A General Notion of Shears, and Applications

DRrROR VAROLIN

1. Introduction

In this paper we introduce a generalization of the notions of shears and overshears
to arbitrary complex manifolds. The concept is very simple, but it is useful in the
study of complex manifolds having very large automorphism groups. We shall
explore some of the consequences of this concept in connection with the density
property, which we now recall.

In [V1] we introduced the notion of complex manifolds with ttiensity prop-
erty. Recall that a complex manifold has the density property if the Lie subalge-
bra of X (M) generated by the complete vector fields\iis a dense subalgebra.
More generally, a Lie subalgebgac X (M) is said to have the density property
if the complete vector fields ig generate a dense subalgebrg.ofSo M has the
density property if and only it (M) has the density property.) Another impor-
tant case occurs whe has a nonvanishing holomorphieform (n = dimg¢ M),
that is, a holomorphic volume element We say thatM, ») has thevolume den-
sity propertyif the Lie algebraX¥o (M, w) ;= { X € Xo(M) | Lxw = 0} has the
density property. Andersén [A] proved th@&", dz; A - - - A dz,) has the volume
density property, and then Andersén and Lempert [AL] provedihdtas the den-
sity property. The author showed that for every complex Lie giGupG x C, w)
has the volume density property, wheses the unique (up to constant multiple)
left (or right) invariant holomorphic volume element 6hx C, and that ifG is a
Stein Lie group, thert; x C has the density property. The author also produced
several examples of Lie algebras of vector fields with the density property.

In[V2] we used jets to explore the complex structure of (mostly Stein) complex
manifolds with the density property. It was shown, among other things, that Stein
manifolds with the density property admit open subsets biholomorplii¢ tand
have interesting properties with respect to their embedded submanifolds. Some
of the results were known fd£” through works of Buzzard, Fornaess, Forstheri
Globevnik, Rosay, Stensgnes, and others.

With the usefulness of the density property already established in the literature,
some sort of classification or fine structure theorem is very desirable. Such a result
seems at the moment very far off, owing in part to the lack of examples. The main
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theorems of this paper, which we now state, give many new examples of the den-
sity property; more importantly, the proofs establish techniques that can be used
to construct other examples. We shall pursue this in future work.

THEOREM 1. Let M? := C?\{xy = 1} and w := (xy — 1)"tdx A dy. Then
(M?, ») has the volume density property.

The study of the spac® 2 was inspired by discussions with Rosay several years

ago. This space is important because it is another instance of the mysterious pre-

phenomenon (we say “pre” because there are no proofs that it exists) of a holo-

morphic volume element that is preserved by every holomorphic automorphism.
In the next result, we study a complex Lie group that is not of the f6rmC.

There is, as of yet, no general theory here, so we focus on one example.

THEOREM 2. The complex Lie groupl(2, C) := {(a, b, c,d) e C* | ad — bc =
1} has the density and volume density property.

Next we introduce a new class of complex manifolds with holomorphic volume
element called EMV manifolds. These spaces are generalizations of complex Lie
groups, but also of certain complex homogeneous spaces. Roughly speaking, they
have the property that all holomorphic vector fields on them can be approximately
written as finite sums of the forfy_ f; X;, where f; areany holomorphic func-

tions, andX; are divergence zero completely generated holomorphic vector fields
(see Section 2).

THEOREM 3. Let (M, w) be an EMV manifold. The@ x C, w A dz) has the
volume density property. ¥/ is moreover an open subset of a Stein manifold,
thenM x C has the density property.

As already suggested, the key tool used in the proofs of these theorems is a gen-
eralization to arbitrary complex manifolds of the notiorsbkarsandovershears.

This tool may have some independent interest as well. The idea is quite simple:
Given aC-complete holomorphic vector fiel#l in a complex manifoldV, one

tries to produce new complete vector fields of the fgtaX, with f € O(M). We
establish necessary and sufficient conditions on sii@nd these conditions de-

fine in a natural way function spaces associated.té\e then prove theorems to

the effect that the structure of these function spaces depends on the intrinsic and
extrinsic geometry of the orbits df.

The organization of the paper is as follows. In Section 2 we briefly recall some
basic definitions in the theory of ordinary differential equations and volume geom-
etry, taking the opportunity to establish notation. In Section 3 we introduce and
develop general shears and overshears. In part, our results here explain why it was
easiest to prove the density property for spaces of the f@rmnC. In Section 4
we prove Theorem 1, and in Section 5 we prove Theorem 2; the proofs are rather
combinatorial in nature. In Section 6 we introduce EM and EMV spaces, and we
prove Theorem 3 as well as some related results. Finally, in Section 7 we state a
guestion which naturally arises in the course of the paper, giving an example of a
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complex manifold which may or may not have the (volume) density property but
for which the combinatorial methods of Sections 4 and 5 become too cumbersome
to carry out.

ACKNOWLEDGMENTS. We wish to thank Marius Dabija, John Erik Fornaess, Mike
Roth, Berit Stensgnes, and Arpad Toth for their interest in this work and for very
interesting and stimulating discussions.

2. Some Preliminaries

In this section we recall a few basic concepts and establish the notation used below.
A holomorphic vector fieldX is a holomorphic section af*-°M, the holomor-

phic part of the complexified tangent bundle. Since there is a natural identification

of 7190 with the real tangent bundIEM, we can identifyX with a real vector

field, which we still denote by. This vector field has a flowy, which is a map

defined on an open subsetMf x R containingM x {0} as follows: for(x, ) €

M x R, ¢ (x) is the pointc(r) € M, wherec: I ¢ R — M is the maximal solu-

tion of the initial value problem

% = X(c), c(0) = x.

