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Gehring’s Lemma for Nondoubling Measures

JoAQUIM MARTIN & MARIO MILMAN

1. Introduction

Let Qg C R" be afixed cube with sides parallel to the coordinate axes; ket a
strictly positive integrable function 0@, and let 1< p < co. We shall say that
a positive functiorg € L’,(Qo) belongs to RH(w) (i.e., thatg satisfies aeverse
Holder inequality if there exists aC > 1 such that, for every cub@ C Qg with
sides parallel to the coordinate axes, we have

1 Yp C
- p -
(w(Q)/Qg(X) w(x)dX> < w(Q)/Qg(X)w(X)dx,

with w(Q) = fQ w(x)dx. If the underlying measurgc = w(x)dx satis-
fies the doubling condition—that is, if there exists a constant 0 such that
w(B(x,2r)) < cu(B(x, r))—then by Gehring’s lemma [7] there existsan- 0
such thatg € RH,.(w). For excellent accounts of the role that reverse Holder
inequalities play in PDESs, we refer to [9] and [11].

Recently there has been interest in extending the Calder6n—Zygmund program
to the context of nondoubling measures (cf. [1; 13; 14; 16; 20; 21] and the refer-
ences therein). The purpose of this note is to prove Gehring’s lemma for nondou-
bling measures of the form := w(x) dx. Our main results are given in the next
two theorems; for proofs, see Section 4. (When preparing the final version of this
paper for publication we realized that Theorem 1 can be also obtained by a dif-
ferent method by means of combining Lemma 2.3 and Corollary 2.4 of [16] with
Exercise 6.6 of [18].)

THEOREM 1. Letl < p < oo, and letw be a positive integrable function apy.
Suppose thag € RH,(w). Then there exists an> 0 such thatg € RH, . (w).

THEOREM 2 (see [13] for the correspondir®y’ version of this result; see [9] and
the references therein for the doubling casd)et g, 1 be positive functions in
L1 (Qo) and suppose that there exists- 1 such that, for all cube® C Qo with
sides parallel to the coordinate axes, we have
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1 Yp 1
- p d < d
<w(Q)/Qg(X) w(x) X> _cw(Q)/Qg(X)w(X) X

1 ) p
h d . 1.1
+C<w(Q)/Q (x)w(x) X> 1.1)

Then there exisj > p andC = C(c, ¢) > Osuchthatifg, h € L7,(Qo) then, for
every cuba) C Qg with sides parallel to the coordinate axes, we have

1 1/q 1 1/p
- q - P
(w(Q)/Qg(x) w(x)dx) §C<w(Q)/Qg(x) w(x)dx)

1 . 1/q
+C<FQ)/Qh(x) w(x)dx) . (1.2

Our methods are based on covering lemmas and interpolation theory. For dou-
bling measuredu := w(x) dx, the connection with interpolation is given by the
fact that the maximal operator of Hardy and Littlewood associateddyith

M, f(x) = QOSDUQDBX@/IJ‘(X)IUJ(X)dx

satisfies 1
M 0 ~ /O () ds = £270) (L3)

(see Section 2) while—independently of doubling conditions—we always have

.7l 00
Fre) = K& [ th, L)
(see [19, pp. 213-214]). In this case the inverse reiteration theorem of [5] (cf. our
Theorem 4) immediately proves Theorem 1ulis not doubling then (1.3) may
not hold (see [1]); in fact, the maximal operator may not be boundetfo(see
[8]), although doubling conditions do not, of course, alter the interpolation theory
of L? spaces. Therefore, dealing with nondoubling measures usirithethod
requires a different maximal operator. It turns out that a suitable maximal operator
can be obtained through the use of packings [1]. (The idea of maximal operators
associated with packings can be traced at least as far back as the classical paper of
John and Nirenberg [10].)

