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Introduction

Let X be a compact complex algebraic variety of pure dimensionn whose Betti
numbers vanish in all odd degrees. Then the cohomology ringH ∗(X) with com-
plex coefficients is a commutative, positively graded algebra, of finite dimension
as a complex vector space. It is well known that the dualizing module (in the sense
of commutative algebra, see e.g. [8]) ofH ∗(X) is the homologyH∗(X); more-
over,H ∗(X) is Gorenstein if and only ifX satisfies Poincaré duality. This holds
if X is smooth or, more generally, rationally smooth; that is, the local cohomol-
ogy at any point is the same as the local cohomology of complex affinen-space
(see [17] for other characterizations).

We shall generalize these observations to the richer setting of equivariant ho-
mology and cohomology, with applications to Coxeter groups. Assume that a
d-dimensional torusT acts onX with isolated fixed points (examples include ra-
tionally smooth projective varieties where a complex reductive group acts with
finitely many orbits, Schubert varieties, and varieties of complete flags fixed by a
given linear transformation). Then the equivariant cohomology ringH ∗T (X) with
complex coefficients is positively graded, commutative and reduced; it is a free
module of finite rank over the equivariant cohomology ring of the point. The lat-
ter is a polynomial ring ind variables. Thus, the ringH ∗T (X) is Cohen–Macaulay.
We show that several topological invariants of theT -varietyX can be read off that
ring.

Specifically, restriction to theT -fixed point setH ∗T (X)→ H ∗T (X
T ) is the nor-

malization ofH ∗T (X). It follows that the complex affine algebraic varietyV(X)
associated toH ∗T (X) is a finite union of copies of the Lie algebra ofT, glued
along rational hyperplanes (Proposition 2). The dualizing module ofH ∗T (X) turns
out to be the equivariant Borel–Moore homologyHT

∗ (X) (Proposition 1); it ad-
mits a more concrete description in terms of regular differential forms onV(X)

(Proposition 3). On the other hand, the conductor ofH ∗T (X) in its normalization
H ∗T (X

T ) is closely related to equivariant cohomology with support inXT, and also
to equivariant multiplicities; the latter are uniquely determined by the abstract ring
H ∗T (X), up to a common scalar multiple (Section 3).

These considerations yield the following linear inequalities for the Betti num-
bers of a varietyX as above, if all equivariant multiplicities are nonzero:
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bq(X)+ bq−1(X)+ · · · + b0(X)

≤ b2n−q(X)+ b2n−q+1(X)+ · · · + b2n(X) (1)

for q = 0,1, . . . , n − 1 (Theorem 2; recall that the Betti numbers are assumed to
vanish in all odd degrees). It follows easily that

2b2(X)+ 4b4(X)+ · · · + 2nb2n(X) ≥ nχ(X), (2)

whereχ(X) denotes the Euler characteristic. Moreover, equality in (2) is equiva-
lent tobq(X) = b2n−q(X) for q = 0,1, . . . , n−1 and, in turn, to Poincaré duality
for X (Theorem 1).

The assumptions of Theorem 2 are satisfied ifX is the disjoint union of locally
closedT -stable subvarieties (“cells”) that are isomorphic to complex affine spaces.
Moreover, the ratio

a(X) = b2(X)+ 2b4(X)+ · · · + nb2n(X)

b0(X)+ b2(X)+ · · · + b2n(X)

is just the average dimension of cells. In this setting, (2) translates into the
inequality

a(X) ≥ 1

2
dim(X),

with equality if and only ifX satisfies Poincaré duality.
The latter result was discovered by Carrell and Peterson (see [4]) for Schubert

varieties in the flag variety of a Kac–Moody group (these have a natural decom-
position into Schubert cells). Finding an explanation and generalization of this
result in terms of equivariant cohomology was the main motivation for the present
article.

When applied to Schubert varieties, the sharper inequalities (1) yield the fol-
lowing purely combinatorial statement on the repartition of lengths of elements in
a Bruhat interval [1, w] of a crystallographic Coxeter groupW :

#{x ∈ [1, w], `(x) ≤ q} ≤ #{x ∈ [1, w], `(x) ≥ `(w)− q}
for 1≤ q < 1

2`(w) (Corollary 2; it extends to arbitrary Coxeter groups).

Acknowledgments. Many thanks to Jim Carrell, Stéphane Guillermou, Shra-
wan Kumar, and especially Alexis Marin for useful discussions and e-mail ex-
changes.

1. Equivariant Homology and Cohomology

Throughout this article, we consider a complex algebraic varietyX of pure (com-
plex) dimensionn, endowed with an algebraic action of a torusT ∼= (C∗)d of
dimensiond. We denote byt ∼= Cd the Lie algebra ofT .

In this situation, we review the definitions and some properties of equivariant
cohomology (see e.g. [12]) and of equivariant Borel–Moore homology (see [9,
Chap. 19] for Borel–Moore homology and [6; 11] for its equivariant version); both
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will be considered with complex coefficients. For any positive integerm, consider
the space

ET,m = (Cm+1− 0)d,

whereT acts by(t1, . . . , td) · (v1, . . . , vd) = (t1v1, . . . , tdvd). This action is free,
and the quotient

pm : ET,m = (Cm+1− 0)d → (Pm)d = BT,m
is a principalT -bundle. The mapspm : ET,m → BT,m define a direct system for
the obvious inclusionsBT,m ⊂ BT,m+1; the direct limitp : ET → BT is a univer-
sal principalT -bundle, with theET,m as algebraic approximations.