Moreover g} is holomorphic for each We denote the set of holomorphic vector
fields onM by X (M).

A holomorphic vector fielX is calledcompletef ¢y isdefinedonalloff x R.
In this casq ¢} | r € R} is a 1-parameter group of automorphismsbf

A vector field X is called C-completeif both X andiX are complete. Let
VST (x) 1= ¢} o !y (x). One checks that, sincé([iX] = 0 for all holomorphic
vector fields,{ ¢ | ¢ € C} defines a complex 1-parameter group of automor-
phisms which is holomorphic ig, that is, a holomorphi€-action. In this paper
we shall use the termmompleteto meanC-complete.

The set¥» (M) of all holomorphic vector fields oM is equipped with a bracket
(or commutator) operationX], Y] = XY — YX, which makes it into a Lie alge-
bra. Given any Lie algebrg of holomorphic vector fields, we can consider the
Lie subalgebra’ of g generated by the complete vector fieldgiinAny X € g’
is said to bgg-completely generatedf g = X» (M), we omit reference to the
Lie algebra. Ifg = X (M, w) (see below), we say that € g’ is divergence zero
completely generated.

Let us now suppose thad admits a nowhere vanishing holomorphiform w,
wheren = dim¢ M. We call such a form aolomorphic volume elemenGiven a
holomorphic volume elemeant, we can define a map djv Xo (M) — O(M) by

div, (x) = X2
w

whereLy is the Lie derivative ofX:

L d ()"
o=— a.
X dr t:OQDX
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SinceLx yj = LxLy — LyLx, one easily shows that
div,([X,Y]) = X div, Y — Y div, X.
Another useful formula, due to H. Cartan, is

div,, (x) = 10X
w

whereiy is contraction with respect t&.
Finally, we denote the kernel of djoy Xo (M, w) and callX € Xp (M, w) a
divergence zergector field.

3. General Shears and Overshears

Basic Propositions and the Definition
Let X € Xo(M). We define
(X) = I5(X) := { f e O(M) | X'f =0).

If feIXX) (resp.I?(X)), we sayf is a first (resp. second) integral & The
following proposition is immediate.

ProrosiTioN 3.1.  Let X be a holomorphic vector field wifocal) flowgs,. Then
f e IN(X) (resp.I?(X)) if and only if (where definejl

fogy=f (resp.fogh = f+1Xf).

Although first integrals have been studied extensively in the past, second inte-
grals seem not to have been looked at. However, in the holomorphic category it
is natural to study first and second integrals because of the following fundamental
proposition.

ProrosiTION 3.2. If X € Xp(M) is C-complete andf € O(M), then fX is C-
complete if and only iff € I°(X).

Proof. If X vanishes at somg € M, then so doegX, so the integral curve of
fX throughp is defined (and constant) for alk C. Suppose now thaX(p) #
0. Leth,: C - R,(X) be the integral curve of throughp. Here,R,(X) is the
orbit of X throughp. Then

Iy (X)(0) = 3,

andh,, is a covering map. SincgX is tangent to the orbits of, 4,(fX) is a
well-defined vector field oft. Precisely,

WX = f o hy(1)3,.

It follows that the integral curve of X throughp is defined for all time if and
only if f o h,(t) is an affine linear function of. This holds for allp in M\
{X =0} ifand only if f € I%(X). O
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Proposition 3.2 is a purely holomorphic result. Note that, in general, multiplying
a (real) vector field by any bounded function preserves completeness.

ExaMPLE 3.3. LetC" = C x C"! (n > 2) have coordinates = (z1,z').
Consider the vector field,, on C". Then f(z)d,, is complete if and only if
f(@) =g+ h(z')z1. Vector fields of the forny'(z)a., are calledshear fields
those of the formf(z")z19., are calledbvershear fieldsThese vector fields have
played a fundamental role in the study of automorphisnm&’gfas the set of all
time-1 maps of these vector fields generates a dense subgroup(@F'A{A; AL].

DerFiNITION 3.4. LetX be a complete holomorphic vector field on a complex
manifold M. An X-shear(resp.X-oversheaj field on M is a vector field of the
form f - X, with f € IY(X) (resp.I?(X)).

Second Integrals

To find first integrals of a complete vector fiel it is well known that the orbits
of X must have particularly nice behavior. Sinkenaps/?(X) to I*(X), we can
expect that second integrals are somehow more rare than first integrals. We will
show that this is indeed the case.

One can phrase the problem of finding second integrals (i.e., solving the second-
order PDEX?f = 0) as an inhomogeneous first-order PDE with conditions on the
forcing term:

Xv=1¢ with ¢el%X).

The most optimistic situation occurs when we can solve the equatios 1. In
this case, we can writg € 1°(X) as

[ =uXf 4+ (f —uXf),

which shows thaf?(X) = I(X) + uI*(X). We shall see, however, th&u = 1
does not always have a solution.

To get a good idea of whef?(X) is “large”, it is convenient to use the lan-
guage of ideals. Lefy := X(I?(X)) C I*X). Jx is an ideal inI*(X), since
oXf = X(pf) € Jx for ¢ € IY(X) and f € I?(X). Being able to solveku = 1
is equivalent to saying thaty = 7'(X). Hencel?(X) is “large” whenI'(X) is
large and the quotient rindt(X)/Jx is “small”—for example, finitely generated
or trivial.

It is interesting that the size of the quotigittX)/Jy is intimately tied up with
the complex geometry of the orbit spaceXxafOur first result is the following.