In order to explain in more detail what we do in this paper, let us start by re-
calling that apackingin Qo is simply afinite or countably infinite collectioof
nonoverlapping cubes with sides parallel to the coordinate axes contaiggd in
For a given packing = {Qi}}lll in Qo, we associate a linear operatfyr defined
by:

(1.4)

7|

S2(f)(x) = Z( (Q)/ f(y)w(y)dy)xQ (x),  feLb(Qo)+ L*(Qo).

(Here|r| = oo if the packing has infinitely many cubes.) We consider the maxi-
mal operator defined by
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(Fp)w(t) = sup(Sx (1 f1));, (0),

whereg! denotes the nonincreasing rearrangementwith respect to the mea-
surew(y) dy, and the supremum is taken over all packings.

A characterization of th&-functional for the paiL? (R"), L>°(R")) in terms
of the maximal operato(Fy),,(t) was given in [1]. This characterization was ex-
ploited in [13] to prove the nonlocal version of Theorem 2. In order to prove local
self-improving results of Gehring type using tkemethod, we show the follow-
ing complement to the global computations of [1].

TueorREM 3. Let f € L (Qo) + L®(Qo); then, for0 < t < w(Qo) =
Joo w(» dy,
K(t, fi L% (Q0), L™(Q0)) ~ t(Fp)u(t),

with constants of equivalence that are independent of

The proof of this characterization relies on a modification of the Calderén—
Zygmund decomposition for nondoubling measures that was recently obtained
in [14] and [16].

The paper is organized as follows. In Section 2 we provide a rather concise re-
view (but with detailed references) of the parts of the real method of interpolation
we shall use in this paper. In Section 3 we give a brief but self-contained account of
the Calderén-Zygmund decomposition for nondoubling measures obtained in [14]
and [16], conveniently modified for our purposes, and then use it to prove the equiv-
alence between maximal operators associated with packing&duadctionals.
Then, in Section 4, we provide the proofs of Theorem 1 and Theorem 2.

Finally, it is important to note here our belief that the methods we are develop-
ing are more interesting than the particular results obtained so far. For example,
the interpolation method can be used to study Gehring-type self-improving results
in a geometry-free context (see [12]). Moreover, our method can be used to study
self-improving inequalities where the qualitative property whose improvement is
sought is not necessarily integrability. We hope to return to this point elsewhere.

AckNOWLEDGMENT. We thank J. Soria for providing us with a copy of [16] and
M. Korey and the referee for helpful suggestions to improve the presentation.

2. Background

The main tools from real interpolation that we use arekkeinctional and the re-
iteration theorem. Our main references will be [4; 5; 19], to which the reader is
referred for further information.

We work with pairs X = (Xo, X1) of quasi-normed spaces that are continu-
ously embedded into a common Hausdorff topological vector space. For a given
paer we can thus form the sum spaEHX) = Xo + X; and define forx €
E(X), t > 0, the “K-functional”

K(t.x; X) = inf{llxollxo + tlx1llx, : ¥ = xo+x1, x; € X, i = 0,1}
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In the context of the paitL}(R"), L>®(R")), the splitting implicit in the com-
putation of the corresponding-functionals is closely related to the Calderon—
Zygmund decomposition. In fact, followidd7, p. 1(4); 17, Thm. 3.2], if we split

f using a Calderon—Zygmund decompositipe= b, +g,—whereb, is the “bad”
part, g, is the “good” part, and the usual parametesf the Calderon—-Zygmund
decomposition is chosen to &1 f)*(¢), where(M f)* is the nondecreasing re-
arrangement of the maximal operator of Hardy—Littlewood—then we have

K(t, f; LAR™), L®(R™) ~ |lbasy ol + I goasy ol oo rm
~t(Mf)(t) (2.1

(cf. [4, p. 123]). The following elementary formula also holds [19, pp. 213-214]:

K, f; LXR"), L*(R")) =/ f*(s)ds. (2.2)
0

Comparing (2.1) and (2.2), we see that

1 t
Mpr© =~ /0 F¥(s) ds. (2.3)

The equivalences (2.1) and (2.3) fall, in general, if we replace the Lebesgue mea-
suredx by a nondoubling measurg.(x) (see [1]). For more examples of com-
putations ofK-functionals, see [4].

