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Gehring’s Lemma for Nondoubling Measures

Joaquim Martín & Mario Milman

1. Introduction

LetQ0 ⊂ Rn be a fixed cube with sides parallel to the coordinate axes, letw be a
strictly positive integrable function onQ0, and let 1< p <∞.We shall say that
a positive functiong ∈Lpw(Q0) belongs to RHp(w) (i.e., thatg satisfies areverse
Hölder inequality) if there exists aC ≥ 1 such that, for every cubeQ ⊂ Q0 with
sides parallel to the coordinate axes, we have(

1

w(Q)

∫
Q

g(x)pw(x) dx

)1/p

≤ C

w(Q)

∫
Q

g(x)w(x) dx,

with w(Q) = ∫
Q
w(x) dx. If the underlying measureµ := w(x) dx satis-

fies the doubling condition—that is, if there exists a constantc > 0 such that
µ(B(x,2r)) ≤ cµ(B(x, r))—then by Gehring’s lemma [7] there exists anε > 0
such thatg ∈ RHp+ε(w). For excellent accounts of the role that reverse Hölder
inequalities play in PDEs, we refer to [9] and [11].

Recently there has been interest in extending the Calderón–Zygmund program
to the context of nondoubling measures (cf. [1; 13; 14; 16; 20; 21] and the refer-
ences therein). The purpose of this note is to prove Gehring’s lemma for nondou-
bling measures of the formµ := w(x) dx. Our main results are given in the next
two theorems; for proofs, see Section 4. (When preparing the final version of this
paper for publication we realized that Theorem 1 can be also obtained by a dif-
ferent method by means of combining Lemma 2.3 and Corollary 2.4 of [16] with
Exercise 6.6 of [18].)

Theorem 1. Let1< p <∞, and letw be a positive integrable function onQ0.

Suppose thatg ∈RHp(w). Then there exists anε > 0 such thatg ∈RHp+ε(w).

Theorem 2 (see [13] for the correspondingRn version of this result; see [9] and
the references therein for the doubling case).Let g, h be positive functions in
L
p
w(Q0) and suppose that there existsc > 1such that, for all cubesQ ⊂ Q0 with

sides parallel to the coordinate axes, we have
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1

w(Q)

∫
Q

g(x)pw(x) dx

)1/p

≤ c 1

w(Q)

∫
Q

g(x)w(x) dx

+ c
(

1

w(Q)

∫
Q

h(x)pw(x) dx

)1/p

. (1.1)

Then there existq > p andC = C(c, q) > 0 such that ifg, h∈Lqw(Q0) then, for
every cubeQ ⊂ Q0 with sides parallel to the coordinate axes, we have(

1

w(Q)

∫
Q

g(x)qw(x) dx

)1/q

≤ C
(

1

w(Q)

∫
Q

g(x)pw(x) dx

)1/p

+ C
(

1

w(Q)

∫
Q

h(x)qw(x) dx

)1/q

. (1.2)

Our methods are based on covering lemmas and interpolation theory. For dou-
bling measuresdµ := w(x) dx, the connection with interpolation is given by the
fact that the maximal operator of Hardy and Littlewood associated withdµ,

Mµf(x) = sup
Q0⊃Q3x

1

µ(Q)

∫
Q

|f(x)|w(x) dx,

satisfies

(Mµf )
∗
w(t) ≈

1

t

∫ t

0
f ∗w(s) ds = f ∗∗w (t) (1.3)

(see Section 2) while—independently of doubling conditions—we always have

f ∗∗w (t) =
K(t, f ;L1

w, L
∞)

t
(1.4)

(see [19, pp. 213–214]). In this case the inverse reiteration theorem of [5] (cf. our
Theorem 4) immediately proves Theorem 1. Ifw is not doubling then (1.3) may
not hold (see [1]); in fact, the maximal operator may not be bounded onL

p
w (see

[8]), although doubling conditions do not, of course, alter the interpolation theory
of Lp spaces. Therefore, dealing with nondoubling measures using theK-method
requires a different maximal operator. It turns out that a suitable maximal operator
can be obtained through the use of packings [1]. (The idea of maximal operators
associated with packings can be traced at least as far back as the classical paper of
John and Nirenberg [10].)