THEOREM 3.5. Let X € Xo(M) be complete, letf € I%(X), and setN :=
M\{Xf = 0}. Then

(1) N/X is a complex manifold,
(2) #: N - N/X is a holomorphic submersion,



538 DROR VAROLIN

(3) m x f: N - (N/X) x Cis a biholomorphic map, and
@ (7 x Fra(fX)Ry(X). ) = YRy (X))Ad,
for somey € O(N/X).

Proof. Letu := (1/Xf)f. ThenXu = 1, andu o g'(p) = u(p) + t. Note also
that X|y is complete, sincéXf = 0} is a union of orbits.
(1) The manifoldN/X can be identified with the level set’(0) via the map

£: N/X — u0); R,(X) > R,(X)Nu"Y0).

First, if p € N theng“”(p) € u~(0), so that no orbit has empty intersection
with #~1(0). Hencet is well-defined, at least as a set-valued function. Next, note
that£ is single-valued. Indeed, &,(X) N u~%(0) containsp; and p,, thenp; =
g(p) andp, = g (p). Butsinceu(py) = u(pz) andu o g'(p) = u(p) +1, we
see that; = 1, and hence thap; = p,. Next, £ is 1-1 because orbits of vector
fields never intersect. Finallg,is clearly surjective. To finish (1), note that since
du(X) =1, du never vanishes oN. Henceu1(0) is a complex manifold, which
we henceforth identify withv/X via &.

(2) Observe that the canonical projection N — «~%(0) is given byr(p) =
¢x"”(p). Note also thatr|, 1,,: u"r) — u~%(0) is a biholomorphic map;
7|1 = &x - Hencer is a submersion.

(3) Definet: N x C— CandG: N x C— N by

A—f(p)
Xf(p)

Then, sincef e I?(X) (and henceXf e I'(X)), Proposition 3.1 gives that
t(gk(p), ») = t(p, 1) — t and hence that

Ggk(p). 1) =g "™ o gk(p) = G(p. h).
ThusG defines a holomorphic mafi : (N/X) x C — N by
H(R,(X),A) = G(p, A).

T(p,A) = and G(p,») :=gi"P(p).

Now
7% foHR, X)W =mx f(g""(p)
= (R,(X), f(p) +T(p, DXf(p))
= (Ry(X), %)
and

Hom x f(p) = H(R,(X), f(p))

— g;([’qf([’))(p)

ThusH = (7 x f)~*and hencer x f is a biholomorphic map.



A General Notion of Shears, and Applications 539
(4) We have

d
(mr x (X)) = 7| X fogyoHR,X),A)
tli—o

7 x fogiogi” (p)

N E t=0
d
= (Ry(X), f(p)+t(p, MXf(p) +1Xf(p))
t=0
= Xf(p)ox,
SO now
(@ X (fXNR,(X), 1) = (H* )R, (X), A) - (T x a(X)(Ry(X), 1)
= AXf(x)0,.
Takingy (R, (X)) = Xf(p) finishes the proof. O

As a corollary, we obtain the following proposition.

ProposiTiON 3.6. LetX € X (M) be complete, and define

Xx.m = m {Xf =0}, Nx.m = M\Zx M.
fel?(X)

(Note thatNy s is an open subset @f, which is either empty or dengelhen for
eachp € Nx u, R,(X) is biholomorphic tcC. In particular, if X has a nontrivial
second integral, then almost every orbitXfis biholomorphic taC.

Suppose we can sol& = ¢ € I%(X). Then Theorem 3.5 tells us thAy X is
a complex manifold, an&v (= M\{¢ = 0}) is biholomorphic toN/X x C. It
follows that if M is Stein therW/X is itself Stein (sinceV is Stein). In the case
wheregp = 1, the converse is also true.

THEOREM 3.7. LetX € X»o(M) be a complete vector field whose orbits all are
biholomorphic toC. Suppose&?/X is a complex manifold and: M — M/X is
a holomorphic map. IM/X is Stein, therXu = 1 has a solution.

Proof. If M/X is a (differentiable) manifold and is smooth, therr is a submer-
sion and thus the bundie: M — M/X is locally trivial. Furthermore, it is pos-
sible to select local trivializationgp; : 7 X(U;) — U; x C} such that(g;). X =

0, for all j. Indeed, leto; be a local section ofr: M — M/X over U;. For
eachx € n‘l(U,-), definer = A(x) to be the unique complex number for which
g%(o;om(x)) = x. The dependence afonx is holomorphic because of the holo-
morphic dependence of the flow on initial conditions. &€k) = (w(x), A(x)).
Note thaty; o g5 (x) = (w(x), s + A(x)) and so

d
(@) X(x) = o (7 (x), s + A(x)) = 0.
S ls=0

s=
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Now, since the fibers of our holomorphic bundle &tethe bundle must be an
affine bundle; hence the transition functiong((x))t = pr. o ¢; o (pk_l(x, 1)
(where py, is the projection to the second factor) satisfy

eix ()t = fir(m(x))t + gjx(mw(x)).

Moreover, because of the way tige were chosenfj(w(x)) = 1 for all j, k.
Indeed,

d
Sie((x)) = 5@,&(71()6)% = Prs (@) (9r Did = 1
Next, writing out the identity

@ik © Qr1 0 @ = id

shows thafg;:} is a 1-cocycle ord//X (i.e., Cousin-1 data). Sind¥/X is Stein,
gjr = & — 8. One checks easily thag,} is a sectionofr: M — M/X. It fol-
lows thatr: M — M/X is actually a line bundle, since we can use the section
{gx} as an origin for each fiber. Precisely, we can define the transition functions

P (m(x)v := @i ((x)) (v + gr (7 (x))) — g; (7w (x)).
Then
Pir(w(x)v = fix(m(x))(v) + @jr (7w (x))(gr (7w (x))) — g (7w (x)) = fir(w(x))(v)

sothat, sincgjy =1, n: M — M/X is trivial. We now define (in the usual way)
the global trivializationF: M — (M/X) x Cby F := 7 x ¥, where

Y(x) = pr o ¢j(x) — g;((x)) for x e x H(U)).