For a given pairf(, a (“real”) scale of interpolation spaces between them can
be constructed as follows. Given00 <1 < g < oo, define

- - o0 - dr )Y
Xe,q = {x S E(X) . {/ (tieK(t,x; X))q T} < OO}
0

It turns out that many of the familiar scales of spaces used in analysis can be iden-
tified with suitable real interpolation scales. The process of identification of con-
crete spaces as interpolation spaces for a given pair hinges upon the computation
of K-functionals, and it is usually greatly simplified by the following reiteration

(or iteration) property (cf. [4, Thm. 2.4; 5, Thm. 3.5.3]):

(}?90407 201,41)9# = va,q’ (2.4)

wherer = (1— 0)6p + 061. A quantitative form of the reiteration formula (2.4) is
given by Holmstedt’s formula [4, Thm. 2.1; 5, Thm. 3.6.1]:

. R 11/(01—00) dS 1/q0
K, f; Xo0,q00 Xo1,91) {/ (S_HOK(Sv fi X))o }
0

N

00 1/q91
+ { / (sTK (s, f; X)™ ?} .

1/(61—60)
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The following endpoint version of Holmstedt's formula (cf. [4, Cor. 2.3; 5, Cor.
3.6.2]) will be particularly useful here:

. - 11/(A=00) . dS 1/q0
K(t, f; Xog.q00 X1) = {/ (s7K (s, f: X)) ?} . (2.5)
0
Reverse Holder inequalities were formulated as “inverse” reiteration theorems
in [15], where the following abstract form of Gehring’s lemma was obtained.

THEOREM 4. Let (A, A1) be an ordered pair of Banach spacg®. A; C Aop),
and suppose thaf € Ay is such that there exist some constant 1, 6 € (0, 1),
andl < p < oo such that, for everye (0, 1),

K@Y&00) | £ Ao, A1)

K(ta f; A@o.p;[(a Al) S Ct tl/(l_eo)

(2.6)

Then there exists & > 0¢ such that, fory > p and0 < ¢ < 1, we have

K@Y f: Ag, Ar)

K(t, Agq:x. A1) R 1 pEvmry

The connection with the classical Gehring’s lemma can be seen from the follow-
ing facts:

L? = (LY L®)ypp 1< p <oo; 2.7)

K@, fi L L) (1 10 v
t1/p ~ ?/Of(s)”ds , 1<p<oo, (2.8)

K@, f; LP, L)
tYp

(M, [)*(t) ~ (2.9)
For (2.7) and (2.8), see [5, Thm. 5.2.1]; while (2.9) follows from (2.1), the fact that
M,(f) = (M(|f]”))Y" by definition, and (2.8).

For a more detailed discussion on the connection with Gehring’s lemma, see
Section 4 and [15].

3. The K-Functional for the Pair (L1 (Q), L*( Qo))

We start with the Calderon—-Zygmund decomposition for nondoubling measures
obtained in [14] and [16]. We briefly indicate a proof of a version that is convenient
for our development in this note.

Let Qg be a fixed cube iR" with sides of lengthL. that are parallel to the co-
ordinate axes. For eachin the interior of Q¢ we define the basis

Coo(x) ={Q:(M)},
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whereQ ., (r) is the unique cube with sidethat minimizes the distance fromof
the centeroD,(r) (0 < r < L := side ofQg), so thatQ .(r) C Qg. We consider

M, = - d
0(g)(x) Qesélglﬁx) (Q)/If(y)lw(y) y.

Lemma 1. Letg e L! (Qo) be a nonnegative function. Letbe a positive num-
ber such that. > l/w(Qo)fQOg(y)w(y) dy and the level sef2;, = {x € Qo :
Mp(g)(x) > A} is not empty. Then there exists a quasi-disjoint family of cubes
{Q;} contained inQq such that, for each,

A< d 2A 3.1
(Q,) / gw(y)dy < (3.1
and, moreover,
gx) =i for x e Qo\ U Q; a.e. (3.2)
j
In fact, we can write
B(n)
U Qj= U U Qi, (3.3)
j k=1ieF;

where each family{Q;}icx,, K = 1,..., B(n), is formed by pairwise disjoint
cubes.