In order to explain in more detail what we do in this paper, let us start by re-
calling that apackingin Q0 is simply afinite or countably infinite collectionof
nonoverlapping cubes with sides parallel to the coordinate axes contained inQ0.

For a given packingπ = {Qi}|π|i=1 in Q0, we associate a linear operatorSπ defined
by:

Sπ(f )(x) =
|π|∑
i=1

(
1

w(Qi)

∫
Qi

f(y)w(y) dy

)
χQi

(x), f ∈L1
w(Q0)+ L∞(Q0).

(Here|π| = ∞ if the packing has infinitely many cubes.) We consider the maxi-
mal operator defined by
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(Ff)w(t) = sup
π

(Sπ(|f |))∗w(t),
whereg∗w denotes the nonincreasing rearrangement ofg with respect to the mea-
surew(y) dy, and the supremum is taken over all packings.

A characterization of theK-functional for the pair(L1
w(R

n), L∞(Rn)) in terms
of the maximal operator(Ff)w(t) was given in [1]. This characterization was ex-
ploited in [13] to prove the nonlocal version of Theorem 2. In order to prove local
self-improving results of Gehring type using theK-method, we show the follow-
ing complement to the global computations of [1].

Theorem 3. Let f ∈ L1
w(Q0) + L∞(Q0); then, for 0 < t < w(Q0) =∫

Q0
w(y) dy,

K(t, f ;L1
w(Q0), L

∞(Q0)) ≈ t(Ff)w(t),
with constants of equivalence that are independent off.

The proof of this characterization relies on a modification of the Calderón–
Zygmund decomposition for nondoubling measures that was recently obtained
in [14] and [16].

The paper is organized as follows. In Section 2 we provide a rather concise re-
view (but with detailed references) of the parts of the real method of interpolation
we shall use in this paper. In Section 3 we give a brief but self-contained account of
the Calderón–Zygmund decomposition for nondoubling measures obtained in [14]
and [16], conveniently modified for our purposes, and then use it to prove the equiv-
alence between maximal operators associated with packings andK-functionals.
Then, in Section 4, we provide the proofs of Theorem 1 and Theorem 2.

Finally, it is important to note here our belief that the methods we are develop-
ing are more interesting than the particular results obtained so far. For example,
the interpolation method can be used to study Gehring-type self-improving results
in a geometry-free context (see [12]). Moreover, our method can be used to study
self-improving inequalities where the qualitative property whose improvement is
sought is not necessarily integrability. We hope to return to this point elsewhere.

Acknowledgment. We thank J. Soria for providing us with a copy of [16] and
M. Korey and the referee for helpful suggestions to improve the presentation.

2. Background

The main tools from real interpolation that we use are theK-functional and the re-
iteration theorem. Our main references will be [4; 5; 19], to which the reader is
referred for further information.

We work with pairs EX = (X0, X1) of quasi-normed spaces that are continu-
ously embedded into a common Hausdorff topological vector space. For a given
pair EX, we can thus form the sum space6( EX) = X0 + X1 and define forx ∈
6( EX), t > 0, the “K-functional”

K(t, x; EX) = inf {‖x0‖X0 + t‖x1‖X1 : x = x0 + x1, xi ∈Xi, i = 0,1}.
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In the context of the pair(L1(Rn), L∞(Rn)), the splitting implicit in the com-
putation of the correspondingK-functionals is closely related to the Calderón–
Zygmund decomposition. In fact, following[17, p. 1(4); 17, Thm. 3.2], if we split
f using a Calderón–Zygmund decompositionf = bα+gα—wherebα is the “bad”
part,gα is the “good” part, and the usual parameterα of the Calderón–Zygmund
decomposition is chosen to be(Mf )∗(t), where(Mf )∗ is the nondecreasing re-
arrangement of the maximal operator of Hardy–Littlewood—then we have

K(t, f ;L1(Rn), L∞(Rn)) ≈ ‖b(Mf )∗(t)‖L1(Rn) + t‖g(Mf )∗(t)‖L∞(Rn)
≈ t(Mf )∗(t) (2.1)

(cf. [4, p. 123]). The following elementary formula also holds [19, pp. 213–214]:

K(t, f ;L1(Rn), L∞(Rn)) =
∫ t

0
f ∗(s) ds. (2.2)

Comparing (2.1) and (2.2), we see that

(Mf )∗(t) ≈ 1

t

∫ t

0
f ∗(s) ds. (2.3)

The equivalences (2.1) and (2.3) fail, in general, if we replace the Lebesgue mea-
suredx by a nondoubling measuredµ(x) (see [1]). For more examples of com-
putations ofK-functionals, see [4].