The functiony is well-defined, since fat € U; N U, we have

P, 0 @;(x) — g (x)) = P, © @; o 9 (x (x)) — g (T (x))
= @i (m(@r(x))t — g;(mw(x)) Wheret = pri(gi(x))
=1+ g(m(x)) — g(m(x))
=1 — g(m(x))
= Ppn. o @k (x) — g (7 (x)).
It follows that
F.X = 0,.
Settingu(F1(r(x), 1)) = A, we see thaku = X(F*(F.u)) = (F.X)(Fu) =1,
as required. 0

REMARKS. (1) A more careful look at the proof shows that one does not need
M/X to be Stein, but only that#*(M/X, O) = 0.

(2) Theorems 3.5 and 3.7 explain in part why it was so much easier to prove
density theorems for spaces of the fomnx C.
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ExampLE 3.8. Let

b

X(x) = ady + cdg € Xo(SI2,C)), x = (i b

) e Sl(2, C).

Note thatX is a left invariant vector field on &, C) whose orbits are closed and
biholomorphic taC. Hence S2, C)/X is a complex manifold. Nevertheless, the
equationXu = 1 has no global holomorphic solutions. Indeed2SC) is homo-
topy equivalent (by the Gram-Schmidt algorithm)stt(2) = §3, which is a cell
complex of dimension 3. It follows that &, C) is not biholomorphic ta3 x C,

for then B would be a Stein 2-fold with 3-dimensional cells, a contradiction. (Itis
interesting to note, however, that= (ab + ¢d)/(|a|? + |c|?) is a real analytic so-
lution and that th&-fibration S(2, C) — Sl(2, C)/X is real-analytically trivial.)

4, (M?, w)

Recall that we define

1
M?=C%:\{xy=1 and o= 1dxAdy.
X

In this section we prove Theorem 1.

Notation and Facts

It will be convenient to write; = xy — 1. As we mentioned beforel/? admits
two everywhere independent complete vector fields,

X(x,y) =29, and Y(x,y) = zd,.

Sincez does not vanish o2, it is clear that every holomorphic vector field on
M?is of the form fX + gY for somef, g € O(M?). We note also that

H(x,y) = xd, — yd,

is a complete holomorphic vector field with zero divergence. One can integrate
X, Y, and H to see that every orbit af andY is biholomorphic toC* and that

this is also the case for every orbit Bf except for its single fixed point at the ori-

gin of C2. HenceX, Y, andH have no nontrivial second integrals. The following
facts are easily computed:

[H,X]=X, [H Y]=-Y, [X Y]=:zH,
xY —yX =zH,
Xx=0, Xy=2z Xz=uxz
Yx=2z, Yy=0, Yz=yz,
Hx =x, Hy=-y, Hz=0.
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LemMA 4.1. Everyg € O(M?) is of the form

p(x,y) = f(x,y,2)
for somef € O(C? x C*).
Proof. The mappingj: (x, y) — (x, y, z) gives a proper holomorphic embed-

ding of M2 into C2 x C*. Itis thus a standard fact (Theorem A) tiatM?) =
O(C? x C*)| 2. O

Thus the Laurent polynomials

Z cpxiz ! + Z duy*z ™ + Z ez + Z fiexly*

j, =0 k,1>0 >0 k,1>0

are dense i¥(M?). We shall call such Laurent polynomiaksduced.

The Key Lemmas

LemMA 4.2. Letj and k be nonnegative integers. Then, for some polynomial
p(x, y), there is a divergence zero completely generated vector field of the form

Xy X + p(x, y)Y.
Proof. SinceXx = 0, x/X is complete, which proves the claim for= 0. Note
next that, sinc&y = 0, y'Y is complete, and hence (as a computation shows)
[V*Y. x/X] = (j + Dy X — /7y X+ pa(x, )Y
is divergence zero completely generated. The result follows by inductibn dn

This lemma has a corollary which is of independent interest gldetnote the Lie
algebra of all holomorphic vector fields 6P that vanish or{xy = 1} and have
w-divergence zero.

CoroLLARY 4.3. The Lie algebrgy has the density property.

Proof. Note first that the set of divergence zero vector fields of the form
p(x, )X + q(x, y)Y is dense irg for polynomialsp andg. Let V be one such
vector field. By Lemma 4.2 there exists another such vector¥ighlthich is com-
pletely generated, such thdt— W = p,(x, y)Y. But since O= div(V — W) =
Y(p1), V— Wiscomplete. Thu¥ = W 4 (V — W) is completely generated, as
desired. O

The following identities are obtained by simple computations, the last two most
easily proved using the commutation relations given above. We omit the details.

—727'H = yz7'X + (%)Y,
[z7'H, y*Y] = y* 270X + ()Y,

[x/X,z7'H] = Ixz7 90X + (1 — j — Dx/z7'X + (0)Y.
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Here and in what follows, the symb6t) means a polynomial ir, y, and ¥/z.
Using the first identity, we have the following lemma.

LemmMma 4.4. For eachl > 1, there exists a complete divergence zero vector field
of the form
yZ X + ()Y,

Using the second identity, we have the following.

LemmMma 4.5. Foreachl > 2andk > 0, there exists a divergence zero completely
generated vector field of the form

Y27l 4 (%)Y,
Using the third identity, by induction we have the following lemma.

