X)|t |) is independent of the
choice of the mapϕ ∈ Fp(w,X) with 1

p!ϕ
(p)(0) = tX, wheret ∈ C. The last in-

equalities are a direct consequence of what precedes and the proof is complete.

In some domains, the last inequalities of this lemma are equalities.

Theorem 1.5. If D is a convex or strictly lineally convex domain inCn, then for
every integerq ≥ 1 we havekq,X(λ) = log|λ| on1 and

0̃q(w,X) = AD(w,X) onD × Cn.
Proof. As in Theorem 1.2, this theorem is again an easy consequence of a strong
result of Lempert [L1; L2]. Indeed, ifD is as described here then, for allX ∈Cn,
there exists a unique extremal discϕX ∈F1(w,X) such thatϕ ′X(0) = 0̃1(w,X)

−1X

andgD B ϕX(λ) = log|λ| for all λ ∈ 1. Consequently,k1,X(λ) = log|λ| for all
λ∈1 andkq,X(λ) = log|λ| for all λ∈1 and allq ≥ 1, according to Lemma 1.4.
For the equality of the pseudometrics0̃q(w,X) andAD(w,X), the proof is al-
most the same.

Let us study what happens with a concrete example of a domain inCn, not neces-
sarily convex. LetD be a complete circular domain with center 0; that is,λD ⊂
D for anyλ ∈ 1̄. Let lX be a complex line in directionX ∈ Cn passing through
0. We denote the radius of the disclX ∩ D by R(X). Note thatR(λX) = R(X)
for anyλ ∈ C∗. We define the functionr : Cn → [0,+∞] by r(z) = ‖z‖/R(z)
if z 6= 0 andr(0) = 0. Thenr is upper semicontinuous andD is represented by
D = {z ∈ Cn : r(z) < 1}. The domainD is pseudoconvex if and only if logr is
psh onCn. In addition,D is hyperconvex if and only ifr is continuous.

Let us suppose now thatD is pseudoconvex. It is well known thatgD(0, z) =
logr(z) onD. ConsequentlyAD(0, X) = ‖X‖/R(X) = r(X) onCn, and it is
not difficult to prove that we also have, for everyq ∈ N∗, 0̃q(0, X) = r(X) on
Cn. Indeed, this last property is a consequence of the following lemma, which is
an improvement of Sadullaev’s Schwarz lemma [S].

Lemma 1.6. LetD be a pseudoconvex complete circular domain with center0,
and letϕ ∈O(1,D) be such thatϕ(k)(0) = 0 for all k ≤ q −1 (q is aninteger≥
1). Then we have:

(1) ‖ϕ(λ)‖ ≤ |λ|qR(ϕ(λ)) on1;
(2) if ϕ(q)(0)/q! is not equal to0 thenϕ(q)(0)/q! is a vector inD̄.

Proof. We fix 0 < r < 1 and denoteϕr(λ) = ϕ(rλ)/λq on 1̄. For everyλ ∈
∂1, λ = eiθ , we haveϕr(λ) = e−iqθϕ(reiθ ) ∈ D becauseD is circular. In ad-
dition,D is pseudoconvex, so according to the continuity principleϕr(1) ⊂ D
and‖ϕr(λ)‖ ≤ R(ϕr(λ)) = R(ϕ(rλ)/λq) = R(ϕ(rλ)) on1. Consequently, for
arbitraryλ in 1 we have‖ϕ(λ)‖ ≤ |λ|qR(ϕ(λ)).
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Let ϕ1 be the analytic disc inCn defined on1 by

ϕ1(λ) = ϕ(λ)

λq
if λ∈1∗ and ϕ1(0) = ϕ(q)(0)

q!
.

According to the first property,‖ϕ1(λ)‖ = ‖ϕ(λ)‖/|λ|q ≤ R(ϕ(λ)) on1∗. Then
r(ϕ1(λ)) = ‖ϕ1(λ)‖/R(ϕ1(λ)) ≤ 1on1∗. Sincer is a psh function onCn andϕ1 is
a holomorphic mapping on1 valued inCn, it follows thatr Bϕ1 is a subharmonic
function in1. By the mean value property, we deduce thatr(ϕ1(0)) ≤ 1. Finally,

r

(
ϕ(q)(0)

q!

)
=

∥∥∥∥ϕ(q)(0)q!

∥∥∥∥
R

(
ϕ(q)(0)

q!

) ≤ 1 and
ϕ(q)(0)

q!
∈ D̄.

Now we shall study the general case. Proving that the sequence(0̃q(w,X))q con-
verges toAD(w,X) is almost equivalent to proving that the sequence(kq,X(λ))q

converges to log|λ| on1. In fact, if (0̃q(w,X))q converges toAD(w,X), then
(kq,X(λ)) converges quasi-everywhere on1 to log|λ| (i.e., except for a polar set).
Conversely, if(kq,X(λ)) converges on1 to log|λ| then(0̃q(w,X))q converges to
AD(w,X).

Observe what happens in the 1-dimensional case. IfD is a Dirichlet domain in
C, then its complementary set inC contains at least two points and hence the uni-
versal coveringπ ofD is1. Letπ : 1→ D be such thatπ(0) = w. According to
Azukawa [A2],gD(w, π(λ)) =

∑
j g1(tj, λ), whereπ−1(w) = {t0 = 0, t1, . . .}.

In this 1-dimensional case we obtain Proposition 2 and deduce Corollary 3 in the
n-dimensional case.

Proof of Proposition 2.In what follows, we usekq to denotekq,D(w,1, ·).
If D is simply connected, thenπ is a biholomorphism from1 to D and it is

easy to prove thatAD(w) = 0̃q(w) for everyq in N∗. If π is not a biholomor-
phism (i.e.,D is not simply connected), thenπ−1(w) contains at least two distinct
points in1. Sinceπ : 1 → D is the universal covering ofD, for every holo-
morphic functionϕ in 1 with values inD there exists a holomorphic functioñϕ
in 1 with values in1 such thatπ B ϕ̃ = ϕ. Thenkq = sup{gD(w, π B ϕ̃ B θq) :
θq ∈2q, ϕ̃ ∈O(1,1) s.t. ϕ̃(0)∈ π−1(w) with orderq}. We can also writekq =
sup{gD(w, π Bθ B ϕ̃ Bθq) : θq ∈2q, ϕ̃ ∈Fq,1(0), θ ∈Aut(1) s.t. θ(0)∈π−1(w)}.