For aT -varietyX, letX ×T ET be the quotient ofX × ET by the diagonalT -
action; then we have a map

pX : X ×T ET → ET/T = BT ,
a fibration with fiberX. The cohomology ring ofX×T ET is the equivariant coho-
mology ring ofX, denoted byH ∗T (X). It is a graded algebra over the equivariant
cohomology ring of the point,H ∗T (pt) = H ∗(BT ).

Each characterχ of T defines a line bundle onBT , whence an elementc(χ) of
H 2(BT ). The mapχ 7→ c(χ) extends to an isomorphism of the symmetric alge-
bra overC of the character group ofT, ontoH ∗(BT ); this isomorphism doubles
degrees. Assigning to each character its differential at the identity element, we
identify the character group with a discrete subgroup oft∗. This identifiesH ∗(BT )
to the ring of polynomial functionsC[t], where the nonzero linear forms have de-
gree 2. Restriction to a fiber ofpX defines a mapH ∗T (X)→ H ∗(X) that vanishes
on t∗H ∗T (X).

One may check that, for a fixed degreeq, we haveH q

T (X) = Hq(X ×T ET,m)
whenm ≥ q/2. Theqth equivariant Borel–Moore homology group is defined sim-
ilarly, as the Borel–Moore homology groupHq+2md(X×T ET,m) form ≥ n−q/2.
This group is independent ofm; it will be denoted byHT

q (X). (Specifically, for
m′ ≥ m ≥ n−q/2, the Gysin mapHq+2m′d(X×T ET,m′)→ Hq+2md(X×T ET,m)
is an isomorphism.) The space

HT
∗ (X) =

⊕
q∈Z

HT
q (X)

is a gradedH ∗T (X)-module via the cap product

H
p

T (X)×HT
q (X)→ HT

q−p(X), (α, β) 7→ α ∩ β.
In particular,HT

∗ (X) is a gradedC[t]-module, wheret∗ acts with degree−2.
Any closedT -stable subvarietyY ofX defines a class [Y ]T ∈HT

2 dim(Y )(X). This
yields the equivariant Poincaré duality map

H
q

T (X)→ HT
2n−q(X), α 7→ α ∩ [X]T .

This map is an isomorphism ifX is rationally smooth. In particular,HT
∗ (pt) is

isomorphic toC[t] (with the opposite grading.) The Gysin maps
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Hq+2md(X ×T ET,m)→ Hq(X)

fit into a mapHT
∗ (X)→ H∗(X) that vanishes ont∗HT

∗ (X) and sends each [Y ]T
to [Y ].

The following version of the localization theorem [10; 12] will be our main tool.

Lemma 1. LetT ′ be a subtorus ofT, and leti : XT
′ → X be the inclusion of the

fixed point set. Then bothC[t]-linear maps

i∗ : H ∗T (X)→ H ∗T (X
T ′) and i∗ : HT

∗ (X
T ′)→ HT

∗ (X)

become isomorphisms after inverting finitely many characters ofT that restrict
nontrivially toT ′.

In particular, letχ be an indivisible character ofT . Then ker(χ) is a subtorus of
codimension 1; the mapsH ∗T (X)→ H ∗T (X

ker(χ)) andHT
∗ (X

ker(χ))→ HT
∗ (X) are

isomorphisms at the generic point of the hyperplane(χ = 0) of t . The union of
the subsetsXker(χ) is the union of allT -orbits of dimension≤ 1.

The indivisible characterχ will be calledsingularif Xker(χ) 6= XT . Note that the
kernels and cokernels of the mapsH ∗T (X) → H ∗T (X

T ) andHT
∗ (X

T ) → HT
∗ (X)

have support in the union of singular hyperplanes and of a subset of codimension
at least 2 int .

For compactX, the mappX : X×T ET → BT is proper and yields aC[t]-linear
mappX∗ : HT

∗ (X)→ HT
∗ (pt) = C[t]. In turn, this defines aC[t]-linear map∫

X

: HT
∗ (X)→ HomC[t](H

∗
T (X),C[t]), α 7→ (β 7→ pX∗(β ∩ α)).

This map is the equivariant version of the usual map from homology to the dual of
cohomology. The latter is an isomorphism, but

∫
X

may be trivial. In fact, it fol-
lows from the localization theorem that

∫
X

is nonzero if and only ifX contains
T -fixed points.

We shall see that
∫
X

is an isomorphism ifX is equivariantly formalin the sense
of [10], that is, if the cohomology spectral sequence associated with the fibration
pX : X×T ET → BT collapses. Equivalently, theC[t]-moduleH ∗T (X) is free and
the mapH ∗T (X)/t

∗H ∗T (X) → H ∗(X) is an isomorphism. First of all, we record
the following well-known lemma.

Lemma 2. Consider the following conditions for aT -varietyX.
(i) X is equivariantly formal.

(ii) TheC[t]-moduleH ∗T (X) is free.
(iii) The Betti numbers ofX vanish in odd degrees.
Then(i) ⇔ (ii) ⇐ (iii) .

If XT is finite, then all these conditions are equivalent; moreover, they hold for
rationally smoothX.

