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1. Introduction

Given a cusped finite-volume hyperbolic 3-manifoldM, each cusp has two nat-
ural invariants associated to it. First, there is the so-called cusp shape, which is
the Euclidean metric on a torus cross-section of the cusp, up to scaling. It can
be described by an equivalence class of parallelograms that correspond to funda-
mental domains for the action of the cusp subgroup on a horizontal plane in the
upper half-plane model. The second natural invariant is the maximal cusp vol-
ume, which is obtained by expanding the cusp until it first touches itself and then
computing the corresponding volume.

In [10] it was proved that the set of possible cusp shapes corresponding to cusps
in hyperbolic 3-manifolds is dense in the set of possible Euclidean metrics on a
torus. In some sense, one expects a panoply of nonisometric cusps in different
manifolds.

However, in [8] and [9], the authors provided examples of manifolds (and orb-
ifolds) with two cusps such that surgery on one cusp leaves the cusp shape of the
remaining cusp invariant. In particular, this generates an infinite set of manifolds,
each with a single cusp having the same cusp shape. In [3] it was demonstrated
that these examples also have the same maximal cusp volume.

Define two cusps in two possibly distinct hyperbolic 3-manifolds to bemaxi-
mally isometricif there is an isometry of the interior of one maximal cusp to the
interior of the other. In particular, this occurs if and only if both the cusp shape
and the maximal cusp volume are the same for the two cusps.

In this paper, a list of “generic cusps” is provided and defined up to maximal
isometry such that one can choose one of these cusps and then—by removing three
disjoint simple closed curves from any closed 3-manifold or two disjoint simple
closed curves from any cusped hyperbolic 3-manifold—the resulting manifold is
hyperbolic and one of the new cusps is maximally isometric to the chosen cusp.
The set of generic cusps contains a large variety of cusps, including ones of max-
imal cusp volume 4, 6, 2

√
3, 2(1+√3), and 8

√
3/5. Moreover, if one removes

four disjoint simple closed curves from a closed hyperbolic 3-manifold, or three
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from a cusped hyperbolic 3-manifold, then one can realize cusps of maximal cusp
volume 8, 10, 2

√
7,
√

11, and
√

15, among others.
In essence, we are cutting open the original manifold and inserting a rigid sub-

manifold, a so-calledwalnut, that contains the cusp in question. The shell of
the walnut is made up of two twice-punctured disks that protect the interior from
deformation.

Thus, for example, one sees that the labeled component of the hyperbolic link
complement shown in Figure 1 has cusp of maximal isometry type completely de-
termined by the fact that another component wraps around it. The rest of the link is
essentially irrelevant. The maximal isometry type of this cusp would be preserved
no matter where we inserted this link component and its wrapping partner in this
or any other link complement. This maximal cusp will have volume 4, meridian
of length 2, longitude of length 4, and meridian and longitude at right angles.

Figure 1 Maximal isometry type of cusp completely determined

The particular walnut just described seems to appear in hyperbolic 3-manifolds
in a natural context. IfM is a hyperbolic 3-manifold, it is known that the com-
plement of the shortest geodesic is another hyperbolic 3-manifold. Utilizing the
SNAPPEA hyperbolic structures program, Thurston [11] noticed the following
fact. Starting with a finite-volume hyperbolic 3-manifold, if one repeatedly re-
moves the shortest geodesic, replacing the previous manifold with a complete hy-
perbolic manifold at each stage, then empirically the shortest geodesic becomes,
in a finite number of steps, one of complex length 2.122. . .±1.809. . . i (where the
real part is the length of the geodesic and the imaginary part is the twist angle).
From that point on, all subsequent removals of the shortest geodesic leave the re-
sulting shortest geodesic of this same complex length. Walnuts give a plausible
explanation for this phenomenon, as follows.