First we remark that all functionskq are equal on1. In fact, for all t in1∗, ac-
cording to the Schwarz lemma we have thatD(0, |t |) ⊂ {ϕ(t), ϕ ∈ F1,1(0)} ⊂
{ϕ(θq(t)), ϕ ∈ Fq,1(0), θq ∈ 2q} ⊂ D(0, |t |). Then the sequences(kq)q and
(0̃q(w))q are constant in all cases.

Let us study the functionu defined on1 by

u(λ) = sup{gD(w, π B θ(λ)) : θ ∈Aut(1) s.t. θ(0)∈π−1(w)}.
We haveu(λ) ≤ log|λ| on1 andu(λ) > −∞ on1 \ {0}. The functionu is con-
tinuous and subharmonic on1, and in its definition the supremum is in fact a
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maximum. Consequently,̃u(λ) := u(λ) − log|λ| is continuous, subharmonic on
1, negative on1, and not equal to 0 everywhere. Then, according to the maxi-
mum principle,ũ(0) < 0 and there exists an open nonempty discD(0, r) whereũ
verifies 3̃u(0)/2 ≤ ũ(λ) ≤ ũ(0)/2. Then, according to the Schwarz lemma,

k1(λ) ≤ sup{log|ϕ̃(λ)| + ũ(0)/2 : ϕ̃ ∈F1,1(0)}
≤ log|λ| + ũ(0)/2 on D(0, r).

Thus0̃1(w) > AD(w) and the proof is complete.

Proof of Corollary 3. It is sufficient to prove this result inC2. LetD be a product
domainD1×D2 in C2, whereD1 andD2 are two bounded Dirichlet domains in
C. ThenD is a bounded hyperconvex domain inC2. Letw = (w1, w2) be a point
in D.

Any analytic discϕ = (ϕ1, ϕ2) ∈O(1,D) is given by two holomorphic func-
tions ϕ1 andϕ2 on1 with values inD1 andD2, respectively. Note thatϕj =
πj B ϕ̃j , whereϕ̃j ∈ O(1,1) andπj : 1 → Dj is the universal covering ofDj
with πj(0) = wj for j = 1,2. Then, according to the product property (see [E2]
and [Z]), we havegD((w1, w2), (z1, z2)) = max(gD1(w1, z1), gD2(w2, z2)) and
consequently, for anyX = (X1, X2)∈C2,

kq,D(w,X, ·) = max(kq,D1(w1, X1, ·), kq,D2(w2, X2, ·)).
If, in addition, we suppose thatD1 andD2 are not simply connected, then (accord-
ing to Proposition 2) we obtain that, for allw ∈D, all X ∈C2, and allq ≥ 1,

0̃1(w,X) = 0̃q(w,X) > AD(w,X).

We remark that this corollary illustrates a well-known result of Znamenskii:If a
lineally convex domain inCn (n > 1) can be exhausted by strictly lineally convex
domains, then it is necessarilyC-convex(see [H] and [Zn]).

1.2

In [P1] and [P2] (see also [E1]), Poletsky proved that, for any domainD in Cn,
the pluricomplex Green functiongD(w, ·) verifies

gD(w, z) = inf
{ ∑
λ∈ϕ−1(w)

log|λ| : ϕ ∈O(1,D), ϕ(0) = z
}

if z ∈ D andz 6= w, where we useϕ−1(w) to denote the subset of1 defined by
ϕ−1(w) = {λ∈1 : ϕ(λ) = w}.

This result does not change if we replaceO(1,D) by O(1̄,D), the set of
holomorphic mappings in a neighborhood of1̄ with values inD. We remark that∑

λ∈ϕ−1(w) log|λ| = ∑
λ∈ϕ−1(w) g1(λ,0) = g1(ϕ

−1(w),0). Let us consider the
other pseudometrics0p(w,X) defined in the introduction. It is easy to see that,
for anyp andq in N∗, we always have

AD(w,X) ≤ 0pq(w,X) ≤ 0p(w,X) ≤ 0̃p(w,X) ≤ KD(w,X);
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for any convex domains and any strictly lineally convex domains, we have

AD(w,X) = 0p(w,X) = KD(w,X).

Proof of Theorem 1(2).First we consider the casen = 1. Note thatD is a bounded
hyperconvex domain inC if and only if it is a Dirichlet domain. As we have al-
ready seen, ifπ is a universal covering ofD such thatπ(0) = w then, according
to Azukawa [A2],

gD(w, π(λ)) =
∑
j

g1(tj, λ) = g1(π−1(w), λ) on1,

whereπ−1(w) = {t0 = 0, t1, . . .} and 0 is a zero of order 1 ofπ − w. We note
π ′(0) = t, and then limλ→0(gD(w, π(λ)) − log|λ|) = log(AD(w)|t |). On the
other hand,

lim
λ→0

(g1(π
−1(w), λ)− log|λ|) = lim

λ→0

∑
j≥1

g1(tj, λ)

= lim
λ→0

∑
j≥1

log

∣∣∣∣ λ− tj1− t̄j λ
∣∣∣∣

=
∑
j≥1

log|tj |.

Consequently,

AD(w) = 01(w) =
∣∣∏

λ 6=0,π(λ)=w λ
∣∣

|π ′(0)| .

Thus,0p(w) = AD(w) for all p ≥ 1.
Now, if n ≥ 1 then we fix a “direction”X in Cn such that‖X‖ = 1. We know

by definition that logAD(w,X) = lim supλ→0(gD(w,w+ λX)− log|λ|). Hence
there exist a sequence(tm)m in C∗ that converges to 0 and a sequence(ϕm)m in
O(1̄,D) such thatϕm(0) = w + tmX, ϕ−1

m (w) = {λ ∈1 : ϕm(λ) = w} = {λjm :
1≤ j ≤ Nm} 6= ∅ (the zeros ofϕm − w are repeated if they are of order greater
than 1) and that verify

AD(w,X) = lim
m→∞exp(gD(w,w + tmX)− log|tm|) = lim

m→∞

∣∣∏
λ∈ϕ−1

m (w)
λ
∣∣

|tm| .