LemMma 4.6. For each! > 2andj > 0, there exists a polynomial(x) and a
divergence zero completely generated vector field of the form

YZTX + p(0)z27X + (%)Y,

LEmMA 4.7. Suppose thap and g are polynomials in one variable, that €
O(M?), and that

Vix,y)

_ p(x) Jrzyq(y)X + el )Y

is a divergence zero vector field. Ther= 0 andgq is constant.

Proof. The vanishing divergence &f is equivalent to the closedness of the holo-
morphic 1 formd = iyw. An easy computation shows that

_r(x0) +yq(y)

0= dx + g(x,y)dy.

It follows from Stokes’s theorem that, 4t is a smooth 2-manifold with boundary,

then
/ 6 =0,
Q2

Fory e C* lety,: [0, 27] — M? be defined by

(@) = (" +Dy,y™.
Note that

ye' dt

/ o= / 2 p((A+ ) + UM/
¥y 0 et
=2mi(yp(y) +q(1/y))

Fix yp andy; in C* and letg: [0, 1] — C* be any smooth curve withB(0) = yq
andB(1) = y;. Then

Qyoy = { s @ | (t,5)€[0,1] x [0, 2] }
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is a smooth cylinder in/2, and
02 = yyo Uyy,.

Sinceyo, y1 were arbitrary, it follows that the Laurent polynomigd(y) + ¢(1/y)
is constant and hence that= 0 andg is constant. This completes the proof.

Proof of Theorem 2LetV = fX + gY be a holomorphic vector field witfi andg
reduced (see the remark following Lemma 4.1) Laurent polynomials. By Lemmas
4.2, 4.5, and 4.6, there exists a divergence zero completely generated vector field
Wi such thatV — Wi = ((p(x) + yq(¥))/2) X + (x)Y. According to Lemma 4.7,

p = 0 andg is constant. Hence, by Lemma 4.4, there is a complete vector field
Wo such thatV — Wy, — W» = h(x, y)Y for someh € O(M?). But sinceYh =
div(hY) =0, V — Wy — W is complete. Hence

V=Wi+ W+ (V- Wi— W)

is divergence zero completely generated, as desired. O

As mentioned in Section 1, it is not known whether there exists a single automor-
phism f of M? such thatf*» # 4. However, this difficulty is immediately
lifted by “stabilizing” M2. Theorem 2 and the main result 1.3 in [V1] imply the
following.

COROLLARY 4.8. M? x C has the density property.

5. SI(2,C)

In this section we will prove Theorem 2.

Notation and Facts

The complex Lie group %2, C) will be represented as the set of allk22 ma-
trices with complex entries having determinant 1. We will write the members of
Sl(2, C) as

A:(“ b) with ad — be = 1.
c d

We shall user, b, ¢, d as coordinates o84, in which we will think of Sk2, C) as
a submanifold. The canonical basis of left invariant vector fields will be employed
throughout. These are

X(a,b,c,d) = ady, + ciy, Y(a,b,c,d) = bd, + do,,
H(a,b,c,d) =ad, — bdy + cd, — diy,.
The relevant commutation relations are
[H,X]=2X, [H,Y]=-2Y, [X,Y]=H.

Of course X, Y, and H areC-complete, being left invariant.
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SinceX, Y, andH trivialize the tangent bundle of &, C), an arbitrary vector
field V € X (SI(2, C)) may be written as
V=VxX+ WY+ VygH, Vx, Vy,VgeO(SI2,C)).
We then define
div(V) :=XVx +YVy + HVy.

The operator div X» (Sl(2, C)) — O(SI(2, C)) is, up to a constant, the usual di-
vergence operator associated to any left invariant holomorphic 3-form@nSl.
Consequently, for any holomorphic functignand vector field&/ andV, it satis-
fies:
(i) linearity;
(i) div(fV) = Vf + fdivV; and
(ii) div[U, V] =UdivV — VdivU.
We shall also have occasion to use the right invariant vector fields@nS).
The canonical basis is
X = co, +doyp, y =ad. + by,
h =ad, + bd, — co, — do,.
It is useful to note that
x =d?’X — %y + cdH,
y = —b?X + a’Y — abH,
h =2bdX — 2acY + (ad + bc)H.
Finally,
'X)=(a,c), I'Y)=(bd),

INH) = (a"b*c¢"d' |m+n—k—1=0).

Every orbit of H is biholomorphic toC*, so I?(H) = I*(H). For X andY, the
relevant facts about? are thatXs = a andXd = ¢ and thatfYa = b andYc =

d. We will not need anything about the second integrals of right invariant vector
fields, but we will use the facts tha&t(x) = (c, d), I*(y) = (a, b), andI*(h) =
(a™b*c"d' |m+k —n—1=0).

The Volume Density Property

The volume density property for &, C) follows immediately from the following
theorem.

THEOREM 5.1. Every divergence zero polynomial vector fieldsi2, C) is di-
vergence zero completely generated.