Notes. Recall that a family of cubelg);} is quasi-disjointif there exists a uni-
versal constar® such than Xo,(x) < C; B(n)isusually called the Besicovitch
constant.

Proof of Lemma 1Since2; is not empty, it follows that for any € Q2, we can
find a cubeA, € Cy,(x) such that

< w(A) /A gw(y)dy.

Therefore, since the functidn.(r) = 1/u(Q.(r)) fo(r)|f(Y)| du(y) is continu-
ous for eachx €int(Qg), we can selecta cub@, € CQO(x) satisfying

A< / gMw(y)dy < 2i

(Qx)
with Q. € Qo The family{Q,} selected in this fashion covess,. From now
on we follow verbatim the argument in [14; 16]. Thus, for any cybewe de-
fine the rectangl&®, in R" as the unique rectangle R" centered at such that
R, N Qg = Q,. Itfollows that the ratio of any two side lengths Bf is bounded
by 2, and thus by Besicovitch’s covering lemma we can select a countable collec-
tion {R;} of rectangles covering, and such that every point 6f; belongs to at
most B(n) rectanglesRk;. Replacing eaclR; by its corresponding cub@;, we
obtain a family of cube$Q;} with the properties that we need. Finally, (3.2) fol-
lows (as usual) by Lebesgue’s differentiation theorem. O
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The connection between packings and interpolation theory is given by the follow-
ing local version of a result originally proved in [1] f&".

TueoreM 5. Let f € L1 (Qo) + L™®(Qo). Then, for0 < t < w(Qo),
K(t, f3 LY (Q0), L®(Q0)) ~ t(Fp)u (1),

with constants of equivalence independent.of

Proof. For a given packingr, the operatorf — S, (| f|) is obviously a norm-1
sublinear operator acting on the palr},,,(Qo), L*>(Qo)); therefore,

K, S<(1fD; Ly, (Q0), L¥(Q0)) < K(t, f3 L,(Qo), L¥(Q0)).
Combining this inequality with
1S (1 f N5 @) < K, S=(1f1); L, (Qo). L*(Q0))
and taking the supremum over all packings, we obtain
1(Fpw () < K(t, f5 L3, (Q0), L¥(Qo0)).
To prove the converse we fix a constantlc < 2 and, for a given O< ¢ <
w(Qp), consider the set

Qo(r) = -SUD o o)
o(t) {xGQO S w (0 Jo.o)

If Qo(r) is empty then by Lebesgue’s theorem we have fhatlL*°; in fact,

[f] < c(Fpu(t) a.e.
Consequently, using the decompositipr= 0+ f yields

K@, f; L3,(Q0), L(Q0)) < 1]l f oo < t(Fp)u (1),

as we wanted to show.
Suppose now thaR(z) is not empty. Note that, for & ¢+ < w(Qyp),

c(Fp)w(t) > (Fp)w(t) = SUp(Sx (1fD);, (1)

1 *
- {<w(Qo) Qo'f(”'w(y)dy)xQo(x)}w(z)

[ f(D w(y) dY)X[O,w(Qo))(t)

[fN w(y)dy > C(Ff)w(t)}~

_( 1
~ \w(Qo) Jo,
1

= d .
w(0) fQolf(y)lw(y) y

We can therefore apply Lemma 1 (with= ¢(Fy),,()) to obtain a family of cubes
F ={Q,} such that