For a given pairEX, a (“real”) scale of interpolation spaces between them can
be constructed as follows. Given 0< θ < 1≤ q ≤ ∞, define

EXθ,q =
{
x ∈6( EX) :

{∫ ∞
0
(t−θK(t, x; EX))q dt

t

}1/q

<∞
}
.

It turns out that many of the familiar scales of spaces used in analysis can be iden-
tified with suitable real interpolation scales. The process of identification of con-
crete spaces as interpolation spaces for a given pair hinges upon the computation
of K-functionals, and it is usually greatly simplified by the following reiteration
(or iteration) property (cf. [4, Thm. 2.4; 5, Thm. 3.5.3]):

( EXθ0,q0,
EXθ1,q1)θ,q = EXτ,q, (2.4)

whereτ = (1− θ)θ0+ θθ1. A quantitative form of the reiteration formula (2.4) is
given by Holmstedt’s formula [4, Thm. 2.1; 5, Thm. 3.6.1]:

K(t, f ; EXθ0,q0,
EXθ1,q1) ≈

{∫ t1/(θ1−θ0)

0
(s−θ0K(s, f ; EX))q0

ds

s

}1/q0

+
{∫ ∞

t1/(θ1−θ0)

(s−θ1K(s, f ; EX))q1
ds

s

}1/q1

.
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The following endpoint version of Holmstedt’s formula (cf. [4, Cor. 2.3; 5, Cor.
3.6.2]) will be particularly useful here:

K(t, f ; EXθ0,q0,
EX1) ≈

{∫ t1/(1−θ0)

0
(s−θ0K(s, f ; EX))q0

ds

s

}1/q0

. (2.5)

Reverse Hölder inequalities were formulated as “inverse” reiteration theorems
in [15], where the following abstract form of Gehring’s lemma was obtained.

Theorem 4. Let (A0, A1) be an ordered pair of Banach spaces(i.e.A1 ⊂ A0),

and suppose thatf ∈A0 is such that there exist some constantc > 1, θ0 ∈ (0,1),
and1≤ p <∞ such that, for everyt ∈ (0,1),

K(t, f ;Aθ0,p;K,A1) ≤ ct K(t
1/(1−θ0), f ;A0, A1)

t1/(1−θ0)
. (2.6)

Then there exists aθ1 > θ0 such that, forq ≥ p and0< t < 1, we have

K(t, Aθ1,q;K,A1) ≈ t K(t
1/(1−θ1), f ;A0, A1)

t1/(1−θ1)
.

The connection with the classical Gehring’s lemma can be seen from the follow-
ing facts:

Lp = (L1, L∞)1/p ′,p, 1< p <∞; (2.7)

K(t1/p, f ;Lp,L∞)
t1/p

≈
(

1

t

∫ t

0
f ∗(s)p ds

)1/p

, 1≤ p <∞, (2.8)

(Mpf )
∗(t) ≈ K(t1/p, f ;Lp,L∞)

t1/p
. (2.9)

For (2.7) and (2.8), see [5, Thm. 5.2.1]; while (2.9) follows from (2.1), the fact that
Mp(f ) = (M(|f |p))1/p by definition, and (2.8).

For a more detailed discussion on the connection with Gehring’s lemma, see
Section 4 and [15].

3. TheK-Functional for the Pair (L1
w(Q0),L

∞(Q0))

We start with the Calderón–Zygmund decomposition for nondoubling measures
obtained in [14] and [16]. We briefly indicate a proof of a version that is convenient
for our development in this note.