Suppose that a sequence of shortest geodesics has been removed and, in the pro-
cess, a walnut of the type described in Figure 1 occurs. That is to say, there is a
single component bounding a twice-punctured disk and then another component
that bounds a twice-punctured disk, with both punctures coming from the first
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component. In fact, this walnut is a Borromean rings complement that has been
cut open along a twice-punctured disk. As such, it contains two shortest geodesics
of length 2.122. . .±1.809. . . i. If these are the shortest geodesics in the overall
manifold, then the removal of either one yields a manifold that is the same as the
previous manifold—except that a Whitehead link complement that has been cut
open along a twice-punctured disk has been glued in, sharing one twice-punctured
disk with the previous walnut and creating a larger walnut. In particular, the short-
est geodesic inside this new expanded walnut has the same complex length as
before. The removal of the geodesic has had no impact on the manifold outside
the walnut, since it is shielded by the two twice-punctured disks. As we repeat
this process, we continue to glue in Whitehead link walnuts, leaving the length of
the resulting shortest geodesic unchanged. This process continues on forever.

Although there is not yet a proof that this phenomenon in particular is occur-
ring, one can use SNAPPEA to see that, in any given case, if enough removals of
shortest geodesics have been performed to reach the length 2.122. . .±1.809. . . i
then each subsequent removal increases the volume of the manifold by 3.6638. . . ,
which is the volume of the Whitehead link complement.

In Section 2, we list some of the generic cusps occurring in walnuts that are
available. In Section 3, we prove that certain modifications to a cusped hyper-
bolic manifold will preserve its hyperbolicity. Section 4 is devoted to a proof of
the main result that these generic cusps can be inserted by removing three or four
simple closed curves. In Section 5, we generalize to remove a handlebody and two
cusps from a closed hyperbolic 3-manifold or a handlebody and one cusp from a
cusped hyperbolic 3-manifold, so that the resulting manifold has a totally geodesic
boundary of specified isometry type. This generates a variety of new examples of
infinite sets of manifolds, all with isometric totally geodesic boundaries. Previous
examples appeared in [9] and then [6].

This paper could not have been completed without the aid of the hyperbolic
structures program called SNAPPEA that was written by Jeffrey Weeks [12].

2. Generic Cusps

In this section we introduce a set of cusps, denotedC, that will be our generic
set. There will be two types of such cusps, modeled on the cusps appearing in two
types of link complements. A Type I cusp will correspond to a cusp that appears
somewhere in the tangleT in Figure 2a. The bands that enter and leaveT to the
left and right represent a set of parallel strands. A Type II cusp will correspond
to a cusp that appears somewhere in the tangleT in Figure 2b, possibly including
the strands that come out ofT .

In both cases, our primary concern is that the particular cusp, when maximized,
does not intersect the twice-punctured disk denotedD (which, in these figures, in-
cludes the point at∞). This will allow us to cut the link complement open along
D while preserving the maximal isometry type of the cuspC. In essence, the max-
imal cusp resides in a protective walnut once the manifold is cut open. Ultimately,
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Figure 2 Types of generic cusps

we will cut another manifold open along another twice-punctured disk and then
insert this walnut. Since a twice-punctured disk is totally geodesic in a hyperbolic
3-manifold (see e.g. [1]), one can identify the lift of the twice-punctured disk in
the horoball diagram provided by the SNAPPEA computer program (see [4] and
[12]) for any particular link and so determine whether or not the maximal cusp in-
tersects it. With the exception of the volume 6, 4, 8, and10 cusps in Figures 3b, 4a,
5a, and 5c (respectively), each of the maximal cusps labeled in Figures 3, 4 and
5 does not intersect the twice-punctured diskD. In the remaining four cases, the
twice-punctured disk is tangent to the maximal cusp at a point of tangency of that
cusp with itself. However, these maximal cusps touch themselves at (resp.) 4, 2,
8, and 5 points, only one tangency point of which occurs on the twice-punctured
disk. Hence, when these link complements are cut open alongD, the fact that
the maximal cusps still touch themselves at other points will prevent the maximal
isometry types of these cusps from changing.
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Figure 3 Generic cusps of Type I in the setC

The labeled cusps in Figure 3 and 4 are generic cusps in the setC. The labeled
cusps in Figure 5 are generic cusps in a set denotedC′.