We shall now prove this theorem. The proof involves many steps, and must be
broken up into cases. These cases are isolated according to certain values of an
index of monomials. We call this index thé-index, and define it as
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indy (a™b*c"d"y :=m —k +n —1.
Note thatH (a"b*c"d") = indy (a™b*c"d"Ya™b*c"d". A polynomial ina, b, c,
andd will be called H-homogeneous of degreeif the H-index of each of its
monomials is. We note that-homogeneous polynomials is a concept that de-
scends to §2, C)—that is, when we identifyd — bc and 1. Let us further point
out that, whereas nonzero constants hdvindex 0, zero has every integer as its
H-index. Finally, note thakX raises theH -index of anH-homogeneous polyno-
mial by 2, and that lowers theH -index of anH-homogeneous polynomial by 2:
H(X(a"b*c"d")) = XH(a"b*c"d") + [H, X](a"b*c"d")
= (indy (a™b*c"d") + 2) X (a™b*c"d");
H(Y(a"b*c"d")) = YH(a"b*c"d") + [H, Y](a™b*c"d")
= (indy (a™b*c"d"y — 2)Y(a™b*c"d").
Finally, we leave it to the reader to check that completeness holds where necessary.
LeEmMMA 5.2, Leta™b*c"d! be a monomial o -index different from-2. Then
there exists a completely generated polynomial vector field of the form
a”b*c"d'xX + pla,b,c,d)H.

We shall simultaneously prove the next lemma.

LemMA 5.3. Leta”bkc"d! be a monomial off-index different fron2. Then
there exists a completely generated polynomial vector field of the form

a"b*c"d'Y + p(a,b,c,d)H.
Proof. We mark the end-of-proof of each case by the syniibol

Case 1(X, indy > 0): Let m1, mo, n1, n, be nonnegative integers such that
mi—k+n —1=0,my+mo=m, andny +no, = n. Then

[a'”lbkc'”le, ac"X] = (my+ny+ 2)a"b*c"d'X + pH. [ |

Case 2(Y,indyg < 0): Let kg, ko, I1, 12 be nonnegative integers such that
m—ki+n—101=0,ki+k,=k,andl;+ 1, =1. Then

[b*2d'2y, a™b*ic"d""H] = (ky + 1o + 2)a™b*c"d'Y + pH. [ ]
In the remaining cases, the following identities will be very useful:
[a™b*cd"H | [b*2d'2Y, aX]]
= [a"b"c"d""H, b*2+d"2X — a(kpad + lobe)b*2~1d'2~Yy + pH]
= (1—ky— lz)(ambk1+k2+1cndl1+12X
— a(kad + lobc)a™britke=lenglitla=ly)
+ pH; @
[a™c"d"“H, [d"?Y, cX]] = [a™c"d"H, d"?* X — 15c2d"?7YY + pH]
= (L= ) (@"c"dlHH Y — [y n+2glitie-ly)

+ pH. (2)



A General Notion of Shears, and Applications 547

Case 3(X,indg < —4, k > 0): Let ki, kp, 11,1, > 0 be such that
m—ki+n—-101=0k=k+k,+1 andl =11+ 5. Sincem —k+n—1 <
4,1+ m—(kg+k,—1) +n—({1+1>,—1) <0. Thus, using identity (1), we
can (via case 2) eliminate thecomponent. |

Case 4(X,indy < —4,k =0): Letly, [, > 0besuchthats +n -1, =0and
I=hL+I,+1 Sincem+n—1 <-4 wehaven+ n+2)— (1+1, -1 <O0.
Thus, using identity (2), we can (again via case 2) eliminat&tbemponent. B

Case 5Y, indg > 4): This case can be handled like cases 3 and 4, using appro-
priate modifications of the identities (1) and (2) and using case 1 instead of case 2.
Specifically, one interchanges the rolesXofindY, of a andd, of b andc, of m
and!/, and ofn andk. The details are left to the interested reader. |

Case 6(X, indy = —1, k > 0): With k, = I, = 0, identity (1) takes the form
[a"b*c"d'H, [Y, aX]] = a™ b e"d'X + pH.
Lettingk = k1 + 1 finishes this case. [ |
Case 7(X, indy = —1, k = 0): With I, = 0, identity (2) takes the form
[a"b*c"d'H, [Y, aX]] = a™b*c"d"" "X + pH.

Letting! = I; + 1 finishes this case. [ |
Case 8(Y,indy = 1): Again, just use calculations analogous to those of cases

6and?7. ]
Case 9(X,indy = —3): Using identities (1) and (2) and case 8, we can

eliminate theY components, which havB-index 1. Notice that, in this case,

l—ky—1,#0. |
Case 1Q(Y, indy = 3): This case is analogous to case 9. [ |

This completes the proof. O

Lemmas 5.2 and 5.3 become false if the index conditions are removed. Fortu-
nately, this is not necessary in order to proceed.

LEMMA 5.4. Leta™b*c"d"' be an index—2 monomial. Then there exists a com-
pletely generated divergence zero polynomial vector fietaf the form

V =a"b*c"d'X + (%)Y + (%) H.

Proof. First, let us call a monomial”b*c"d" (a, d)-reducedif eitherm or! are
zero. Every polynomiap on Sk2, C) can be written uniquely as a linear combi-
nation of(a, d)-reduced monomials. Furthermogeis (a, d)-reduced if and only
if, for every left invariant vector field., Lp is (a, d)-reduced.

Casell > 0, m = 0): HereV = b*c"d'X + (x)Y + (x) H. We thus need only
note that
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1
n+1
This finishes case 1. [ |

[b*d!7Yy, c" X = b*c"d'X + (%)Y + (%) H.

Case 21 = 0): We may assume that = a”b*c"X — pY + (x) H, wherep is
an(a, d)-reduced H-homogeneous polynomial &f-index 2. Now,

0=divV = ka"tp* 1" — Yp,

and soYp = ka™*+h*~1c". Note that everya, d)-reduced monomial component
of p must therefore be of the form”'b*'. It follows thatn = 0 and thatp is

a monomial, which must b€ 'b*". The index conditions then becomg =

k' + 2 andm = k — 2. Next, comparing exponents &p anda”'b*~% we see
thatm’ = m + 2. Hence, if diw = 0 thenV is restricted to be of the form

V = (ab)"b*X — (ab)"a’Y + (x)H.
It follows that
V+ (ab)"y = (%)H,

soV is in fact complete modi. This finishes case 2 and thus also the proof of the
lemma. O

LemMma 5.5. Let p be a nonzeroH-homogeneous polynomial éf-index 2.
Then there is no divergence zero vector field of the fp¥m- gH.