If X is equivariantly formal as aT -variety, then it is as aT ′-variety for any
subtorusT ′ of T, and the natural mapC[t′ ] ⊗C[t] H

∗
T (X)→ H ∗T ′(X) is an iso-

morphism. Moreover,XT
′
is equivariantly formal as aT -variety and as a(T/T ′)-

variety, and theC[t]-algebraH ∗T (X
T ′) is isomorphic toC[t]⊗C[t/t′ ] H

∗
T/T ′(X

T ′).
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Proof. (i) ⇒ (ii) ⇐ (iii) are obvious and (ii)⇒ (i) follows, for example, from
the Eilenberg–Moore spectral sequence [12, p. 38].

Assuming thatXT is finite, we check that (ii)⇒ (iii) . Recall that the restriction
H ∗T (X)→ H ∗T (X

T ) = C[t]⊗CH ∗(XT ) becomes an isomorphism after inverting
finitely many nonzero elements oft∗. Since theC[t]-moduleH ∗T (X) is free and
XT is finite, it follows thatH q

T (X) = 0 for all oddq, whence (iii). IfXT is finite
andX is rationally smooth, thenX is equivariantly formal by [10, Thm. 14.1].

If the T -varietyX is equivariantly formal, then the Eilenberg–Moore spectral
sequence yields the isomorphismC[t′ ] ⊗C[t] H

∗
T (X)

∼= H ∗T ′(X); it follows that
theT ′-varietyX is equivariantly formal. Choose another subtorusT ′′ such that
the product mapT ′ × T ′′ → T is an isomorphism. Then

XT
′ ×T ET ∼= BT ′ × (XT ′ ×T ′′ ET ′′).

Thus, with obvious notation,H ∗T (X
T ′) ∼= C[t′ ] ⊗C H ∗T ′′(XT

′
). This implies the

latter isomorphism of the lemma. TheC[t]-moduleH ∗T (X
T ′) becomes free after

inverting finitely many elements oft∗ that restrict nontrivially tot′; that is, this
module is locally free in a neighborhood oft′ in t . It follows that theC[t′′ ]-module
H ∗T ′′(X

T ′) is locally free at 0 and thus free because it is positively graded.

Proposition 1. LetX be a compact, equivariantly formalT -variety. Then the
C[t]-moduleHT

∗ (X) is free, and the mapHT
∗ (X)/t

∗HT
∗ (X)→ H∗(X) is an iso-

morphism. Moreover,
∫
X

: HT
∗ (X)→ HomC[t](H

∗
T (X),C[t]) is an isomorphism

as well.

Proof. The main ingredient is the following lemma.

Lemma 3. Let E be a compact topological space and letp : E → B be a
fibration, whereB is an orientable topological manifold with orientation class
uB ∈H r(B). Let i : F → E be the inclusion of a fiber ofp, and leti ! : H∗(E)→
H∗(F )(−r) be the corresponding Gysin map. Then, for anyα ∈Hq(E) andβ ∈
Hq+r (E), we have

〈i∗α, i !β〉F = 〈uB, p∗(α ∩ β)〉B,
where〈·, ·〉F denotes the pairing betweenH ∗(F ) andH∗(F ).

If moreoveri∗ : H ∗(E) → H ∗(F ) is surjective, then so isi ! : H∗(E) →
H∗(F )(−r).
Proof. For the first assertion, note that

〈i∗α, i !β〉F = 〈α, i∗ i !β〉E = 〈α, p∗uB ∩ β〉E
= 〈p∗uB, α ∩ β〉E = 〈uB, p∗(α ∩ β)〉B.

Assume thati∗ is surjective but thati ! is not. Then there exists a homogeneous
nonzeroγ ∈ H ∗(F ) such that〈γ, i !β〉F = 0 for all β ∈ H∗(E). Let α ∈ H ∗(E)
be a homogeneous element such thati∗α = γ. Then we have

0= 〈i∗α, i !β〉F = 〈α, p∗uB ∩ β〉E = 〈α ∪ p∗uB, β〉E.
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Thus, α ∪ p∗uB = 0. Let M be a subspace ofH ∗(E) such that the restric-
tion i∗ : M → H ∗(F ) is an isomorphism. Letα1 = 1, α2, . . . , αN be a ho-
mogeneous basis ofH ∗(B). By the Leray–Hirsch theorem, we can writeα =∑N

j=1mj ∪ p∗αj with uniquely defined homogeneousm1, . . . , mN in M. Thus,∑N
j=1mj ∪ p∗(αj ∪ uB) = 0; that is,m1 = 0. Moreover, i∗p∗αj = 0 for

j ≥ 2, because the degrees of theseβj are at least 1. Then we havei∗α =∑N
j=2 i

∗mj ∪ i∗p∗αj = 0, a contradiction.

We return to the proof of Proposition 1. The first assertion is a consequence
of Lemma 3 together with the Leray–Hirsch theorem, applied to the fibration
X ×T ET,m→ BT,m for sufficiently largem.