For anym ≥ 1,

ϕm(λ) = w + Bm(λ)
(

tm

Bm(0)
X + ψm(λ)

)
on1,

whereBm(λ) is the Blaschke product
∏Nm

j=1(λ−λjm)/(1−λjmλ) andψm is a holo-
morphic mapping on1 in Cn such thatψm(0) = 0. If we useϕ̃m to denote the
analytic disc defined on1 by

ϕ̃m(λ) = w + (Bm(λ)− Bm(0))
(

tm

Bm(0)
X + ψm(λ)

)
,
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then we have the sup norm on1 of ϕ̃m − ϕm, which verifies‖ϕ̃m − ϕm‖1 ≤
|Bm(0)|M (whereM is a constant independent ofm). By hypothesis,D is
strictly hyperconvex. Thus there exist a bounded domain� and a function% ∈
C(�, ]−∞,1[) ∩ PSH(�) such thatD = {z ∈� : %(z) < 0}, % is exhaustive for
�, and the open set{z∈� : %(z) < c} is connected for all real numbersc ∈ [0,1].
If we denoteDm the bounded hyperconvex domain defined by{z ∈ � : %(z) <
1/m} for any integerm ≥ 1, thenϕ̃m is an analytic disc inDν(m), where(ν(m))m
is a sequence of integers that tends to∞ whenm tends to∞.

Even if it means changing (for anym) a zero ofϕm without changing all others
(this is possible becauseϕm ∈O(1̄,D)),we can suppose thatB ′m(0) 6= 0. That is,
0 is a zero of order 1 of̃ϕm. In addition, for anym sufficiently large,|Bm(0)| < 1.
Thus, according to Rouché’s theorem,Bm andBm−Bm(0) haveNm zeros (counted
with multiplicity) in 1. We have

{λ∈1 : λ 6= 0, ϕ̃m(λ) = w} = {λ∈1 : λ 6= 0, Bm(λ)− Bm(0) = 0}
= {λ̃jm,1≤ j ≤ Nm −1}.

We can write

Bm(λ)− Bm(0) = B̃m(λ) = λ
Nm−1∏
j=1

λ− λ̃jm
1− λ̃jmλ

βm(λ) on1,

whereβm is a holomorphic function on1, never equal to zero, such thatβm(0) =
cm is a complex number not equal to zero. SinceB̃ ′m(0) =

(∏Nm−1
j=1 − λ̃jm

)
cm,

it follows that

ϕ̃ ′m(0) =
( Nm−1∏

j=1

− λ̃jm
)
cm

tm

Bm(0)
X.

Note that|B̃m(λ)| ≤ 1+ |Bm(0)| on1. According to the maximum principle, we
may deduce that|βm(λ)| ≤ 1+ |Bm(0)| on1. In addition, on∂1, |βm(λ)| ≥
1− |Bm(0)|. Becauseβm is never equal to zero on̄1, we deduce that 1/βm ∈
O(1) and, according to the maximum principle,|βm(λ)| ≥ 1− |Bm(0)| on1.
Consequently, 1− |Bm(0)| ≤ |cm| ≤ 1+ |Bm(0)|, and|cm| converges to 1 whenm
tends to∞.

We deduce that, form large enough,

ADν(m)(w,X) ≤ 01,Dν(m)(w,X) ≤
|Bm(0)|
|cmtm| .

It is simple to verify that(ADν(m)(w,X))m converges toAD(w,X) whenm tends
to∞ (see [N2]).

Now, we just need a last lemma to conclude the proof. This result takes its in-
spiration from a result [Yu] concerning̃0p(w,X) pseudometrics.

Lemma 1.7. With the previous notation, we have

lim
m→∞01,Dν(m)(w,X) = 01,D(w,X).
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Proof. Assume, by way of contradiction, that01,Dν(m)(w,X) does not converge to
01,D(w,X). Then there existε0 > 0 and a subsequence(µ(m))m of the sequence
(ν(m))m such that

|01,Dµ(m)(w,X)− 01,D(w,X)| > ε0.

By definition, for anyη ∈ ]0,1[, there existθm ∈O(1,Dµ(m)) such thatθm(0) =
w, θ ′m(0) = tmX, tm > 0, and

01,Dµ(m)(w,X)+ η ≥
∏
λ 6=0,θm(λ)=w|λ|

tm
.

Claim. Every subsequence of the(θm)m has itself a subsequence converging to
some elementθ ∈O(1,D) such thatθ(0) = w andθ ′(0) = tX for somet > 0.
As a result of the claim, we will obtain

lim inf
m→∞ 01,Dµ(m)(w,X) ≥ 01,D(w,X). (∗)

First we check the claim. By hypothesis,θm ∈ O(1,D1) for all m. By the taut-
ness ofD1, every subsequence of(θm)m has itself a subsequence either converging
to some elementθ ∈ O(1,D1) or compactly divergent. Sinceθm(0) = w ∈ D,
only the first possibility could occur. Moreover, becauseθm(1) ⊂ Dµ(m) → D

(in the sense that limm→∞ dist(∂Dµ(m), ∂D) = 0), it follows thatθ(1) ⊂ D̄. But
D is taut andθ(0) = w ∈D, so we must haveθ(1) ⊂ D. Indeed, if there exists
a pointλ0 ∈1 such thatθ(λ0) ∈ ∂D, then the setθ(1) is contained in∂D. This
verifies the claim.

It follows from the claim that

lim inf
m→∞ 01,Dµ(m)(w,X)+ η ≥

∏
λ 6=0,θ(λ)=w|λ|

t
≥ 01,D(w,X).