LetQ0 be a fixed cube inRn with sides of lengthL that are parallel to the co-
ordinate axes. For eachx in the interior ofQ0 we define the basis

CQ0(x) = {Qx(r)},
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whereQx(r) is the unique cube with sider that minimizes the distance fromx of
the center ofQx(r) (0< r < L := side ofQ0), so thatQx(r) ⊂ Q0. We consider

MQ(g)(x) = sup
Q∈CQ0(x)

1

w(Q)

∫
Q

|f(y)|w(y) dy.

Lemma 1. Letg ∈L1
w(Q0) be a nonnegative function. Letλ be a positive num-

ber such thatλ > 1/w(Q0)
∫
Q0
g(y)w(y) dy and the level set�λ = {x ∈ Q0 :

MQ(g)(x) > λ} is not empty. Then there exists a quasi-disjoint family of cubes
{Qj } contained inQ0 such that, for eachj,

λ <
1

w(Qj)

∫
Qj

g(y)w(y) dy ≤ 2λ (3.1)

and, moreover,
g(x) ≤ λ for x ∈Q0

∖⋃
j

Qj a.e. (3.2)

In fact, we can write ⋃
j

Qj =
B(n)⋃
k=1

⋃
i∈Fk

Qi, (3.3)

where each family{Qi}i∈Fk , k = 1, . . . , B(n), is formed by pairwise disjoint
cubes.

Notes. Recall that a family of cubes{Qj } is quasi-disjointif there exists a uni-
versal constantC such that

∑
j χQj (x) ≤ C;B(n) is usually called the Besicovitch

constant.

Proof of Lemma 1.Since�λ is not empty, it follows that for anyx ∈�λ we can
find a cubeAx ∈CQ0(x) such that

λ <
1

w(Ax)

∫
Ax

g(y)w(y) dy.

Therefore, since the functionhx(r) = 1/µ(Qx(r))
∫
Qx(r)
|f(y)| dµ(y) is continu-

ous for eachx ∈ int(Q0), we can select a cubeQx ∈CQ0(x) satisfying

λ <
1

w(Qx)

∫
Qx

g(y)w(y) dy ≤ 2λ

with Qx ( Q0. The family {Qx} selected in this fashion covers�λ. From now
on we follow verbatim the argument in [14; 16]. Thus, for any cubeQx we de-
fine the rectangleRx in Rn as the unique rectangle inRn centered atx such that
Rx ∩Q0 = Qx. It follows that the ratio of any two side lengths ofRx is bounded
by 2, and thus by Besicovitch’s covering lemma we can select a countable collec-
tion {Rj } of rectangles covering�λ and such that every point of�λ belongs to at
mostB(n) rectanglesRj . Replacing eachRj by its corresponding cubeQj, we
obtain a family of cubes{Qj } with the properties that we need. Finally, (3.2) fol-
lows (as usual) by Lebesgue’s differentiation theorem.
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The connection between packings and interpolation theory is given by the follow-
ing local version of a result originally proved in [1] forRn.

Theorem 5. Letf ∈L1
w(Q0)+ L∞(Q0). Then, for0< t < w(Q0),

K(t, f ;L1
w(Q0), L

∞(Q0)) ≈ t(Ff)w(t),
with constants of equivalence independent off.

Proof. For a given packingπ, the operatorf → Sπ(|f |) is obviously a norm-1
sublinear operator acting on the pair(L1

w(Q0), L
∞(Q0)); therefore,

K(t, Sπ(|f |);L1
w(Q0), L

∞(Q0)) ≤ K(t, f ;L1
w(Q0), L

∞(Q0)).

Combining this inequality with

t(Sπ (|f |))∗w(t) ≤ K(t, Sπ(|f |);L1
w(Q0), L

∞(Q0))

and taking the supremum over all packings, we obtain

t(Ff)w(t) ≤ K(t, f ;L1
w(Q0), L

∞(Q0)).

To prove the converse we fix a constant 1< c < 2 and, for a given 0< t <

w(Q0), consider the set

�0(t) =
{
x ∈Q0 : sup

r>0

1

w(Qx(r))

∫
Qx(r)

|f(y)|w(y) dy > c(Ff)w(t)

}
.

If �0(t) is empty then by Lebesgue’s theorem we have thatf ∈L∞; in fact,

|f | ≤ c(Ff)w(t) a.e.