For the remaining assertions, note that theC[t]-module HomC[t](H
∗
T (X),C[t])

is free becauseX is equivariantly formal. By the graded Nakayama lemma, it suf-
fices to check that the map

HT
∗ (X)⊗C[t] C[t]/t∗C[t] → HomC[t](H

∗
T (X),C[t])⊗C[t] C[t]/t∗C[t]

is an isomorphism. But

HomC[t](H
∗
T (X),C[t])⊗C[t] C[t]/t∗C[t] ∼= HomC(H

∗
T (X)/t

∗H ∗T (X),C)

is isomorphic to HomC(H ∗(X),C), becauseX is equivariantly formal; and the
map

HT
∗ (X)⊗C[t] C[t]/t∗C[t] = HT

∗ (X)/t
∗HT
∗ (X)→ H∗(X)

is also an isomorphism. Thus, it suffices to check that the diagram

HT
∗ (X) −−→ HomC[t](H

∗
T (X),C[t])y y

H∗(X) −−→ HomC(H
∗(X),C)

commutes. In a fixed degreeq and for largem, this amounts to the commutativity
of the diagram

Hq+2md(X ×T ET,m) −−→ HomC(H
q(X ×T ET,m),C)y y

Hq(X) −−→ HomC(H
q(X),C),

where the top horizontal map sendsβ to the map(α 7→ 〈pX∗(α ∩β), uBT,m〉). But
this follows again from Lemma 3.

2. Equivariant Homology and Regular Differential Forms

We assume from now on thatX is a compact, equivariantly formalT -variety with
isolated fixed points. By Lemma 1, it follows thatHq(X) = 0 = H q

T (X) for all
oddq. Thus, the algebrasH ∗(X) andH ∗T (X) are commutative. We shall obtain
geometric interpretations ofH ∗T (X) andHT

∗ (X).
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Let r be the number ofT -fixed points inX; then the algebraH ∗T (X
T ) identifies

to C[t] r = C[t] × · · · × C[t] (r factors). By Lemmas 2 and 3, theC[t]-module
H ∗T (X) is free of rankr and the inclusioni : XT → X defines an injectiveC[t]-
algebra homomorphism

i∗ : H ∗T (X)→ C[t] r , α 7→ (αx)x∈XT

that becomes an isomorphism after inverting all singular characters. As a conse-
quence, the algebraH ∗T (X) is finitely generated, Cohen–Macaulay of dimension
d, and reduced. LetV(X) be the corresponding complex affine algebraic variety
(defined over the rationals).

Proposition 2. The mapi∗ : H ∗T (X) → C[t] r is the normalization. In other
words, the normalization ofV(X) is a union of disjoint copiestx of t, indexed by
theT -fixed points.

Moreover, the setV(X) is obtained as follows: for any singular characterχ
and for anyT -fixed pointsx andy in the same connected component ofXker(χ),

we identify the hyperplanes(χ = 0) in tx and ty.

Proof. The algebraC[t] r is integrally closed in its total ring of fractions; it is
a finite module overC[t] and hence overH ∗T (X). Moreover,H ∗T (X) andC[t] r

have the same total ring of fractions, by the localization theorem. Thus,i∗ is the
normalization.

For the second assertion, consider first the case whereX is connected andT ∼=
C∗. Then theC[t]-algebra structure ofH ∗T (X) yields a finite flat mapV(X) →
A1. The fiber at 0 is the spectrum ofH ∗(X), whereas the other fibers consist of
r distinct points. SinceX is connected, the set-theoretical fiber at 0 is a unique
point. Thus,V(X) is a union ofr affine lines with the origins identified.

The general case follows by induction ond, using Lemmas 1 and 2.

Note that this description ofV(X) as a set does not determineH ∗T (X) uniquely.
For example, ifX is connected andT ∼= C∗, then the setV(X) depends only on
the number of fixed points.

We now turn to a description ofHT
∗ (X) in terms of regular differential forms.

These were defined in [18] for curves and in [16] for arbitrary schemes. This defi-
nition simplifies as follows in the present setting.

Define the spaceωt of regular differential forms ont as the set of all polyno-
mial differential forms of degreed on that affine space. Thenωt is a free module
of rank 1 overC[t]; tensoring with its quotient fieldC(t), we obtain the space of
rational differential forms. Now aregular differential formonV(X) is anr-tuple
(ωx)x∈XT of rational differential forms ont such that the form

∑
x∈XT αxωx is

regular for allα ∈H ∗T (X).
By the localization theorem, the latter condition is equivalent to the following:

For any characterχ of T and for any connected componentY ofXker(χ), the form∑
x∈YT αxωx has no pole along the hyperplane(χ = 0). In particular, the poles

of theωx are contained in the finite union of the singular hyperplanes.
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The set of all regular differential forms onV(X) is stable under multiplica-
tion by any element ofi∗H ∗T (X): it is a gradedH ∗T (X)-module that we denote by
ωV(X).

Proposition 3. With notation as before,ωV(X) is the dualizing module of the
graded Cohen–Macaulay ringH ∗T (X). Moreover, the gradedH ∗T (X)-module
HT
∗ (X) is isomorphic toωV(X)(2d) with the opposite grading.
Under this isomorphism, the image of the class[x]T of anyT -fixed point has

value a generator ofωt on tx and0 on the otherty. If X is irreducible, then the
image of the fundamental class[X]T generates the space of homogeneous ele-
ments of minimal degree inωV(X).