Whenη tends to 0, this implies(∗).
Now we seek a contradiction. By the tautness ofD, there exists an extremal

discθ ∈ O(1,D) for 01,D(w,X). Namely,θ(0) = w, θ ′(0) = tX with t > 0,
and

(∏
λ 6=0,θ(λ)=w|λ|

)
/t = 01,D(w,X). Sinceθ ∈O(1,Dµ(m)) for all m, it fol-

lows that01,Dµ(m)(w,X) ≤
(∏

λ 6=0,θ(λ)=w|λ|
)
/t. Taking lim sup with respect to

m, we obtain
lim sup
m→∞

01,Dµ(m)(w,X) ≤ 01,D(w,X). (∗∗)

Obviously(∗) together with(∗∗) contradict the first assumption. This finishes the
proof of Lemma 1.7.

Consequently, it follows from this last lemma thatAD(w,X) = 01(w,X) =
0p(w,X) for all p ≥ 1. The proof is complete.

2. Boundary Behavior of a Pluricomplex Green
Function with Several Poles

Let D be a strictly lineally convex domain inCn, and letgD(w, ·) be the pluri-
complex Green function onD with logarithmic pole atw. Lempert [L2] proved
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that also the sublevel sets{z ∈D : gD(w, z) < c} of gD(w, ·) are strictly lineally
convex for any nonpositive real numberc. If D is a bounded convex domain, then
the sublevel sets ofgD(w, ·) are again convex for anyc ≤ 0 (see [L1] and the ap-
pendix in [Mo]). In addition, ifD is strictly convex with smooth boundary(C∞ or
real analytic), thengD(w, ·) has the same regularity onD \ {w} as the boundary.

In fact, this situation is quite special. Indeed, Bedford and Demailly proved in
[BD] that there exist strongly pseudoconvex domainsD in C2 with C2 boundary
such thatgD(w, ·) is notC2 in all D̄ \ {w}. Here, we consider instead the situation
where the domainD is convex or even strictly convex but where the pluricomplex
Green function has several logarithmic poles inD. For this case, we will prove
that pluricomplex Green functions with several poles have no more these regu-
larity properties. In Section 2.1, we show that there exist convex domains inC2

(respectively inCn) with pluricomplex Green functionsg with two (or more) log-
arithmic poles such that any connected sublevel set ofg is not lineally convex. In
Section 2.2, where we obtain explicitly the pluricomplex Green functiongB2(0,1)

in B2(0,1) with two logarithmic poles of weight 1, we prove again (now we are in
the situation of a strictly convex domain) that any connected sublevel set ofgB2(0,1)

is not lineally convex and that this function is notC2 onB2(0,1) \ {poles}.
Before starting, observe what happens in the 1-dimensional case. The complex

Monge–Ampère operator is the same as the Laplace operator and hence is lin-
ear. For any bounded Dirichlet domain inC, the Green functiongD(P, ·), P :=
{(p1, c1), . . . , (pm, cm)}, is a set ofm distinct polespj in D, and thecj (j =
1, . . . , m) are strictly positive reals, verifiesgD(P, z) =

∑m
j=1cjgD(pj, z) onD.

The functiongD(P, ·) is continuous onD̄ and harmonic, thenC∞ onD. Thus,
by regularity, ifD is strictly convex then the subsevel sets ofgD(P, ·) are again
strictly convex for any negative realc near 0. On the other hand, ifD is only con-
vex (and not strictly convex), the subsevel sets ofgD(P, ·) can not be convex for
any realc < 0. To understand this easily it is sufficient to consider the different
sublevel sets of the Green function on1 with two logarithmic poles inβ and−β,
whereβ is a real number in ]0,1[. Note that any domain inC is obviously lin-
eally convex, so in this case there is nothing to say about the lineal convexity of
sublevel sets.

The situation is quite different in the multidimensional case because, in partic-
ular, the Monge–Ampère operator(ddc)n is no longer linear [Le1; Le2]. For any
domainD inCn,we have

∑m
j=1cjgD(pj, z) ≤ gD(P, z) ≤ infj cjgD(pj, z) onD.

And these inequalities cannot be replaced by equalities ifm > 1 andn > 1.

2.1. A Counterexample of a Recent Result

First we briefly recall some properties of Möbius transformations ofBn(0,1) and
of pluricomplex Green functions with one logarithmic pole inBn(0,1). Let a ∈
Bn(0,1) \ {0}. Denote byPa the orthogonal projection onto the subspace ofCn
generated by the vectora. ThenPa(z) = (〈z, a〉/〈a, a〉)a, where 〈·, ·〉 is the
standard complex scalar product and‖.‖ stands the Euclidean norm inCn. Let
Qa(z) = z − Pa(z) denote the projection onto the orthogonal complement of the
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subspace generated bya. The Möbius transformation associated witha is the map-
pingTa(z) = (a − Pa(z)− saQa(z))/(1− 〈z, a〉), wheresa = (1− ‖a‖2)1/2 and
〈z, a〉 6= 0. Note that, by the Cauchy–Schwarz inequality,|〈z, a〉| < 1 if ‖z‖ ≤ 1.
Observe thatTa(a) = 0 andTa(0) = a. We also defineT0 as the identity mapping.
The Möbius transformationTa is a homeomorphism of̄Bn(0,1) onto B̄n(0,1),
and it mapsBn(0,1) ontoBn(0,1) biholomorphically. The inverse ofTa|Bn(0,1) is
Ta|Bn(0,1) itself. According to the properties of the Möbius transformations and the
fact that the pluricomplex Green function is invariant by biholomorphism, the ex-
plicit formula for the pluricomplex Green function with one logarithmic polew
with weight 1 inBn(0,1) is

gBn(0,1)(w, z) = log‖Tw(z)‖.
Now we shall construct a pluricomplex Green function with two logarithmic

poles in a complex convex ellipsoid inC2. LetF be the mapping inC2 defined by
F : C2 → C2, (z1, z2) 7→ (z2

1, z2). It is a polynomial holomorphic proper func-
tion in C2 such thatF(D) = B2(0,1), whereD is the complex convex ellipsoid
defined byD = {(z1, z2) ∈ C2 : |z1|4 + |z2|2 < 1}; D is convex, but not strictly
convex.