In Figure 6 there is an example of a maximal cusp that does pass through the
twice-punctured diskD. To get from one link complement to the other, one can
cut the first complement open along what would be the diskD, rotate a half turn,
and then reglue. Here, the maximal cusp corresponding to the particular labeled
component in the first link passes through the twice-punctured disk, so when we
cut open along the twice-punctured disk, twist a half-twist, and reglue, we change
the cusp volume. There is no cocoon. In the second link complement, the maximal
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Figure 4 Generic cusps of Type II in the setC

cusp just touches the twice-punctured disk but does not pass through it. Although
that situation occurs for four of the cusps appearing in Figures 3, 4, and 5, those
cusps had additional points of tangency. Here, there is only one point of tangency
for the maximal cusp with itself, and it occurs on the twice-punctured disk. So
when we cut open along that disk and glue the resulting manifold into another
cut-open manifold, the maximal cusp volume of this cusp can change. This is the
only example of a cusp of Type I or Type II where this phenomenon has been seen
to occur. In all other cases, empirical evidence suggests that the maximal isometry
type of the cuspC is preserved when the link complement is cut open alongD.

3. Cutting and Pasting

In this section we prove the following theorem, which will be of use when han-
dling cusps of Type II.

Theorem 3.1. LetM be a finite-volume hyperbolic3-manifold containing a sub-
manifoldM ∗ bounded by a quadruply punctured sphereF such thatM ∗ is homeo-
morphic to the complement in the ball bounded byF of the tangle in Figure 7a.
Then ifM ∗ is replaced inM by the submanifold that is the complement of the
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Figure 5 Generic cusps in the setC′, when more curves can be
removed from the manifold

tangle in Figure 7b, the resulting manifoldQ is hyperbolic unless one of the fol-
lowing cases occurs:

(a) there exists another cuspU in M as in Figure 8; or
(b) M is the complement of a link as in Figure 9.

If case (a) does occur, then replacing the submanifold bounded byF as in
Figure 8 with the complement of the tangle in Figure 7b results in a hyperbolic
manifold—unlessM is the complement of the Borromean rings or the complement
of the sibling of the Borromean rings as appear in Figure 10.
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Figure 5 (cont.)

Proof. Suppose first that neither cases (a) nor (b) in the statement of the theo-
rem occurs. Since a thrice-punctured sphere (pictured in Figure 7a as the twice-
punctured diskD that is bounded by the trivial link component) is always totally
geodesic, take the geodesicg that lies in the twice-punctured diskD, begins and
ends on that link component, and separates the two punctures. Lemma 2.3 of [2]
implies that Theorem 2.2 of [2] applies tog. Hence, there is a simple closed curve
γ that can be removed fromM so that the resulting manifold contains a twice-
punctured diskD ′ with boundary a longitude of the removed curve and punctures
corresponding to meridians of the cuspC. In fact, we would like the simple closed
curveγ to correspond to traveling parallel tog on one side ofD, then around a
meridian ofC, and then parallel tog on the other side ofD and then around an-
other meridian ofC. In other words, we want it to be the case that the manifold
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Figure 6 Cusps can intersect the twice-punctured diskD

F

F

a) b)

Figure 7 Replacing a) by b)

Q obtained fromM by replacingM ∗ by the complement of the tangle in Figure 8
is hyperbolic. This requires us to extend the proof of Theorem 2.2 of [2] to show
that the complement ofγ in M is hyperbolic. That proof relies on Theorem 2.1
of [2]. Conditions 2 and 4 of the hypotheses of that theorem are satisfied byγ ;
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Figure 8 Cusp can be isotoped to lie in a regular neighborhood ofF

Figure 9 This case cannot occur

however, the curveγ might need to be modified in order to satisfy conditions 1
and 3 of those hypotheses.