Proof. We have

HT
∗ (X) ∼= HomC[t](H

∗
T (X),C[t]) ∼= HomC[t](H

∗
T (X), ωt)(2d )

becauseωt
∼= C[t](−2d ). Moreover, HomC[t](H

∗
T (X), ωt) is the dualizing mod-

ule of H ∗T (X) (see e.g. [8, Thm.21.15]. And HomC[t](H
∗
T (X), ωt) is mapped

injectively to

HomC(t)(H
∗
T (X)⊗C[t] C(t), ωt ⊗C[t] C(t)) ∼= ωrt ⊗C[t] C(t).

The image, by definition, isωV(X).
The assertion on the images of classes ofT -fixed points is obvious. For the latter

assertion, observe that [X]T is nonzero, since the same holds for [X]. Thus, [X]T
generates the space of homogeneous elements of maximal degree inHT

∗ (X) ∼=
C[t] ⊗C H∗(X).
LetY be another compact, equivariantly formalT -space with isolated fixed points,
and letf : X→ Y be an equivariant morphism. Thenf defines a ring homomor-
phism

f ∗ : H ∗T (Y )→ H ∗T (X)

together with aH ∗T (X)-linear map

f∗ : HT
∗ (X)→ HT

∗ (Y ).

This yields a finite morphismV(X)→ V(Y ), whence a trace map

Tr: ωV(X)→ ωV(Y ).

By [8, Thm. 21.15], we can viewωV(X) as HomH ∗
T
(Y )(H

∗
T (X), ωV(Y )); then the

trace map becomes evaluation at 1.

Proposition 4. With notation as before,Tr identifies withf∗.Moreover, we have

Tr((ωx)x∈XT ) =
( ∑
x∈XT,f(x)=y

ωx

)
y∈YT

.

Proof. By Proposition 3, both assertions hold for the inclusioni : XT → X. Using
functoriality of the trace map, we reduce to the case whereX andY are finite sets;
then the statements are obvious.
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This description ofHT
∗ (X) becomes much more precise ifX contains only finitely

manyT -orbits of dimension 1; equivalently, the fixed point set of any subtorus of
codimension 1 contains only finitely manyT -orbits. By [10, Thm.7.1], theimage
of i∗ : H ∗T (X)→ C[t] r consists then of allr-tuples(fx)x∈XT of polynomial func-
tions ont such that:fx − fy is divisible byχ wheneverx, y are fixed points in
the closure of a 1-dimensional orbit whereT acts through the characterχ. Here
we obtain the following dual statement.

Corollary 1. LetX be a compact, equivariantly formalT -variety containing
only finitely many orbits of dimension≤ 1. ThenHT

∗ (X) consists of all tuples
(ωx)x∈XT of rational differential forms ont satisfying the following conditions.
(i) The poles of eachωx are contained in the union of singular hyperplanes, and

their order is at most1.
(ii) For any singular characterχ and for any connected componentY ofXker(χ),

the sum of residues of theωx (x ∈ YT ) along the hyperplane(χ = 0) is zero.

Proof. By Lemmas 1 and 2, we may assume thatd = 1 and thatX is connected
of dimension 1. Then the normalization ofX is a disjoint union of copies of the
complex projective lineP1. Since the cohomology ofX vanishes in degree 1, the
Mayer–Vietoris exact sequence implies that each irreducible componentC of X
contains 2 fixed points; moreover, the union of all other components is either
disconnected or meetsC in a unique fixed point. In other words,X is a tree
of curves homeomorphic toP1. Now the statement follows easily from an ex-
plicit description ofH C∗

∗ (P1) together with induction on the number of irreducible
components.

This result will be applied to Schubert varieties in Section 4.

3. Equivariant Multiplicities and the Conductor

We still assume thatX is a compact, equivariantly formalT -variety, with a finite
T -fixed point set that we denoteF. By the localization theorem, we can assign to
eachx ∈F a rational functioneT (x,X) on t (theT -equivariant multiplicity ofX
atx) such that

[X]T =
∑
x∈F

eT (x,X)[x]T

inHT
∗ (X)⊗C[t]C(t). TheneT (x,X) is either zero or a homogeneous rational func-

tion of degree−2n whose denominator is a product of singular characters. (This
definition makes sense, more generally, for an isolated fixed point in aT -variety;
see [3; 7].)

For irreducibleX, note that the equivariant multiplicities depend only on the
algebraH ∗T (X) up to multiplication by a common nonzero complex number (this
follows from Proposition 3).

The equivariant multiplicity is related with theequivariant Euler classof [2],
as follows. Letx ∈ F and letH ∗T,x(X) denote equivariant cohomology ofX with
support in{x}. By the localization theorem again, the restriction map
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H ∗T,x(X)→ H ∗T (x) ∼= C[t], α 7→ αx

is an isomorphism after inverting finitely many nontrivial characters ofT . Thus,
we may choose a non-C[t]-torsionα ∈H ∗T,x(X). Then we haveαx 6= 0 and∫

X

α ∩ [X]T = eT (x,X)αx.

Therefore, the equivariant Euler class EuT (x,X) is the inverse ofeT (x,X) if the
latter is nonzero. This holds, for example, ifX is rationally smooth atx; then
EuT (x,X) is a scalar multiple of a product of singular characters (see [2, Sec. 2]).