Lemma 2.1. LetD andF be defined as before. Then we have

gB2(0,1)(a;F(z)) = gD(p, q; z) onD,

wherea = (β2,0) ∈ B2(0,1), p = (β,0) ∈ D, q = (−β,0) ∈ D (with β ∈
]0,1[), andgD(p, q; ·) is the pluricomplex Green function onD with the two log-
arithmic polesp andq of weight1.

Proof. We can prove this lemma by using the fact thatF is proper andF(D) =
B2(0,1). But here let us prove this lemma directly. First we verify thatTa(z) =
(1/(1− β2z1))

(
β2 − z1, −

√
1− β 4z2

)
. Let the function

u(z1, z2) = log‖Ta(F(z1, z2))‖;
u is plurisubharmonic onD (because it is the composition of a plurisubharmonic
function and of a holomorphic one), continuous onD̄, strictly negative onD
(F(D) = B2(0,1)), tends to zero when we approach the boundary ofD, and
has two logarithmic poles with weight 1 inp andq. In addition,u is of class
C2 onD \ {p, q}, sincev(z) = gB2(0,1)(a, z) = log‖Ta(z1, z2)‖ is of classC2 on
B2(0,1) \ {a}. Becausev is maximal onB2(0,1) \ {a} andu = v B F, u is also
maximal onD \ {p, q}. In fact,

det

[
∂2(v B F )
∂zj ∂z̄k

(z)

]
= |det∂zF |2 det

[
∂2v

∂zj ∂z̄k
(F(z))

]
and then, onD \ {p, q}, (ddcu)2(z) = |det∂zF |2(ddcv)2(F(z)). Consequently,
u is the unique solution of the Dirichlet problem defined in the introduction with
m = 2 andc1 = c2 = 1—that is, the pluricomplex Green function with logarith-
mic polesp andq with weight 1 on the convex complex ellipsoidD. The proof is
complete.
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Let c ∈ ]−∞,0] and denoteDc = {z ∈ D : gD(p, q; z) < c} the sublevel set
of the pluricomplex Green functiongD(p, q; ·). We remark that this open set is
“very symmetric”: if (z1, z2) ∈ Dc, then also(−z1, z2), (z1,−z2), (z̄1, z2), and
(z1, z̄2) are inDc. Note thatz ∈ Dc if and only if |β2 − z2

1|2 + (1− β 4)|z2|2 <
e2c|1− β2z2

1|2; Dc is connected if and only if logβ2 < c ≤ 0. In the case where
c ≤ logβ2, Dc has two connected components.

Proposition 2.2. If logβ2 < c < 0, thenDc is connected and not lineally
convex.

Proof. Let z be a point in∂Dc such thatz1= 0. Then|z2|2 = (e2c−β 4)/(1−β 4),

wheree2c > β 4. We see if this is possible for a complex linel through the point
z such thatl ⊂ C2 \Dc. Denote byl = {(0, z2) + λ(w1, w2), λ ∈C} a complex
line inC2 with direction(w1, w2) 6= (0,0) through the pointz.

If w1 = 0, thenw2 6= 0 and we can choosew2 = 1. We have that(0, z2) +
λ(0,1) ∈C2 \Dc if and only if |z2 + λ|2 ≥ |z2|2. Of course, there exist complex
numbersλ that do not verify this inequality. Ifw2 = 0, thenw1 6= 0 and we can
choosew1= 1. Now (0, z2)+ λ(1,0)∈C2 \Dc if and only if∣∣∣∣λ2 − β2 1− e2c

1− β 4e2c

∣∣∣∣ ≥ β2 1− e2c

1− β 4e2c
.

Again, there exist complex numbersλ that do not verify this inequality.
If neitherw1 nor w2 equals zero then we can choosew2 = 1. In this case,

(0, z2)+ λ(w1,1)∈C2 \Dc if and only if

f(λ) = (1− β 4)(z2λ̄+ z̄2λ)+ (1− β 4)|λ|2 − β2(1− e2c)((λw1)
2 + (λ̄w̄1)

2)

+ (1− β 4e2c)|w1|4|λ|4 ≥ 0.

But for λ = −z2ε (with smallε > 0),

f(λ) = −2(1− β 4)|z2|2ε + (1− β 4)|z2|2ε2

− β2(1− e2c)((z2w1)
2 + (z̄2w̄1)

2)ε2 + |w1|4|z2|4(1− β 4e2c)ε4 < 0.

Finally, for any complex line throughz, l ∩ Dc contains points other thanz and
Dc is not lineally convex.

Now our question is as follows: Is it possible to obtain the same result for a strictly
convex domainD inC2? In Section 2.2 we answer in the affirmative by finding an
explicit formula for the pluricomplex Green function with two logarithmic poles
of weight 1 in the open unit ball inC2.

2.2. The Pluricomplex Green Function of the Unit Ball inC2

with Two Logarithmic Poles of Weight 1

In proving Theorem 5, we shall first express the pluricomplex Green function
gB2(0,1)(p, q; ·) with the help of a pluricomplex Green function with one pole in a
well-chosen convex complex ellipsoid, similarly as in the proof of Lemma 2.1. We
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then apply Lempert’s method in convex domains, which is based on a study of ex-
tremal discs for the Kobayashi metric, to express this pluricomplex Green function
with one pole. This is possible because Jarnicki, Pflug, and Zeinstra [JPZ] gave a
complete description of all geodesics of any convex complex ellipsoid inCn.

Let D be the following complex convex ellipsoid inC2: {(z1, z2) ∈ C2 :
|z1|+ |z2|2 < 1}. LetF be the following polynomial holomorphic proper function
in C2: C2→ C2, (z1, z2) 7→ (z2

1, z2). Let F(B2(0,1)) = D andF(bB2(0,1)) =
bD; D is convex, but not strictly convex.

Lemma 2.3. LetD andF be defined as before. Then we have

gB2(0,1)(p, q; z) = gD(a;F(z)) on B2(0,1),

wherea = (β2,0) ∈ D and where bothp = (β,0) and q = (−β,0) are in
B2(0,1) with β ∈ ]0,1[.