Condition 1 states thatγ is not contained in a neighborhood of an existing cusp
inM. Suppose this were not satisfied. Such a neighborhoodN cannot correspond
to any of the cusps appearing in Figure 8. LetC ′ be the cusp with such a neigh-
borhood. The boundary of the neighborhood is an essential torusT in M. Since
the cusp does not intersect the twice-punctured diskD, T can be isotoped to avoid
D. By the proof of Theorem 2.2 of [2],D ′ is essential inM − γ. Hence,T can
be isotoped to intersectD ′ only in essential curves onT andD ′. SinceD must
be avoided by these intersection curves, all such are parallel toγ onD ′. There
must be at least one such curve, sinceγ lies in the neighborhoodN. However,
thenγ is isotopic to the outermost such curve inD ′ and is therefore isotopic to a
(p, q)-curve on the boundary of the neighborhoodN. But this implies that Con-
dition (a) in the statement of this theorem is satisfied, a contradiction.

Condition 3 of Theorem 2.1of [2] states that it cannot be the case thatγ is a torus
knot in a solid torusV such that∂V is incompressible inM − int(V ). However, if
this condition is not satisfied, the core of the solid torusV can be removed instead
of γ. As occurs in the proof of Theorem 2.2, the resulting manifold is homeomor-
phic to the manifold obtained fromM by replacingM ∗ by the complement of the
tangle in Figure 8.
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a)

b)

Figure 10 Borromean rings and sibling

Thus, we may now assume that the manifold obtained fromM by drilling out
the additional componentγ is hyperbolic. From [1], we know that the two twice-
punctured disksD1 andD2 appearing in Figure 8 are totally geodesic. If they are
isotopic inM, then it must be the case that the complement inM of the tangle
contained outsideD1 ∪ D2 is a product. This can only occur ifM is a link as
in Figure 9, which cannot occur because we are assuming we are not in case (b).
Thus, the two totally geodesic twice-punctured disks are distinct. Since two totally
geodesic surfaces can intersect only along essential curves and since these two do
not so intersect, they are also disjoint as totally geodesic surfaces. CuttingM−C ′
open along these two disks yields two components. By gluing together the two
resulting twice-punctured disks on the boundary of each component—so that the
result is orientable and the boundary of one disk is glued to the boundary of the
other—we obtain two manifolds, one of which is the complement of the Bor-
romean rings and one of which is the manifold obtained by replacing inM the
submanifoldM ∗ by the complement of the tangle in Figure 7b.

As for the addendum to the theorem, in the event that case (a) does hold, in-
stead of drilling out an additional component we can simply utilize the component
that is already there as ourγ and then repeat the same argument. This shows that
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if that component and the rest of that part of the manifold contained inF are re-
placed by Figure 7b then the result is hyperbolic, unless the rest of the manifold
outsideF is a product. In this case it is a product andM is the complement of
either the Borromean rings or its sibling link, as in Figure 10.

4. The Main Theorem

Theorem 4.1. LetC be a choice of a cusp from the set inC. Then for any closed
3-manifold there exist three disjoint simple closed curves—or, for any cusped finite
volume hyperbolic3-manifold there exist two disjoint simple closed curves—such
that one of the new cusps in the complement of the curves will be maximally iso-
metric toC.

Proof. For any compact 3-manifold without boundary, it is known that there al-
ways exists a simple closed curve such that the complement is a finite-volume
hyperbolic 3-manifold; see [7] (or [2] for an alternative proof ). Thus, choosing
any such curve to remove, one need then deal with only the second possibility in
the statement of the theorem—namely, removing two disjoint simple closed curves
from a cusped hyperbolic 3-manifold.

Let M be a finite-volume hyperbolic 3-manifold with one or more cusps. By
Theorem 2.4 of [2], a simple closed curve can be removed fromM such that the
resulting manifoldM ′ contains an essential embedded thrice-punctured sphereS,

with one boundary curve fromS on the boundary of the new cusp. Call this bound-
ary curve ofS a longitudeof the new cusp.