Note that equivariant multiplicity may well be zero in our setting. Consider,
for example, the action ofT = C∗ onP 4 defined by its linear action onA5 with
weights 0, 1,−1, 1, −1, and letz0, . . . , z4 be the corresponding homogeneous
coordinates; then theT -fixed points are the coordinate pointsx0, . . . , x4. The sub-
varietyX ⊂ P 4 defined byz1z2− z3z4 = 0 isT -stable and equivariantly formal;
moreover,XT = {x0, . . . , x4} andeT (x0, X) = 0.

Let nowc be theconductorof H ∗T (X) intoH ∗T (F ); that is,

c = {α ∈H ∗T (X) | i∗α ∪ β ∈ i∗H ∗T (X) ∀β ∈H ∗T (F )}.
In other words,i∗c is the greatest ideal ofH ∗T (F ) contained ini∗H ∗T (X). Thus, we
have

i∗c =
∏
x∈F

cx

where thecx are ideals ofC[t]. Note that the map

HomH ∗
T
(X)(H

∗
T (F ),H

∗
T (X))→ c, u 7→ u(1)

is an isomorphism.
We construct elements ofc as follows. Denote byH ∗T,F (X) the equivariant co-

homology with support inF and byr : H ∗T,F (X)→ H ∗T (X) the natural map. Set

d = r(H ∗T,F (X)) =
∑
x∈F

r(H ∗T,x(X)),

a C[t]-submodule ofH ∗T (X). Note thati∗d = ∏
x∈F dx, wheredx denotes the

image of the natural mapH ∗T,x(X) → H ∗T (x) ∼= C[t]. Moreover, eachdx is an
ideal ofC[t]. As a consequence,d is contained inc; in other words, eachdx is
contained incx.

In fact,cx anddx are closely related to each other and to the equivariant multi-
plicity at x, as shown by the following proposition.

Proposition 5. (i) Each idealcx is generated by a monomial in the singular
characters and satisfieseT (x,X)cx ⊆ C[t].

(ii) If X is rationally smooth atx, then dx equalscx and is generated by
EuT (x,X).

(iii) If Xker(χ) is rationally smooth atx for all singular charactersχ of T, then
the rational functioneT (x,X) is nonzero and its denominator generates the ideal
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cx. Moreover, the support of theC[t]-modulecx/dx has codimension at least2
in t .

Proof. (i) Let (α1, . . . , αr) be a basis of the freeC[t]-moduleH ∗T (X). WriteF =
{x1, . . . , xr} and

i∗αk = (ak1, . . . , akr )∈C[t] r

for 1≤ k ≤ r, and letf = (f1, . . . , fr) ∈ C[t] r . Thenf ∈ i∗c if and only if, for
1≤ j ≤ r, there exists aβj ∈H ∗T (X) such that(βj )xj = fj and(βj )xk = 0 for all
k 6= j. Writing βj =

∑r
k=1fjkαk with fjk ∈ C[t], the latter condition translates

into the following system of linear equalities:
r∑
k=1

aklfjk =
{
fj if l = j,
0 otherwise.

Solving this system yields1fjk = (−1)j+k1jkfj for 1 ≤ j, k ≤ r, where1 de-
notes the determinant of the matrix(akl) and1jk its principal(j, k)-minor. There-
fore,fj ∈ cj if and only iffj is divisible by all1/(1,1jk) for k = 1, . . . , r,where
(1,1jk) denotes the greatest common divisor of these polynomial functions. This
shows thatcj is generated by the least common multiple of the1/(1,1jk) (1≤
k ≤ r). On the other hand,cj contains a monomial in the singular characters, by
the localization theorem. This proves the first assertion.

Let f ∈ cx. Then there exists anα ∈H ∗T (X) such thatαx = f andαy = 0 for
all y ∈F with y 6= x. Now eT (x,X)f =

∫
X
α ∩ [X]T is inC[t].

(ii) By [2, 2.3], theC[t]-moduleH ∗T,x(X) is freely generated by a homoge-
neous elementα of degree 2n. Moreover, the image ofα inH ∗T (x) = C[t] equals
EuT (x,X), the inverse ofeT (x,X). Thus EuT (x,X) generatesdx, andcx is con-
tained in EuT (x,X)C[t] = dx, whencedx = cx.

(iii) By the localization theorem,eT (x,X) is the product ofeT (x,Xker(χ)) (a
constant multiple of a power of the singular characterχ) with a rational function
defined along the hyperplane(χ = 0). It follows that the denominator ofeT (x,X)
is the product of the denominators of theeT (x,Xker(χ)), whereχ runs over the
singular characters up to multiple. Now the assertion follows from (ii) together
with the localization theorem.

Next we obtain sufficient conditions for equalitycx = dx to hold (we do not know
any example wherecx 6= dx).

Recall thatx is calledattractiveif all weights ofT in the Zariski tangent space
of X at x are contained in an open half-space. Equivalently, there exist an open
affineT -stable neighborhoodXx and a one-parameter subgroupλ of T such that
lim t→0 λ(t)y = x for all y ∈ Xx. Then such a neighborhhodXx is unique and,
settingẊx = Xx − {x}, the quotientẊx/λ(C∗) is a projectiveT -variety that we
denote byP(Xx) (see e.g. [3]). Finally, the rational functioneT (x,X) is defined
atλ (identified with its differential at 1), and its value is a positive rational number;
in particular,eT (x,X) is nonzero.