Proof. SinceYp is of H-index 0, so isHg. But sinceH preservesi-index,q is of
H-index 0. HenceHg = 0, so thatYp = 0. But every nonzero first integral of
has nonpositivé?-index. Sincep is of H-index 2, it must vanish identically.[J

Proof of Theorem 5.1Let V be a polynomial vector field of zero divergence. By
Lemmas 5.2, 5.3, and 5.4, there is a divergence zero completely generated vector
field W such thatv — W = pY 4+ gH, wherep is anH-homogeneous polynomial

of H-index 2. By Lemma 5.5p = 0. ThusHgq = 0, and sagH is complete. We

see thaV = W + gH is divergence zero completely generated, as desired)

The Divergence Lemma

LemMma 5.6. LetV € Xn(Sl(2, C)) be a polynomial vector field. Then there
exists a completely generated polynomial vector figld X (SI(2, C)) such that

divw =divV.

Proof. The image by div of the polynomial vector fields is spanned by the follow-
ing polynomials:

(i) div(a™b*c"d!X) = a™c"X(b*d"),

(i) div(a™b*c"d'Y) = b*c'Y(a™c"), and
(iii) div (@™b*c"d'H) = H(a™b*c"d").
Herem, k, n, andl range over all nonnegative integers. We need only show that
each of these polynomials is the image by div of a completely generated vector
field. To this end, observe that
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. 1
duv[a"’c”x, k—H(kabk’ldl +lbkcdll)Y} =a"c"X(b*dh
and that
) 1
dlv|:bkdlY, ———(ma" e + namc”ld)X] = bkl (a™c™).
m-+n

This takes care of cases (i) and (ii). Case (iii) is only slightly more detailed. To
handle it, leti = m +n —k — 1. If j = 0, thenH(a™b*c"d") = 0 and so there

is nothing to do. Suppose that> 0. Letmj, m2, n1, n, be nonnegative integers
such that:

(@) m = m1+ my andn = n; + ny; and
(b) mi—k+n—1=0.

It follows thatm, + np, = j. Then

div|:a’"1bkc"1d[H, (maa™ e + ngamzcnz_ld)Xi|

mo + ns
= a™bkc"d H(a™2c"?)
= H(a"b*c"d").

Finally, if j < O, letky, ko, [1, I, be nonnegative integers such that:

(@) k=ki+kzandl =1; +I5; and
by m —ks+n—-1;=0.

Thenk, + [, = —j and we have

diV[a’”b"lc”d“H, (kpab*2~%d'2 + lzbkzcdlzl)Y]

ko + 1>
— ambklcndllH(kad/z)
= H(a"b*c"d").

The reader may confirm directly or via the ideas in Section 3 that all of the vector
fields used were complete where required. This completes the proof. O

Proof of Theorem 2Let U € X»(Sl(2, C)) be a polynomial vector field. By
Lemma 5.6 there exists a completely generated vector fiekd X (SI(2, C)),
which is polynomial, such that d&/ = divU’. SinceV := U — U’ is a polyno-

mial vector field with zero divergence, itis (by Theorem 5.1) completely generated.
HenceU = U’ + V is completely generated, and Theorem 2 now follows from
the density of polynomial vector fields itip (SI(2, C)). O

6. Elliptic Microspray Manifolds

In this section we explore more fully the density and volume density property on
spaces of the formi4 x C. The case in whichV is a complex Lie group was
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already handled in our note [V1]. The proofs of the density theorems in this sec-
tion are very similar to those in the less general case [V1], and thus will be very
sketchy. The main point here is to broaden the class of such complex manifolds
M in hopes of giving insight into the density and volume density property.

Definitions and Examples

DerINITION 6.1.  Anelliptic microspray(EM) manifold is a complex manifold
M with the property that—for any € X» (M), compactk € M, ande > 0—
there exist functiongy, ..., f, € O(K) andC-completely generated vector fields

X1, ..., X, satisfying
”V—ijXjHK < &.

It is also useful to consider slightly more restrictive structures.

DEFINITION 6.2. AnEMV (V for volume)manifoldis a pair(M, w), whereM

is a complex manifold and is a holomorphic volume element o, with the
property that—for any € X» (M), compactk € M, ande > O0—there exist
functions f1, ..., f, € O(K) and divergence zero completely generated vector
fields Xy, ..., X, satisfying

[v-Xx, <

Of course, every EMV manifold is EM. The terminology we have chosen is in-
spired by that in [G].

ExampLES. (1) Every complex Lie groug; is EMV. Indeed, the left invariant
vector fields, which are all complete, parallelize the tangent bundle eb every
vector field can be written in the forfn f;V;, where f; € O(G) and{V;} is any
fixed basis ofy = Lie(G). Moreover, div)_ f;V; = > V;f;, so every left invari-
ant vector field has zero divergence.

(2) Every Stein complex homogeneous space is EMV. Indeed; ket a com-
plex Lie group and{ a closed complex subgroup such that= H\G = { Hg |
g € G }is Stein. The left invariant vector fields an will project to M, as will
the left invariantk-forms (k = dim¢ M). Let V be the vector space spanned by
the projection toM of the left invariant vector fields o. All of these vector
fields have divergence zero with respect to any nonzero volume element coming
from a left invariantt-form on G. Our claim is then proved if we can show that
Xo(M) = O(M) ® V. To see the latter, consider the following short exact se-
guence of coherent sheavesdn

0-S—-0QV —> Xp— 0.