C(Ff)w(t) < |f(}’)|w()’) dy = ZC(Ff')w(I) on Qj (34)

w(0)) Jo,
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and
|f1 < c(Fpu(®) on Qo\ | J Q0 (3.5)
with
B(n) B(n)
UQj=U UQi=U7Tk, (3.6)
j k=1 ieF; k=1

where eachr, = {Q; :ieFi}, k=1, ..., B(n), is a packing.
The nearly optimal decomposition we need will then be given by

f =TI xue + fxonyo;-
In fact,

H Ixu QjHLl = H fXUf:l) Uier, Q[HL}“(QO)

5% Z(—w(Q")f Iflwdx)
k=1 ieFy w(@i) Jo,
B(n)

< 2¢(Fp)u(0) Z( > w(Q,-)) (by (3.4)).

k=1 NieF;
We shall show in a moment that
> w(Qn) <t (3.7)
ieFi
Assuming for now the validity of (3.7), we obtain

B(n)

| fxUoll s < 2¢(Fpu(® Z( > w(Qi))

k=1 NieF;

B(n)

< 2c(Fp)u(®) Yt

k=1
< 2cB(n)t(Fy)y(1).
Moreover, by (3.5) we have
t) fxeauel < ctFpu ().
Collecting estimates, we finally arrive at
K(t, f3 L3,(Qo), L®(Q0)) < 3eB(n)1(Fp)y (1).

In order to prove (3.7) we must show that, giver= {Q;} an arbitrary packing
from the family F, we have

Y w(@) <t

Qiem

Indeed, if_, ., w(Q;) > t then using (3.4) yields
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1
S(fN@ =Y (m | O)) dy)m(z)

Qiem

> c(Ff)wu)( > xo. (z))

Qiem
> (Ff>w<t)( > xQ,(z)).
Qiem

Therefore, for any; < UQ,@ Q; we haveS; (| f)(z) > (Fp)u(t), and since
Sz (1fD(@) = 00n(Ug,e, Qi) we see that

Sx(LF D5 (@) > (Fu () for 1 < Y~ w(Q)),

Qiem

contradicting the definition ofFy),, (¢). O

4. Proof of Theorems 1and 2

In preparation for the proof of Theorems 1 and 2, let us introduce (following [1])
the functionals

7|

Sﬂ,)(f)( )= (—
P ; (@0 Jo,

which are associated with “packings” = {Q;}l™, c Q. If p = 1 thenS,,
coincides withS,;, as defined in Section 2.

1/p
[f(DIPw(y) dy) X0, (%),

4.1. Proof of Theorem 1

Since we are dealing with families of disjoint cubes it follows readily that
RH, (w) implies that, for any packing, we have

Sz.p(8)(x) = cS7(8)(x).

Taking nondecreasing rearrangements in the previous inequality with respect to
the measurdu = w(x) dx, we obtain

(Sx.p ()5 1) < c(S:(8),, (1), t>0 (r any packing).
Therefore, taking the supremum over all packings yields

SUP(S7.»(8)),, (1) < cSUP(Sz(8)),, (7). (4.1)
By Theorem 5, we know that

K(t, g; LY (Q0), L®(Q0)) ~ t SUP(Sx ()% (2). (4.2)

On the other hand (cf. [1]), by well-known general considerations it follows from
(4.2) that
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K7, g; L (Q0), L®(Q0)) ~ (K(t, 1g]”; LY, (Q0), L®(Q0))"”
Py 1/p
~ (1 sup(s (7)) ()
T

= 17 SUP(Sr,(8)) (1). (4.3)
Multiplying (4.1) by *?, we have
17 SUP(S . » ()% (1) < ct™P sup(S, (8))*(1)
and thus arrive at th&-functional estimate

K@, g: L0 (Qo), L™(Q0)) < ct YP'K (1, g: L},(Q0), L®(Q0))
or, equivalently,

K(t, g; L?(Q0), L®(Q0)) < ct* PK(t?, g; L (Q0), L*(Q0)). (4.4)

Now we can apply Theorem 4 (cf. [15, Thm. 1]) to conclude that there exists a
g > p such that

K(t, g L9(Q0), L®(Q0)) < ct' 4P K(t7, g; LY (Q0), L™(Q0)). (4.5)
Thus, in view of the well-known formula
t" 1/r
K(t, h; L), (Qo), L*(Qo)) = </ by, ()" dS)
0