Proof. This proof is similar to the one of Lemma 2.1. The only thing to remark is
that we have the following general property.Letf ∈H(�,�′), where� and�′

are two open sets inCn, and letu ∈ PSH(�′) ∩ L∞loc(�
′). Then, if we notev =

u B f ∈PSH(�) ∩ L∞loc(�), we have

(ddcv)n(z) = |det∂zf |2(ddcu)2(f(z)).
First, it is easy to verify this formula whenu ∈ C2(�′). To prove this prop-

erty in the general case it is sufficient to see that, for anyu∈PSH(�′)∩L∞loc(�
′)

and for any exhaustive sequence of relatively compact open sets�′j in �′, there
exists a sequence(uj )j of psh andC∞ functions on�′j respectively, such that(uj )j
decreases tou on�′. By Bedford–Taylor’s convergence property of the Monge–
Ampère operator, we deduce that limj(ddcuj )2 = (ddcu)2 on�′, in the sense of
weak∗-convergence of currents of order zero. Since the formula is valid for any
uj, it is also valid foru.

Recall that a holomorphic mappingϕ : 1 → D is a complex geodesic if
kD(ϕ(λ), ϕ(λ

′)) = k1(λ, λ
′) for λ andλ′ ∈ 1, wherek1 is the Kobayashi dis-

tance. In [JPZ] are described all complex geodesics of any convex complex el-
lipsoidsE(p) = {(z1, . . . , zn) ∈ Cn :

∑n
j=1|zj |2pj < 1} (with p1, . . . , pn ≥ 1

2

)
in

Cn. Here we are inC2, p1 = 1/2, andp2 = 1. Let (ϕ1, ϕ2) be a complex geo-
desic ofD = {(z1, z2)∈C2 : |z1| + |z2|2 < 1}. If ϕ1 ≡ 0 (resp.ϕ2 ≡ 0), thenϕ2

(resp.ϕ1) is an automorphism of the unit disc1. This means that, without loss of
generality, we can assume thatϕ1 andϕ2 are not identically zero on1. Then any
complex geodesicϕ = (ϕ1, ϕ2) of D has the following form:

ϕj(λ) =


aj
λ− αj
1− ᾱj λ

(
1− ᾱj λ
1− ᾱ0λ

)1/pj

if the ϕj have a zero in1,

aj

(
1− ᾱj λ
1− ᾱ0λ

)1/pj

if the ϕj have no zero in1,

(1)

wherea1, a2 ∈C \ {0}, α0 ∈1, αj ∈1 if theϕj have a zero in1, αj ∈ 1̄ if theϕj
have no zero in1, α0 =

∑2
j=1|aj |2pj αj, and 1+ |α0|2 =

∑2
j=1|aj |2pj (1+ |αj |2).
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The complex geodesics inD are uniquely determined mod Aut(1). Let us re-
mark, in addition, that any complex geodesic ofD extends holomorphically to a
neighborhood of̄1. We now recall Lempert’s theorem.

Theorem 2.4 [L1]. LetD be a strictly convex, analytically bounded domain in
Cn, and letw be a point inD. For everyz ∈ D \ {w}, there is a holomorphic
imbeddingϕz = ϕ : 1̄→ D̄ such thatz,w ∈ ϕ(1̄) andgD(w, ·) is harmonic re-
stricted toϕ(1) \{w}. Thisϕ is unique up to automorphisms of1. Consequently,
the corresponding analytic discsϕz(1̄) yield a foliation ofD̄ that is singular atw.

For the same reasons described after Theorem 1.2, this theorem is again true for
any convex domain inCn. In particular, Theorem 2.4 states thatgD(w, z) =
inf {log|λ| : ϕ ∈ H(1,D), ϕ(0) = z, ϕ(λ) = w}, where the infimum is a mini-
mum and is achieved for a complex geodesic ofD.

To prove Theorem 5 we need the following theorem, which expresses the pluri-
complex Green function onD with one logarithmic pole of weight 1. Hereafter,
when we writeλ1/2 for λ ∈ C \ {0} we meant such thatt 2 = λ and Arg(t) ∈
[−π/2, π/2[ (01/2 = 0).

Theorem 2.5. Letβ ∈ ]0,1[. Leta = (β2,0)∈D and letp, q ∈B2(0,1),where
p = (β,0) andq = (−β,0). Then the following formula holds for the pluricom-
plex Green function onD with the logarithmic polea of weight1.

gD(a,w)

=


1
2 log

(
|β−w1/2

1 |2+(1−β2)|w2|2
|1−βw1/2

1 |2

)
if (w1/2

1 , w2)∈ C̄p ∩D,

1
2 log

(
|β2−w1|2+β 4|w2|4+2(1−β 4)|w2|2+

√
1(w)

2|1−β2w1|2

)
if (w1/2

1 , w2)∈D \ Cp,
where

1(w) = (β 4|w2|4 − |β2 − w1|2)2 + 4(1− β 4)|w2|2|β2|w2|2 − (β2 − w1)|2.

Proof. Letw = (w1, w2) ∈D be such thatw 6= a. Because of (1), any complex
geodesicϕ = (ϕ1, ϕ2) passing througha andw is such that eitherϕ−1(0) = ∅ or
ϕ−1(0) contains exactly one point. Our aim is to decide for which pairs of points
the complex geodesic joining these points is of the first type and for which it is of
the second type.

We shall first computegD(a,w) for all the pointsw ∈ D such thatw1 = 0 or
w2 = 0. If w2 ∈ ]0,1[, then the unique geodesicϕ = (ϕ1, ϕ2) of D that passes
through both pointsa and(0, w2) and that verifiesϕ(0) = (0, w2) is defined on
1 by

ϕ1(λ) = a1λ

(1− ᾱ0λ)2
and ϕ2(λ) = a2

λ− α2

1− ᾱ0λ
, (†)

whereα0 = |a2|2α2, 1+ |α0|2 = |a1| + |a2|2(1+ |α2|2), −a2α2 = w2, and
a1α2/(1− ᾱ0α2)

2 = β2. Of course,α2 6= 0. Then we havea2 = −w2/α2,
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α0 = w2
2/ᾱ2, a1 = β2(1− w2

2)
2/α2, and |α2| verifies the following quadratic

equation: |α2|2 − |α2|β2(1− w2
2) − w2

2 = 0. The unique solution for|α2| is
1
2

[
β2(1− w2

2) +
√
β 4(1− w2

2)
2 + 4w2

2

]
. If w = (0, w2) ∈D with w2 6= 0, then

gD(a, (0, w2)) = gD(a, (0, |w2|)), because of the invariance ofgD(a, ·) under the
mapping(z1, z2) 7→ (z1, e

iθz2) of C2, whereθ is any real number. Ifw2 = 0,
then the unique geodesicϕ ofD which passes through pointsa and 0 and that ver-
ifiesϕ(0) = 0 is defined on1 by ϕ1(λ) = λ andϕ2(λ) = 0. Thus, consequently,
for all w2 ∈1,

gD(a, (0, w2)) = log
(

1
2

[
β2(1− |w2|2)+

√
β 4(1− |w2|2)2 + 4|w2|2

])
.