HereQ is the structure sheaf amtl» is the tangent bundle sheaf. The sequence
gives rise to a long exact sequence in cohomology, a portion of which is

HO®V,M)—> H%Xo, M) > HXS, M).

SinceM is Stein,HX(S, M) = 0 and our claim follows.
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Density Theorems

Ouir first result is a stable volume density property theorem for EMV manifolds.

THEOREM 6.3. If (M, w) is an EMV manifold, theiM x C, w A dz) has the
volume density property.

Proof. First, forX e Xo (M), let V = z"X + (x)d, be a divergence zero vector
field. We can assume (by approximation) that= ) ¢;Y;, with Y; € Xo (M, w)
divergence zer@-completely generated. Now

[L/(n +Dz""Y;, 0;0.] = 2"9;Y; + ()9,

is clearly divergence zer@-completely generated; henééis divergence zero
C-completely generated moduly. That is, there exists a holomorphic vector
field W that is divergence zeiG-completely generated and has the property that

V — W = ¢(x, z)9,. Butthen O= div(V — W) = 9,¢, so thatV — W is com-

plete. HenceV = W + (V — W) is divergence zer@-completely generated.
Since every divergence zero vector field can be approximated by sums of vector
fields of the same form ag, we are done. O

The next result is that EM manifolds with holomorphic volume elements are sta-
bly EMV.

ProrosiTION 6.4. If M is an EM manifold and is a nonvanishing holomorphic
volume element o, then(M x C, o A dz) is EMV.

We shall need the following lemma.

LEMMA 6.5. LetM andw be as irJ Proposition 6.4. IXK € Xo (M) is (C-) com-
pletely generated, then there exi&ts Xo (M x C, w A dz), which is divergence
zero completely generated, such that

X — X = (%)0..

Proof. First note that, ifX € X»(M) is complete, then so i¥ — z(div,, X)d,.
Moreover, the latter has zefe A dz)-divergence. Next notice that

X+, +Y + ()3, =X+Y + (%0,
and that
[X + (%), Y + (%)3,] =[X, Y] + (%)0,.

The lemma follows easily from these facts. O

Proof of Proposition 6.4Let X € Xo(M x C, w A dz) be written asX =

Y 2V, + (%)d., whereV; € Xo(M). By approximation, we may assume that
the sum is finite. Sincé&/ is EM, we may write (again, up to approximation)
V; = >, fixSit, where theS;, € Xo(M) are C-completely generated. Now,
for eachSj,, the lemma guarantees a divergence zero completely genéyated
Xo(M x C, w A dz) such thatS;, — S‘jk = (*)d,. It follows that (up to approx-
imation)
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X = szfjkgjk + (%)a,
Jjk
which is exactly what was needed. O

Using main result 1.3 in [V1], one immediately obtains the following.

CoRroLLARY 6.6. If M is a Stein EMV space, the¥l x C has the density prop-
erty. If M is a Stein EM space and admits a holomorphic volume element, then
M x C? has the density property.

7. A Question

The results in Section 6 suggest the following natural question:
Is there a difference between the volume density property and EMV?

To date, in all the examples for which we have been able to settle this question,
the answer is No. If this answer can be established in general, it would represent a
major breakthrough. However, it is by no means clear what the answer is. Again,
one needs candidates for testing. We propose one now. Let

»3:={(a,b,c,d)eC*|a’d —bc =1};

¥ 3 is a smooth subvariety @ and is also a branched double cover qPSC).
Moreover,x 3 admits some interesting complete vector fields:

X =a%d +cds, Y =bd, +2add,,

H = ad, — 2bdy + 2¢d. — 2dd,
correspond to the left invariant vector fields of&IC), and
£ = a®d, + biy, n = co, + 2addy,

0 = ad, + 2bdy — 2¢d, — 2dd,

correspond to the right invariant vector fields ofBIC). Sincex?® is 3-dimen-
sional, we expect some relations between the left and right vector fields. A calcu-
lation shows that

£ =—b?X + 3a® — 2a®bH,  n=2ad?X — c?Y + acdH,
0 = 4bdX — 2acY + (a’d + bc)H.
We define a volume elemef on =2 as follows. Set
Qx =ds, — by,  Qy = 3(ad. — 2¢8,),
Qu = 2(2ads, + 8, — b, — a®s,),

and define2 = Qx A Qy A Qy. Here,8,(0,) =0ifx =b,c,dand1lifx = a,
and similarly fors,, 8., ands,. One can easily compute the following:
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[H,X]=4X, [H,Y]=-3Y, [X,Y]=oaH,
div(X) = div(Y) = 0.

It follows that divaH) = 0 and hence that diytf) = 1. Thus, sincexH van-
ishes whem: = 0, we need more than just, ¥, andH to prove thatz® is EMV.
However, this is indeed the case.

ProposITION 7.1. X3 is EMV.

Proof. It suffices to show thak/ can be written as a suin, f;V; with the V; gen-
erated byX andY. To this end,

ad[X, Y]+ c[Y, [Y, X]] — 3acY = a?dH — c[Y,aH] — 3acY
= a?dH — c¢((Ya)H — a[Y, H]) — 3acY
= (a®d — bc)H + 3acY — 3acY
=H. O

Moreover, we have been able to prove (with considerable difficulty) thagif

has the volume density property, then it has the density property. Nevertheless,
the combinatorics arising in attempts to prove the volume density property by the
methods of Sections 4 and 5 become too cumbersome for us to handle.
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