Consequently, using the decompositionf = 0+ f yields

K(t, f ;L1
w(Q0), L

∞(Q0)) ≤ t‖f ‖∞ ≤ ct(Ff)w(t),
as we wanted to show.

Suppose now that�0(t) is not empty. Note that, for 0< t < w(Q0),

c(Ff)w(t) > (Ff)w(t) = sup
π

(Sπ(|f |))∗w(t)

≥
{(

1

w(Q0)

∫
Q0

|f(y)|w(y) dy
)
χQ0(x)

}∗
w

(t)

=
(

1

w(Q0)

∫
Q0

|f(y)|w(y) dy
)
χ[0,w(Q0))(t)

= 1

w(Q0)

∫
Q0

|f(y)|w(y) dy.

We can therefore apply Lemma 1 (withλ = c(Ff)w(t)) to obtain a family of cubes
F = {Qj } such that

c(Ff)w(t) <
1

w(Qj)

∫
Qj

|f(y)|w(y) dy ≤ 2c(Ff)w(t) onQj (3.4)
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and
|f | ≤ c(Ff)w(t) onQ0

∖⋃
Qj (3.5)

with ⋃
j

Qj =
B(n)⋃
k=1

⋃
i∈Fk

Qi =
B(n)⋃
k=1

πk, (3.6)

where eachπk = {Qi : i ∈Fk}, k = 1, . . . , B(n), is a packing.
The nearly optimal decomposition we need will then be given by

f = fχ⋃Qj + fχQ0\⋃Qj .
In fact, ∥∥fχ⋃Qj∥∥L1 =

∥∥fχ⋃B(n)

k=1

⋃
i∈FkQi

∥∥
L1
w(Q0)

≤
B(n)∑
k=1

∑
i∈Fk

(
w(Qi)

w(Qi)

∫
Qi

|f |w dx
)

≤ 2c(Ff)w(t)
B(n)∑
k=1

(∑
i∈Fk

w(Qi)

)
(by (3.4)).

We shall show in a moment that∑
i∈Fk

w(Qi) ≤ t. (3.7)

Assuming for now the validity of (3.7), we obtain

∥∥fχ⋃Qj∥∥L1 ≤ 2c(Ff)w(t)
B(n)∑
k=1

(∑
i∈Fk

w(Qi)

)

≤ 2c(Ff)w(t)
B(n)∑
k=1

t

≤ 2cB(n)t(Ff)w(t).

Moreover, by (3.5) we have

t
∥∥fχQ0\⋃Qj∥∥L∞ ≤ ct(Ff)w(t).

Collecting estimates, we finally arrive at

K(t, f ;L1
w(Q0), L

∞(Q0)) ≤ 3cB(n)t(Ff)w(t).

In order to prove (3.7) we must show that, givenπ = {Qi} an arbitrary packing
from the familyF, we have ∑

Qi∈π
w(Qi) ≤ t.

Indeed, if
∑

Qi∈π w(Qi) > t then using (3.4) yields
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Sπ(|f |)(z) =
∑
Qi∈π

(
1

w(Qi)

∫
Qi

|f(y)|w(y) dy
)
χQi

(z)

> c(Ff)w(t)

( ∑
Qi∈π

χQi
(z)

)

> (Ff)w(t)

( ∑
Qi∈π

χQi
(z)

)
.

Therefore, for anyz ∈ ⋃Qi∈π Qi we haveSπ(|f |)(z) > (Ff)w(t), and since

Sπ(|f |)(z) = 0 on
(⋃

Qi∈π Qi

)c
we see that

Sπ(|f |)∗w(t) > (Ff)w(t) for t <
∑
Qi∈π

w(Qi),

contradicting the definition of(Ff)w(t).

4. Proof of Theorems 1 and 2

In preparation for the proof of Theorems 1 and 2, let us introduce (following [1])
the functionals

Sπ,p(f )(x) =
|π|∑
i=1

(
1

µ(Qi)

∫
Qi

|f(y)|pw(y) dy
)1/p

χQi
(x),

which are associated with “packings”π = {Qi}|π|i=1 ⊂ Q0. If p = 1 thenSπ,1
coincides withSπ, as defined in Section 2.