LetML be the link complement corresponding to the particular cuspC from C
that we wish to create. Suppose, first of all, thatML is of Type I. CutM ′ open
along the thrice-punctured sphereS and call the resultM ′−; cutML open along
the twice-punctured diskD and call the resultM−L . Glue each of the two copies of
S inM ′− to one of the two copies ofD inM−L , calling the resultQ. By results of
[1], the gluings can be done by isometries in such a way that the resulting manifold
Q is orientable and hyperbolic with volume equal to the sum of the volumes ofM ′

andML. Because the thrice-punctured spheres are glued together via isometries,
there is no deformation of the hyperbolic structure onM ′ orML in the creation of
Q. This immediately implies that the cusp corresponding toC inQ has the same
modulus asC. Moreover, since the maximal cuspC either did not intersect the
twice-punctured diskD in ML, or (if it did touchD) did so in a single point of
tangency with itself, and since there were additional points of tangency,C remains
maximal inside the copy ofM−L contained withinQ. Hence there is an isometric
copy of the maximal cuspC contained withinQ. Note thatQ is obtained fromM
by removing two cusps.

Now suppose thatML is of Type II. We will show that Theorem 3.1 can be ap-
plied toM ′. First note that case (a) in the statement of that theorem cannot occur,
for if it did then there would be a disk inM with boundary on the cuspC, a con-
tradiction to the hyperbolicity ofM. Case (b) cannot occur forM ′ either; if it did
thenM would be the complement of the trivial knot and thus not hyperbolic.
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Thus, we know that if we replace a neighborhood of the twice-punctured disk in
M ′ that appears as the complement of the tangle in Figure 7a with the complement
of the tangle in Figure 7b, the resulting manifoldM ′′ is hyperbolic. We can now
cutM ′′ open along the twice-punctured disk in Figure 7b to obtainM ′′−. We now
glueM ′′− toM−L , and the argument repeats exactly as in the previous case.

Note that this proof above immediately extends as follows.

Corollary 4.2. LetC be a choice of a cusp from the set inC′. Then for any
closed hyperbolic3-manifold there exist four disjoint simple closed curves—or,
for any cusped finite volume hyperbolic3-manifold there exist three disjoint sim-
ple closed curves—such that one of the new cusps in the complement of the curves
will be isometric as a maximal cusp toC.

5. Totally Geodesic Boundary

Let Q′ be a manifold obtained as the complement inS3 of the spatial graphG′

shown in Figure 11a, including the graphG and the three trivial components
LB,LC,LD. We assume that the graphG has all vertices of valence at least 3 and
has hyperbolic complementQ containing no essential annuli. An example of such
a graphG and the corresponding graphG′ appear in Figure 11b. The complement
of thatG was proved to be hyperbolic in [7] and to have no essential annuli.

Figure 11 Q = S3 −G, Q′ = S3 −G′

Theorem 5.1. LetG be as in Figure 11a with all vertices of valence at least3.
If Q = S3 −N(G) is hyperbolic and contains no essential annuli, then the same
holds forQ′ = S3−N(G′).
Proof. We are assuming thatQ is hyperbolic and contains no essential annuli.
Thus,Q can be realized as a hyperbolic manifold with totally geodesic boundary.

We must prove that drilling out the three additional link components to obtain
Q′ preserves hyperbolicity and does not introduce any essential annuli. By work
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of Thurston [11], it is enough to show thatQ′ is irreducible, boundary-irreducible,
and contains no essential tori or annuli. It is clear that the resulting manifold
is irreducible and boundary-irreducible. LetB,C,D denote the obvious twice-
punctured disks bounded byLB,LC,LD, respectively.