Proposition 6. Assume thatx is attractive,Xker(χ) is rationally smooth atx for
all singular charactersχ, andP(Xx) is equivariantly formal. Thencx = dx.
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Proof. Let f ∈ cx be homogeneous of degreeq. Then there exists a uniqueα ∈
H
q

T (X) such thatαx = f andαy = 0 for all y ∈ F with y 6= x. We check thatα
is in the image of the natural mapHq

T,x(X)→ H
q

T (X) or, equivalently, thatf is
in the image of the composition

H
q

T,x(X)→ H
q

T (X)→ H
q

T (x).

By excision, the latter identifies with the image of the composition

H
q

T,x(Xx)→ H
q

T (Xx)→ H
q

T (x).

Moreover, the mapH ∗T (Xx)→ H ∗T (x) is an isomorphism, becausex is attractive.
Since the sequence

H
q

T,x(Xx)→ H
q

T (Xx)→ H
q

T (Ẋx)

is exact, we have to check thatα maps to zero inH ∗T (Ẋx).
Note that theT -fixed points inP(Xx) are theP(Xker(χ)

x ), whereχ runs over all
singular characters. SinceP(Xx) is equivariantly formal, the restriction map

H ∗T (Ẋx)→
∏
χ

H ∗T
(
(Ẋx)

ker(χ)
)

is injective. Now we conclude by Proposition 5(ii).

4. Poincaré Duality and Betti Numbers

Combining the results of the previous sections, we obtain the following criterion
for Poincaré duality.

Theorem 1. For a compact, equivariantly formalT -varietyX of dimensionn
with isolated fixed points, the following conditions are equivalent.

(i) X satisfies Poincaré duality.
(ii) The algebraH ∗T (X) is Gorenstein.

(iii) The Betti numbers ofX satisfybq(X) = b2n−q(X) for 0 ≤ q ≤ n, and all
equivariant multiplicities are nonzero.

If one of these conditions holds, then all equivariant multiplicities are in fact
inverses of polynomial functions.

Proof. (i) ⇔ (ii) By Proposition 3, the algebraH ∗T (X) is Gorenstein if and only
if the H ∗T (X)-moduleHT

∗ (X) is freely generated by [X]T . But this amounts to
Poincaré duality forX, by Proposition 1 and the graded Nakayama lemma.

(ii) ⇒ (iii) The algebraH ∗(X) is Gorenstein as the quotient of the Gorenstein
algebraH ∗T (X) by the idealt∗H ∗T (X) generated by a regular sequence. It follows
thatbq(X) = b2n−q(X) for all q ∈Z (see e.g. [8, p. 551]). Morever, the proof of
(i) ⇔ (ii) shows that the dualizing moduleωV(X) is freely generated by [X]T , a
homogeneous element of degree 2(d − n). Thus, the conductorc satisfies

c ∼= HomH ∗
T
(X)(H

∗
T (F ),H

∗
T (X))

∼= HomH ∗
T
(X)(H

∗
T (F ), ωV(X))⊗H ∗T (X) ω∗V(X)

∼= ωV(F ) ⊗H ∗
T
(X) ω

∗
V(X),
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whereω∗V(X) denotes the inverse of the canonical module; the third isomorphism
follows from [8, Thm.21.15]. But thedualizing moduleωV(F ) ofH ∗T (X) ∼= C[t] r

is freely generated in degree 2d. Therefore, theC[t] r -modulei∗c is freely gener-
ated in degree 2n by (say)(fx)x∈F . For a fixedx ∈ F, there existsα ∈ H 2n

T (X)

such thatαx = fx andαy = 0 for all y ∈F with y 6= x. Thus,

eT (x,X)αx =
∫
X

α(x) ∩ [X]T

is in C[t]. But αx andeT (x,X) are homogeneous of opposite degrees, so that
eT (x,X) is the inverse of a polynomial.

(iii) ⇒ (ii) We claim that the equivariant Poincaré duality map⋂
[X]T : H q

T (X)→ HT
2n−q(X)

is injective for allq ∈Z. Let α ∈H ∗T (X) be such thatα ∩ [X]T = 0. Then∫
X

(α ∪ β) ∩ [X]T = 0

for all β ∈H ∗T (X). Thus, we have∑
x∈F

eT (x,X)αxβx = 0

in C(t). By the localization theorem, this equality holds for all sequences(βx)x∈F
in C(t). Since noeT (x,X) vanishes, we must haveαx = 0 for all x ∈F andα =
0. This proves our claim.

On the other hand, the assumption on Betti numbers combined with the iso-
morphisms

H ∗T (X) ∼= C[t] ⊗C H ∗(X) and HT
∗ (X) ∼= C[t] ⊗C HT

∗ (X)

implies that the dimension ofH q

T (X) equals that ofHT
2n−q(X) for all q ∈Z. Thus,

the equivariant Poincaré duality map is an isomorphism, and the same holds for
the usual one.

We now come to our main result.

Theorem 2. LetX be a compact, equivariantly formalT -variety of dimension
n with isolated fixed points. If all equivariant multiplicities are nonzero(e.g., if
all fixed points are attractive), then the following inequalities hold for the Betti
numbers:

bq(X)+ bq−1(X)+ · · · + b0(X) ≤ b2n−q(X)+ b2n−q+1(X)+ · · · + b2n(X)

for 0 ≤ q ≤ n− 1;
2b2(X)+ 4b4(X)+ · · · + 2nb2n(X) ≥ nχ(X),

whereχ(X) = b0(X)+ b2(X)+ · · · + b2n(X) is the Euler characteristic. More-
over,X satisfies Poincaré duality if and only if

2b2(X)+ 4b4(X)+ · · · + 2nb2n(X) = nχ(X).