4.1. Proof of Theorem 1

Since we are dealing with families of disjoint cubes it follows readily thatg ∈
RHp(w) implies that, for any packingπ, we have

Sπ,p(g)(x) ≤ cSπ(g)(x).
Taking nondecreasing rearrangements in the previous inequality with respect to
the measuredµ = w(x) dx, we obtain

(Sπ,p(g))
∗
w(t) ≤ c(Sπ(g))∗w(t), t > 0 (π any packing).

Therefore, taking the supremum over all packings yields

sup
π

(Sπ,p(g))
∗
w(t) ≤ c sup

π

(Sπ(g))
∗
w(t). (4.1)

By Theorem 5, we know that

K(t, g;L1
w(Q0), L

∞(Q0)) ≈ t sup
π

(Sπ(g))
∗
w(t). (4.2)

On the other hand (cf. [1]), by well-known general considerations it follows from
(4.2) that
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K(t1/p, g;Lpw(Q0), L
∞(Q0)) ≈ (K(t, |g|p;L1

w(Q0), L
∞(Q0))

1/p

≈
(
t sup
π

(Sπ(g
p))∗w(t)

)1/p

= t1/p sup
π

(Sπ,p(g))
∗
w(t). (4.3)

Multiplying (4.1) by t1/p, we have

t1/p sup
π

(Sπ,p(g))
∗
w(t) ≤ ct1/p sup

π

(Sπ(g))
∗(t)

and thus arrive at theK-functional estimate

K(t1/p, g;Lpw(Q0), L
∞(Q0)) ≤ ct−1/p ′K(t, g;L1

w(Q0), L
∞(Q0))

or, equivalently,

K(t, g;Lpw(Q0), L
∞(Q0)) ≤ ct1−pK(tp, g;L1

w(Q0), L
∞(Q0)). (4.4)

Now we can apply Theorem 4 (cf. [15, Thm. 1]) to conclude that there exists a
q > p such that

K(t, g;Lqw(Q0), L
∞(Q0)) ≤ ct1−q/pK(t q, g;Lpw(Q0), L

∞(Q0)). (4.5)

Thus, in view of the well-known formula

K(t, h;Lrw(Q0), L
∞(Q0)) '

(∫ t r

0
h∗w(s)

r ds

)1/r

(cf. (2.8)), we have that (4.5) is equivalent to(
1

t

∫ t

0
g∗w(s)

q ds

)1/q

≤ C
(

1

t

∫ t

0
g∗w(s)

p ds

)1/p

(4.6)

for 0< t < w(Q0).

Observe that(
1

w(Q0)

∫
Q0

g(x)rw(x) dx

)1/r

=
(

1

w(Q0)

∫ w(Q0)

0
g∗w(s)

r ds

)1/r

;

therefore we see that (4.6) gives(
1

w(Q0)

∫
Q0

g(x)qw(x) dx

)1/q

≤ C
(

1

w(Q0)

∫
Q0

g(x)pw(x) dx

)1/p

.

4.2. Proof of Theorem 2

Let 1≤ p < ∞ and denote byPpf the Hardy operator defined on locally inte-
grable functions by

Ppf(t) =
(

1

t

∫ t

0
|f(s)|p ds

)1/p

, t > 0.

If p = 1, we letPpf = Pf.
We shall need the following lemma from [3], which we prove here for the sake

of completeness.
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Lemma 2 (cf. [3, Prop. 2.1]). Letf be a nonincreasing function, and let1< p <

∞. Then (∫ t

0
f(s)p ds

)1/p

≤
(
p − 1

p

)1/p(∫ t

0
Pf(s)p ds

)1/p

+
(

1

p

)1/p

t (1−p)/p
∫ t

0
f(s) ds. (4.7)

Proof. Becausef is decreasing,∫ x

0
f(s) ds ≥ xf(x).

It follows that

d

dx

(∫ x

0
f(s) ds

)p
= pf(x)

(∫ x

0
f(s) ds

)p−1

≥ pxp−1f(x)p;
integrating, we have

(Pf(x))p ≥ 1

xp

∫ x

0
psp−1f(s)p ds.