Suppose there were an essential torus inQ′; it must then be compressible in
Q. Let E be the disk bounded by an arc inLD, an arc inB, an arc inC, and an
arc passing through the visible vertex inG. Since the union of a neighborhood of
B ∪C ∪D ∪E withN(G) does not changeN(G) topologically, the torusT must
intersect at least one of these four disks. Assume that we have minimized the num-
ber of such intersection curves. IfT intersects onlyE, then it must do so along an
essential curve inT,meaning thatT would be compressible inQ′. Hence,T must
intersectB, C, orD. Because any simple closed curve inB, C, orD is isotopic to
the boundary ofQ′, the existence of such aT forces the existence of an essential
annulus inQ′. Thus, it is enough to show that there are no essential annuli inQ′.

Choose an annulus with as few intersection curves withB, C, andD as possi-
ble. Note that such an annulus must have no simple closed intersection curves. For
if there were such a curve, one could cut along it and slide one of the new bound-
aries of the resulting annuli out along the disk to the boundary of the manifold,
obtaining an essential annulus with fewer intersection curves.

Such an annulusA cannot have one boundary component on∂N(G) and one
on∂N(LD), as all curves on∂N(LD) are trivial inπ1(S

3−N(G)) but all nontriv-
ial curves on∂N(G) are nontrivial inπ1(S

3 − N(G)). The annulus cannot have
one boundary component on∂N(G) and one on∂N(LB), since all nontrivial non-
meridianal curves on∂N(LB) are nontrivial inπ1(S

3 − N(LD)) while all curves
on ∂N(G) are trivial inπ1(S

3 − N(LD)). If the boundary ofA on ∂N(LB) were
a meridian, we could then fill inLB to obtain fromA a disk inQ with boundary
a nontrivial curve on∂N(G), a contradiction to the hyperbolicity ofQ. The same
holds if the second boundary component ofA were on∂N(LC).

The annulus cannot have one boundary component on∂N(LB) and one on
∂N(LD) because any nontrivial nonmeridianal curve on∂N(LB) is homotopic to
a power of a meridian on an edge ofG, which is nontrivial inπ1(S

3 − N(G)),
whereas all curves on∂N(LD) are trivial inπ1(S

3 − N(G)). If one boundary of
A is a meridianal curve on∂N(LB) then, onceLB is filled in, there is a disk with
boundary a nontrivial curve on∂N(LB) in the complement ofLC ∪LD, a contra-
diction to the fact these two link components nontrivially link one another. The
same holds if one boundary component ofA is on∂N(LC) and one on∂N(LD).

Suppose that one boundary component ofA is on∂N(LB) and one on∂N(LC).
Then both boundary curves must be longitudes, since these are the only curves on
the two boundaries that are equivalent as elements ofπ1(S

3−N(LB ∪LC)). InQ,
one can cap off the annulus with the punctured disksB andC to obtain a properly
embedded annulusA′ in Q. It cannot be essential inQ and so it must boundary
compress, implying that it is parallel to the boundary ofN(G). Hence, the edge
J that puncturesB must be the same edge that puncturesC. SinceLD punctures
A′ throughB andC and sinceLD is unknotted, the annulusA′ must be unknotted
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and hence the edgeJ of G that begins and ends on the visible vertex ofG is un-
knotted. The link componentLD is parallel to that edge, and sinceLD bounds a
disk unpunctured byG, J bounds a disk unpunctured byG. But this contradicts
the boundary irreducibility ofQ.