(cf. (2.8)), we have that (4.5) is equivalent to

1 ! 1/q 1 ! 1/p
(‘/ g, (s)1 dS) < C(—/ gr(s)P ds) (4.6)
t Jo t Jo

for0 <t < w(Qp).
Observe that

r 1 w(Qo) r
g(x)fw(x)dx) :< / g:;(syds) :
0

1
(w(Qo) 0o w(Qo)

therefore we see that (4.6) gives

1/q 1/p
g(X)"w(x)dX> §C< g(x)"w(x)dx). O

1
(UJ(QO) Qo w(QO) Qo
4.2. Proof of Theorem 2

Let1l < p < oo and denote by, f/ the Hardy operator defined on locally inte-
grable functions by

1 t 1/p
P, f(t) = (7/0 |f(s)|”ds) , t>0.

If p=1 weletP,f = Pf.
We shall need the following lemma from [3], which we prove here for the sake
of completeness.
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Lemma 2 (cf. [3, Prop. 2.1]). Let f be a nonincreasing function, and e p <

oo. Then
t 1/p p—1 1/p t 1/p
</ fs)f dS) < <—> (/ Pf(s)”ds)
0 P 0

1 1p t
+(—> td=pip / f(s)ds. 4.7)
p 0

Proof. Becausef is decreasing,

/ " F(s)ds = xf ().
0

It follows that
d x P x r-1
d_</ f(S)dS> =Pf(x)</ f(S)dS> > px! 7 (x)7;
X \Jo 0

integrating, we have

(PF) = = / " psP (5P ds.
.Xp 0

Further integration and Fubini yield

/l Pf(s)" ds > L(/t F(s)? ds — tl_”/ts”_lf(s)"ds),
0 r—1\Jo 0

which implies that

t 1/p p -1/p t 1/p
(/ f(y)de) < (—) (/ Pf(s)pds)
0 p-1 0

t 1/p
+ t(l_”)/p</ sP7f(s)P ds) . (4.8)
0
Finally, since( [y s”~1f(s)” ds)l/” < @/p)Y?( [y f(s)ds) (cf. [19, Thm. 3.11]),
we obtain (4.7). O

Now let us proceed with the proof of Theorem 2. We shall follow closely the ar-
gument in [13].
As in the proof of Theorem 1, we see tifatl) implies for any packing: that

Sz.p(8)(x) = c(Sx(8)(x) + Sz, p(h)(x)).

Taking nondecreasing rearrangements with respect to the meserev (x) dx
and taking the supremum over all packings yields

SUR(S'x,(8))"(21) = ¢(SUP(S (£))"(1) + SUB(Sy,p (1) (1)).
Multiplying this inequality byrY? and then using (4.3) and Theorem 5, we arrive
at theK-functional estimate
K@Y, g; L0 (Qo), L)
< (™K, g: L} (Qo). L™) + K7, hi L1 (Qo), L™)).  (4.9)
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Using Holmstedt'’s reiteration formula (cf. (2.5)), we write

; /p
K@"?, g3 L (Qo), L®) = (/ (s K(s. 8. L(Qo). L))" d_s>
0 N

(/f(K(s, g, L} (Qo), L°°>)P )1/”
~ ds) .
0 S

Inserting this expression into (4.9) gives

( /‘(K(s,g; LY (Qo), L°°>>” )1/”
ds
0 S

tl/p K(t’ gv L:ILU(QO)v LOO)
t

+ Ctl@(% /t(K(s, h; L (Qo), LoO)>p ds>1/p_
0 K

In terms of Hardy operators, we have

. 1 00N\ P .71 00
Pp(<K(,g»Lw.(Qo),L )> )(t)ch(t’g’ Lwt(Qo),L )

<c

Cheg1 [}
K(, h; Lw‘(Qo),L ))(t).