Further integration and Fubini yield∫ t

0
Pf(s)p ds ≥ p

p −1

(∫ t

0
f(s)p ds − t1−p

∫ t

0
sp−1f(s)p ds

)
,

which implies that(∫ t

0
f(y)p dy

)1/p

≤
(

p

p −1

)−1/p(∫ t

0
Pf(s)p ds

)1/p

+ t (1−p)/p
(∫ t

0
sp−1f(s)p ds

)1/p

. (4.8)

Finally, since
( ∫ t

0 s
p−1f(s)p ds

)1/p ≤ (1/p)1/p( ∫ t0 f(s) ds) (cf. [19, Thm. 3.11]),
we obtain (4.7).

Now let us proceed with the proof of Theorem 2. We shall follow closely the ar-
gument in [13].

As in the proof of Theorem 1, we see that(1.1) implies for any packingπ that

Sπ,p(g)(x) ≤ c(Sπ(g)(x)+ Sπ,p(h)(x)).
Taking nondecreasing rearrangements with respect to the measuredµ = w(x) dx
and taking the supremum over all packings yields

sup
π

(Sπ,p(g))
∗(2t) ≤ c

(
sup
π

(Sπ(g))
∗(t)+ sup

π

(Sπ,p(h))
∗(t)

)
.

Multiplying this inequality byt1/p and then using (4.3) and Theorem 5, we arrive
at theK-functional estimate

K(t1/p, g;Lpw(Q0), L
∞)

≤ c(t−1/p ′K(t, g;L1
w(Q0), L

∞)+K(t1/p, h;Lpw(Q0), L
∞)
)
. (4.9)



570 Joaquim Martín & Mario Milman

Using Holmstedt’s reiteration formula (cf. (2.5)), we write

K(t1/p, g;Lpw(Q0), L
∞) '

(∫ t

0

(
s−1/p ′K(s, g, L1

w(Q0), L
∞)
)p ds

s

)1/p

'
(∫ t

0

(
K(s, g, L1

w(Q0), L
∞)

s

)p
ds

)1/p

.

Inserting this expression into (4.9) gives(∫ t

0

(
K(s, g;L1

w(Q0), L
∞)

s

)p
ds

)1/p

≤ ct1/p K(t, g;L
1
w(Q0), L

∞)
t

+ ct1/p
(

1

t

∫ t

0

(
K(s, h;L1

w(Q0), L
∞)

s

)p
ds

)1/p

.

In terms of Hardy operators, we have

Pp

((
K(·, g, L1

w(Q0), L
∞)

·
)p)

(t) ≤ cK(t, g;L
1
w(Q0), L

∞)
t

+ cPp
(
K(·, h;L1

w(Q0), L
∞)

·
)
(t).

ApplyingLq(0, w(Q0))-norms to the previous inequality then yields∥∥∥∥Pp(K(·, g, L1
w(Q0), L

∞)
·

)∥∥∥∥
q

≤ c
∥∥∥∥K(·, g, L1

w(Q0), L
∞)

·
∥∥∥∥
q

+ c
∥∥∥∥Pp(K(·, h;L1

w(Q0), L
∞)

·
)∥∥∥∥

q

.

Now, since∥∥∥∥Pp(K(·, g, L1
w(Q0), L

∞)
·

)∥∥∥∥p
q

=
∥∥∥∥P((K(·, g, L1

w(Q0), L
∞)

·
)p)∥∥∥∥

q/p

(4.10)

and sinceK(s, f, L1
w(Q0), L

∞)/s is decreasing, we can apply Lemma 2 to obtain∥∥∥∥(K(·, g, L1
w(Q0), L

∞)
·

)p∥∥∥∥
q/p

≤
( q

p
−1
q

p

)p/q∥∥∥∥P((K(·, g, L1
w(Q0), L

∞)
·

)p)∥∥∥∥
q/p

+
(
p

q

)p/q
w(Q0)

(1−q/p)/(q/p)
∥∥∥∥(K(·, g, L1

w(Q0), L
∞)

·
)p∥∥∥∥

1

.