90 Michel Brion

Proof. SinceeT (x,X) is a nonzero rational function for allx ∈F,we may choose
a1-dimensional subtorusT ′ of T such thatXT

′ = F and eacheT ′(x,X) is nonzero
as well. As in the proof of Theorem 1, it follows that the map⋂

[X]T ′ : H
q

T ′(X)→ HT ′
2n−q(X)

is injective for allq ∈ Z. Moreover, sinceX is equivariantly formal as aT ′-
variety (by Lemma 2), we haveH ∗T ′(X) ∼= C[t ] ⊗C H ∗(X) andHT ′

∗ (X) ∼=
C[t ] ⊗C H∗(X) as graded vector spaces, wheret is an indeterminate of degree 2.
It follows that

dimH
q

T ′(X) =
∑
j≥0

bq−2j(X), dimHT ′
2n−q(X) =

∑
j≥0

b2n−q+2j(X).

Together with vanishing of Betti numbers in odd degrees, this implies the first
inequalities. Summing them up forq = 0, . . . , n−1, we obtain

nb0(X)+ · · · + 2bn−2(X)+ bn−1(X) ≤ bn+1(X)+ 2bn+2(X)+ · · · + nb2n(X),

which is equivalent to the second inequality.
If X satisfies Poincaré duality, thenbq(X) = b2n−q(X) for all q ∈Z, whence

2b2(X)+ 4b4(X)+ · · · + 2nb2n(X) = nχ(X).
Conversely, if the latter equality holds then we have

bq(X)+ bq−1(X)+ · · · + b0(X) = b2n−q(X)+ b2n−q+1(X)+ · · · + b2n(X)

for 0 ≤ q ≤ n − 1, by the foregoing arguments. This in turn impliesbq(X) =
b2n−q(X). Thus,X satisfies Poincaré duality by Theorem 1.

Next let (W, S) be a Coxeter system with length function` and Bruhat order≤
(cf. [13]). We assume thatW is crystallographic, that is, the product of any two
distinct elements ofS has order 2, 3, 4, 6, or∞. Equivalently,W is the Weyl group
of a complex Kac–Moody Lie algebrag with Cartan subalgebrat, the reflection
representation [19].

To eachw ∈W is associated the Schubert varietyX(w), a complex projective
variety of dimensioǹ (w). The maximal torusT of the Kac–Moody group asso-
ciated tog acts onX(w) with isolated fixed points, indexed by the Bruhat interval

[1, w] = {x ∈W, x ≤ w}.
Each such fixed point is attractive, andX(w) is the disjoint union of Schubert cells
X0(x) (x ∈ [1, w]), whereX0(x) is T -stable and isomorphic to a complex affine
space of dimensioǹ(x). Thus,X(w) satisfies our assumptions.

TheT -equivariant cohomology ring ofX(w) is determined in [1] and [14]; see
also [11, Sec. 4]. An alternative description follows readily from [10, Thm.7.1],
becauseX(w) contains only finitely manyT -orbit closures of dimension 1. Each
such curve is uniquely determined by itsT -fixed pointsx andsx, wherex ∈W,
s is a reflection ofW, andx, sx ≤ w; moreover,T acts on that curve through a
characterχ such that(χ = 0) is the hyperplane fixed bys [4, Thm. F]. Thus, the
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image of the restriction mapi∗ : H ∗T (X(w))→ H ∗T (X(w)
T ) is the set of all tuples

(fx)x∈[1,w] in C[t] such thatfx − fsα x is divisible byα whenever (a)sα ∈W is a
reflection with hyperplane(α = 0) and (b)x, sαx ≤ w.

Similarly, the equivariant homologyHT
∗ (X(w)) is determined by Corollary 1:

it consists of all tuples(ωx)x∈[1,w] of rational differential forms ont with at most
simple poles on reflection hyperplanes, satisfying

Resα=0(ωx + ωsα x) = 0

wheneversα is a reflection andx, sαx ≤ w. Theorem 2 yields the following.

Corollary 2. For any Bruhat interval[1, w] in a crystallographic Coxeter
groupW, we have

#{x ∈ [1, w], `(x) ≤ q} ≤ #{x ∈ [1, w], `(x) ≥ `(w)− q}
for 1≤ q < 1

2`(w).

Moreover, the second inequality in Theorem 2 yields the inequalitya(w) ≥ 1
2`(w)

for the average lengtha(w) of elements of [1, w],with equality if and only ifX(w)
satisfies Poincaré duality. This statement is due to Carrell and Peterson [4], to-
gether with equivalence of Poincaré duality and rational smoothness for Schubert
varieties. The latter result can be recovered from Theorem 1 combined with the
characterization of rational smoothness in terms of equivariant multiplicities (see
[2; 3; 15]).

Note finally that Corollary 2 actually holds for an arbitrary Coxeter groupW.

Although Schubert varieties no longer exist in this setting, all ingredients of the
proof of Theorem 2 still make sense (see [5; 14, (4.35)]; the nonvanishing of “equi-
variant multiplicities” follows from [5, Prop. 1]).
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