+ CP,,(

Applying L0, w(Qp))-norms to the previous inequality then yields

‘P (K(7 gﬂL]iU(QO)vLOO)) K(a 1) L:!-U(Qo)aLoo)
P

=

q q

. . 1 o0
. Pp(K(,h, Lw.(Qo),L )>
q
Now, since
. 1 o P . 1 )\
PP(K(,g,Lw<Qo>,L )) :HP«K(,g’Lw(Qo)’L ))) (4.10)
. q °

q/p

and sinceX (s, f, L (Qo), L™)/s is decreasing, we can apply Lemma 2 to obtain
H (K(-, g, L3,(Qo), L°°))”

<% - 1)1?/4
<
- 4

P

p rla
+(5) w(Qg)d-4/P/a/p )
1

Combining this last inequality, (4.10), and the well-known inequdlity- y)* <
x*+y*if0 < <1, we arrive at

q/p

P(( K(-, g, L}, (Qo), L°°))”>
’ q/p

(K(-,g,L},,(Qo),L“’))"
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H K(, g, L% (Qo), L)

q

_ H(K(-,g,L%,on),Lw))”

1/p

q/p
1
S <% —1> ! pp<’“"g’ Lt(Qo),m)
2 .
p 1/q
+<g> (w(QO)(l—lI/P)/(q/P))l/P

On the other hand, by the classical Hardy inequality we have

a \Yr
q 5—1

Collecting these estimates gives

4 \Yq
V4
11
p

- CH K(, g, LY (Qo), L)

|

q

1/p

(K(-, g. L1 (Qo), L°°>)"

1

o7l o)
P, K(,hlwl(Qo),L )

(K(-, h; LY, (Qo), L°°>>

q

K('v 8 LJ{E(QO)’ LOO)

q

1/q
1 — K(a 7L:!;)( )’LOO)
+ (q 1) (w(Qg) /P /)y Up 8 ' Qo

4 \Yp
+c u
p

We can therefore chooge> p, with ¢ sufficiently close tgp, such that
a \Y4q
P —c>0,
4 _1
P

< C(w(QO)(ﬁ—q)/q)l/ﬂ
q

p

K(, h; Ly, (Qo), L)

q

and thus we can write
H K(’ 8> L:}U(QO)v LOO)

K(, g Lt (Qo), L™) H

q

+C . (4.11)

H K(-, h; LY (Qo), L™)
’ q

Now, using (2.7) (see also [5, Thm. 5.5.1]),

(LY(Q0), L®)1gng = LE(Q0),  (L3,(Q0), L®)yprp = L1 (Qo):
hence (4.11) can be rewritten as
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Igll2s 0oy < C(W(Q0) P~ N Pligl 11 (09 + 11112 (05))- (4.12)

Dividing by w(Qo)Y4, we thus obtain

1/q 1/p
g(x)w(x) dx) < C( g(x)Pw(x) dx)

(W(Qo) 0o w(Qo) Jo,

1 1q
C< h(x)w(x) dx) .
w(Qo) Jo,
Obviously this argument can be repeated for ev@ry= Qg in order to obtain
inequality (1.2). O

RemMark 1. If we work in R" instead of a cub®g and ifw(R") = oo, then the
term (w(Qo)?~9/4)YP that appears in (4.12) is equal to 0 and we obtain

1/q 1/q
</ g(x)qw(x)dx> §C(/ h(x)qw(x)dx>

(cf. [13, Thm. 1)).

REMARK 2. Using inequality (4.8) instead of (4.7) and the fact that

(L%(Q0), L®)yp.q = LE(Qo),
we can show that

Igll9 0oy < C(W(Q0) P~ NP ligll rapg) + 11112 (0g))-
which implies (4.12) becaus€], (Qo) C L5 (Qo) if ¢ > p.

REMaRrk 3. Our proof of Theorem 1, combined with the argument in [2, Thm.
3.1], can be used to derive—for nondoubling measures—the endpoint version of
Gehring’s lemma originally obtained by Fefferman [6].
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