If w1 ∈1 then, according to (1), the unique geodesicϕ (modAut(1)) ofD passing
througha and(w1,0) and such thatϕ(0) = (w1,0) is defined on1 by ϕ1(λ) =
(λ + w1)/(1+ w̄1λ) andϕ2(λ) = 0. Hence, for allw1 ∈ 1, gD(a, (w1,0)) =
log(|β2 − w1|/|1− β2w1|).

Now observe what happens ifw = (w1, w2)∈D with w1 6= 0 andw2 6= 0. We
can suppose thatw2 > 0 for the same reason as before: the invariance ofgD(a, ·)
under the mapping(z1, z2) 7→ (z1, e

iθz2) of C2, whereθ is any real number. Sup-
pose thatϕ−1

1 (0) = ∅. Thenϕ verifies on1

ϕ1(λ) = a1

(
1− ᾱ1λ

1− ᾱ0λ

)2

and ϕ2(λ) = a2

(
λ− α2

1− ᾱ0λ

)
,

whereα0 = |a1|α1+ |a2|2α2, 1+ |α0|2 = |a1|(1+ |α1|2)+ |a2|2(1+ |α2|2), and
ϕ(0) = w; that is,a1= w1, −a2α2 = w2, andϕ(α2) = a. In other words,

a1

(
1− ᾱ1α2

1− ᾱ0α2

)2

= β2.

We have immediately that

w
1/2
1

(
1− ᾱ1α2

1− ᾱ0α2

)
= +β or −β.

After some calculations, we obtain in the first case

α1= β(1− w2
2)− w̄1/2

1

ᾱ2w̄
1/2
1 (−1+ βw1/2

1 )
, α0 = −βw

1/2
1 + |w1| + w2

2

ᾱ2(1− βw1/2
1 )

,

|α2|2 = |β − w
1/2
1 |2 + (1− β2)w2

2

|1− βw1/2
1 |2

;

in the second case,

α1= β(1− w2
2)+ w̄1/2

1

ᾱ2w̄
1/2
1 (1+ βw1/2

1 )
, α0 = βw

1/2
1 + |w1| + w2

2

ᾱ2(1+ βw1/2
1 )

,

|α2|2 = |β + w
1/2
1 |2 + (1− β2)w2

2

|1+ βw1/2
1 |2

.
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We now useϕ̃ to denote the complex geodesic ofB2(0,1) defined on1 by

ϕ̃1(λ) = w1/2
1

(
1− ᾱ1λ

1− ᾱ0λ

)
and ϕ̃2(λ) = a2

(
λ− α2

1− ᾱ0λ

)
.

In the first case,̃ϕ(1) is a part of the complex line of the equation(Z1− β)w2 =
Z2(w

1/2
1 −β), passing throughp; in the second case,ϕ̃(1) is a part of the complex

line of the equation(Z1+ β)w2 = Z2(w
1/2
1 + β), passing throughq. By hypoth-

esis,ϕ−1
1 (0) = ∅ and Arg(w1/2

1 ) ∈ [−π/2, π/2[, so the first case is the only one
that can occur and necessarily(w1/2

1 , w2) ∈ C̄p ∩ D. Conversely, if(w1/2
1 , w2) ∈

C̄p ∩ D then there exists a complex geodesicϕ̃ of B2(0,1) that passes through
(w1/2

1 , w2) andp. In fact, it is a part of a complex line. Thenϕ = (ϕ̃2
1, ϕ̃2) is a

complex geodesic ofD that passes throughw anda; it is such thatϕ−1
1 (0) = ∅.

Consequently, for allw = (w1, w2)∈D such that(w1/2
1 , w2)∈ C̄p ∩D,

gD(a,w) = 1

2
log

( |β − w1/2
1 |2 + (1− β2)|w2|2
|1− βw1/2

1 |2
)
.

Finally, letw ∈D be such that(w1/2
1 , w2) ∈D \ Cp. Without restriction, we can

suppose thatw2 > 0. Then, according to what is previous, the unique geodesicϕ̃

(mod Aut(1)) of D passing throughw anda is such that̃ϕ−1
1 (0) contains exactly

one element. In addition, there exists a unique pointw ′ = (0, w ′2) ∈ D ∩ ϕ̃(1)
and a unique geodesicϕ ofD of type(†) such thatϕ(0) = w ′ andϕ(α2) = a. We
can suppose without restriction (with the help of well-chosen rotation) thatα2 >

0. Now ϕ verifies on1

ϕ1(λ) = a1λ

(1− ᾱ0λ)2
and ϕ2(λ) = a2

λ− α2

1− ᾱ0λ
,

whereα2 = 1
2

[
β2(1−|w ′2|2)+

√
β 4(1− |w ′2|2)2 + 4|w ′2|2

]
, a1= β2(1−w ′22 )

2/α2,

a2 = −w ′2/α2, andα0 = w ′22 /ᾱ2. We remark thatϕ(1) ⊂ {z = (z1, z2) ∈
D : w ′2z1 = β2(w ′2 − z2)(1− w̄ ′2z2)}. Now w ′2 ∈ 1 and verifiesw ′2w1 =
β2(w ′2 − w2)(1− w̄ ′2w2). This permits us to expressw ′2 with w1 andw2:

w ′2 =
1−

√
1− 4|δ(w)|2

2|δ(w)|2 δ(w), where δ(w) = β2w2(β
2w2

2 − β2 + w̄1)

β 4w4
2 − |β2 − w1|2

.