Combining this last inequality, (4.10), and the well-known inequality(x + y)α ≤
xα + yα if 0 < α ≤ 1, we arrive at
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w(Q0), L

∞)
·

∥∥∥∥
q

=
∥∥∥∥(K(·, g, L1

w(Q0), L
∞)

·
)p∥∥∥∥1/p

q/p

≤
( q

p
−1
q

p

)1/q∥∥∥∥Pp(K(·, g, L1
w(Q0), L

∞)
·

)∥∥∥∥
q

+
(
p

q

)1/q

(w(Q0)
(1−q/p)/(q/p))1/p

∥∥∥∥(K(·, g, L1
w(Q0), L

∞)
·

)p∥∥∥∥1/p

1

.

On the other hand, by the classical Hardy inequality we have∥∥∥∥Pp(K(·, h;L1
w(Q0), L

∞)
·

)∥∥∥∥
q

≤
( q

p

q

p
−1

)1/p∥∥∥∥K(·, h;L1
w(Q0), L

∞)
·

∥∥∥∥
q

.

Collecting these estimates gives( q

p

q

p
−1

)1/q∥∥∥∥K(·, g, L1
w(Q0), L

∞)
·

∥∥∥∥
q

≤ c
∥∥∥∥K(·, g, L1

w(Q0), L
∞)

·
∥∥∥∥
q

+
(

1
q

p
−1

)1/q

(w(Q0)
(1−q/p)/(q/p))1/p

∥∥∥∥K(·, g, L1
w(Q0), L

∞)
·

∥∥∥∥
p

+ c
( q

p

q

p
−1

)1/p∥∥∥∥K(·, h;L1
w(Q0), L

∞)
·

∥∥∥∥
q

.

We can therefore chooseq > p, with q sufficiently close top, such that( q

p

q

p
−1

)1/q

− c > 0,

and thus we can write∥∥∥∥K(·, g, L1
w(Q0), L

∞)
·

∥∥∥∥
q

≤ C(w(Q0)
(p−q)/q)1/p

∥∥∥∥K(·, g, L1
w(Q0), L

∞)
·

∥∥∥∥
q

+ C
∥∥∥∥K(·, h;L1

w(Q0), L
∞)

·
∥∥∥∥
q

. (4.11)

Now, using (2.7) (see also [5, Thm. 5.5.1]),

(L1
w(Q0), L

∞)1/q ′,q = Lqw(Q0), (L1
w(Q0), L

∞)1/p ′,p = Lpw(Q0);
hence (4.11) can be rewritten as
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‖g‖Lqw(Q0)
≤ C((w(Q0)

(p−q)/q)1/p‖g‖Lpw(Q0)
+ ‖h‖Lqw(Q0)

)
. (4.12)

Dividing byw(Q0)
1/q, we thus obtain(

1

w(Q0)

∫
Q0

g(x)qw(x) dx

)1/q

≤ C
(

1

w(Q0)

∫
Q0

g(x)pw(x) dx

)1/p

+ C
(

1

w(Q0)

∫
Q0

h(x)qw(x) dx

)1/q

.

Obviously this argument can be repeated for everyQ ⊂ Q0 in order to obtain
inequality (1.2).

Remark 1. If we work inRn instead of a cubeQ0 and ifw(Rn) = ∞, then the
term(w(Q0)

(p−q)/q)1/p that appears in (4.12) is equal to 0 and we obtain(∫
Rn
g(x)qw(x) dx

)1/q

≤ C
(∫

Rn
h(x)qw(x) dx

)1/q

(cf. [13, Thm. 1]).

Remark 2. Using inequality (4.8) instead of (4.7) and the fact that

(L1
w(Q0), L

∞)1/p ′,q = Lp,qw (Q0),

we can show that

‖g‖Lqw(Q0)
≤ C((w(Q0)

(p−q)/q)1/p‖g‖Lp,qw (Q0)
+ ‖h‖Lqw(Q0)

)
,

which implies (4.12) becauseLpw(Q0) ⊂ Lp,qw (Q0) if q > p.

Remark 3. Our proof of Theorem 1, combined with the argument in [2, Thm.
3.1], can be used to derive—for nondoubling measures—the endpoint version of
Gehring’s lemma originally obtained by Fefferman [6].
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