Suppose that both boundary components ofA are on∂N(G). If A intersectsB
orC, it must do so in an arc that begins and ends at the puncture inB orC caused
by N(G). The annulus is essential, so the arc must encircle the puncture caused
by LD. But thenA intersectsD. SinceA has no boundary onLD, this forces a
simple closed curve intersection ofA with D, a contradiction with our previous
assumption that no such curves exist. SoA does not intersectB, C, orD. Because
A is inessential inQ, it follows thatA and an annulus on∂N(G) together bound
a solid torusV in Q that must contain at least one ofLB,LC,LD as an essential
curve. However,LD is trivial in Q, so if it were essential in the solid torus then
this would imply that the boundary components ofA were trivial inπ1(Q), a con-
tradiction. BothLB andLC bound once-punctured disks inQ, each punctured by
G. Therefore each must be nontrivial inV, and contained withinB andC are disks
in S3− int(V ) punctured once byG with boundary in∂V. Hence there is a sphere
in S3 punctured twice byG such that it bounds a ball containingLB, LC, andLD
but not the visible vertex ofG. Then, sinceQ is acylindrical,G intersects this ball
in an unknotted arc. This arc is a subarc of a single edge that begins and ends at the
visible vertex and passes throughB andC. Because the sphere separates this arc
from the rest ofG, the boundary ofN(G) is compressible inQ, a contradiction.

Suppose now that both boundary components are on∂N(LB). If they are not
meridians ofLB then there must be at least one arc of intersection ofA with D.
SinceA does not boundary-compress, that arc must loop around the puncture cor-
responding toLC. However, thenA intersectsC. SinceA does not touch∂N(LC),
A must intersectC in at least one simple closed curve, a contradiction. If both
boundary components ofA are meridians on∂N(LB), this contradicts the irre-
ducibility of Q − (LC ∪ LD). The same holds if both boundary components are
on ∂N(LC).

Suppose that both boundary components ofA are on∂N(LD). If they are both
meridians then there would exist an essential sphere inQ − (LB ∪ LC), contra-
dicting its irreducibility. If the two boundary curves are nonmeridians on∂N(LD),

then they must be parallel(p, q)-curves on∂N(LD), with q 6= 0, and there exist
intersection arcs ofA with each ofB andC. By the boundary incompressibility
of A, each such arc must encircle the puncture made byG in each of these disks.
By gluing a second annulusA′ from ∂N(LD) toA along its boundary components,
we have a torusT in Q′. Choosing innermost intersection arcs on each ofB and
C, they each form part of the boundary of meridianal disks for this torus that are
each punctured once byG. Hence,G lies in a solid torus, with two meridianal
disks that are each punctured once byG. Since the solid torus does not intersect
itself,A can only intersect each ofB andC in a single arc. Therefore, its bound-
ary components each consist of a longitude and some number of meridians, andA

is isotopic toA′ in S3. The two meridianal disks cut the solid torus into two balls,
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one of which contains the visible vertex ofG. In order that there be no essential
annulus inQ, we must have that the other ball contains only a trivial arc fromG.
However, this implies that there is a single edge fromG that is puncturing bothB
andC and thatD can be isotoped to that edge. In particular, that edge can be sep-
arated from the rest ofG by a disk with boundary on a neighborhood of the visible
vertex, contradicting the boundary irreducibility ofQ.

Theorem 5.2. LetS be the genus-2 surface with the particular hyperbolic struc-
ture of the totally geodesic boundary corresponding to the manifoldQ′ shown
in Figure 5a, whereQ is hyperbolic and contains no essential annuli. Then for
any closed hyperbolic3-manifold one can remove a handlebody and two disjoint
simple closed curves—or, for any cusped finite volume hyperbolic3-manifold one
can remove a handlebody and a single disjoint simple closed curve—such that the
totally geodesic boundary of the resulting hyperbolic manifold is isometric toS.

Proof. We repeat the proof of Theorem 4.1 except that—instead of gluing in the
link complementML cut open along a twice-punctured disk—we glue inQ′ cut
open along the twice-punctured diskD. That the structure of the twice-punctured
disk is unique prevents any distortion of the hyperbolic metric on the totally geo-
desic boundary. The resulting manifold can be obtained by drilling out a handle-
body and a simple closed curve from the original manifold.

We note that there is a maximal embedded neighborhood for a totally geodesic
boundary. In some cases, one could check that this neighborhood avoids the rele-
vant twice-punctured disk and hence its volume is preserved in all resulting man-
ifolds. However, we have not done that in this case.
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