Letλ0 ∈1 be such thatϕ(λ0) = w. From the equationϕ2(λ0) = w2, it is easy to
obtainλ0 = (w2+ a2α2)/(a2+ ᾱ0w2). Sincea2, α0, α2 are expressed according
to w ′, λ0 also can be expressed according tow ′ and thence according tow. The
relation betweenϕ andϕ̃ is ϕ̃ = ϕ B θ, whereθ is the automorphism of1 defined
by θ(λ) = (λ+ λ0)/(1+ λ̄0λ). Finally, ϕ̃(θ−1(α2)) = a,

gD(a,w) = log|θ−1(α2)| = log

∣∣∣∣ α2 − λ0

1− λ̄0α2

∣∣∣∣,
and, for allw ∈D such that(w1/2

1 , w2)∈D \ Cp, we have
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gD(a,w) = 1

2
log

( |β2 − w1|2 + β 4|w2|4 + 2(1− β 4)|w2|2 +
√
1(w)

2|1− β2w1|2
)
,

where

1(w) = (β 4|w2|4 − |β2 − w1|2)2 + 4(1− β 4)|w2|2|β2|w2|2 − (β2 − w1)|2.
The proof is complete.

Proof of Theorem 5.The theorem is a direct consequence of Lemma 2.3
and Theorem 2.5. Let us remark that, ifz ∈ C̄p ∩ B2(0,1), then Arg(z1) ∈
[−π/2, π/2[ and(z2

1 )
1/2 = z1. Moreover, ifz ∈ C̄q ∩ B2(0,1), then Arg(z1) ∈

[−π,−π/2[∪ [π/2, π [ and(z2
1 )

1/2 = −z1.

Proof of Proposition 6.This proof is very similar to that for Proposition 2.2. The
calculations are only a little bit more off-putting. Letz be a point in∂Bc such that

z1= 0 andz2 > 0. Then 2ec = β2(1− z2
2)+

√
β 4(1− z2

2)
2 + 4z2

2, where 2ec >
2β2. We check for the possibility of a complex linel through the pointz such that
l ⊂ C2 \ Bc. Denote byl = {(0, z2) + λ(w1, w2), λ ∈ C} a complex line inC2

with direction(w1, w2) 6= (0,0) through the pointz. Then

gB2(0,1)(p, q, (λw1, z2 + λw2)) = 1
2 logf1(λ),

wheref1(λ) = g1(λ)/(2|1− β2w2
1λ

2|2) and

g1(λ) = |β2 − w2
1λ

2|2 + β 4|z2 + w2λ|4 + 2(1− β 4)|z2 + w2λ|2

+
√
1(w2

1λ
2, z2 + w2λ)

if λ∈C is near 0.
If w2 6= 0, then we can choosew2 = 1. We obtain that

f1(λ) = f1(0)+ τ1(λ+ λ̄)+ φ(|λ|),
whereφ(|λ|)/|λ| tends to 0 whenλ tends to 0 and

τ1= z2(1− β 4(1− z2
2))+

β2z2(−β 4(1− z2
2)

2 +1− 3z2
2)√

β 4(1− z2
2)

2 + 4z2
2

.

We remark thatτ1 6= 0 becauseβ ∈ ]0,1[. Sincef1(0) = e2c, there exists
λ ∈ R as near to zero as we want and such thatf1(λ) < e2c; that means that
gB2(0,1)(p, q, (0, z2 + λ)) < c for theseλ and thatl ∩ Bc 6= ∅.

If w2 = 0, thenw1 6= 0 and we can choosew1 = 1. We obtain thatf1(λ) =
f1(0) + τ2(λ

2 + λ̄2) + φ(|λ|2), whereφ(|λ|2)/|λ|2 tends to 0 whenλ tends to 0
and

τ2 = β2

2

[
β 4(1− z2

2)
2 + 2z2

2 −1

+ (z
2
2 −1)[−β8(1− z2

2)
3+ β 4(1− z2

2)(1− 4z2
2)+ 2z2

2]√
1(0, z2)

]
.
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In fact, τ2 = (β2/4
√
1(0, z2)(τ

2
3 − 1), whereτ3 = β 4(1− z2

2)
2 + 2z2

2 − 1+√
1(0, z2). Clearly,τ3 + 1 > 0; moreover,τ3 < 1. Indeed, this is equivalent to
β 4(1− z2

2)
2 +
√
1(0, z2) < 2(1− z2

2); after a simplification of both sides with
(1− z2

2), this becomesβ 4(1− z2
2)+ β2(β 4(1− z2

2)
2+ 4z2

2)
1/2 < 2. Note that, by

the choice ofz2 in the beginning of the proof, the left-hand side of the last inequal-
ity is just 2β2ec < 2. Henceτ2 < 0, and one choosesλ∈R small to getf1(λ) <

e2c; that means thatgB2(0,1)(p, q, (λ, z2)) < c for theseλ and thatl ∩ Bc 6= ∅.
Finally, for any complex line throughz, l ∩ Bc contains others points thanz,

andBc is not lineally convex.

To conclude, we make a remark on the regularity of pluricomplex Green functions
with one or several poles. Coman proved [Co] thatgB2(0,1)(p, q, ·) (p andq al-
ways are equal to(β,0) and(−β,0), resp., whereβ ∈ ]0,1[) is: (a) of classC1,1

onB2(0,1) \ {p, q}; (b) real analytic onB2(0,1) \ ((C̄p − Cp) ∪ (C̄q − Cq)); but
(c) is not of classC2 onB2(0,1) \ {p, q}.

If D = {(z1, z2)∈C2 : |z1|4+|z2|2 < 1},we have proved thatgD(p, q, ·) is real
analytic onD \ {p, q}. Note thatD is convex, but not strictly convex likeB2(0,1).
Consequently, there is no relationship between the regularity of the boundary of
the domain and the regularity of the pluricomplex Green function with two poles
in this domain.
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