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1. Introduction

1.1

Let M be a compact Kähler manifold. For a matrix Lie groupG, the represen-
tation varietyMG of the fundamental groupπ1(M) is defined as the quotient
Hom(π1(M),G)//G. HereG acts on the set Hom(π1(M),G) by pointwise con-
jugation: (gf )(s) = gf(s)g−1, s ∈ π1(M). A study of geometric properties
ofMG is of interest because of the relation to the problem of classifying Kähler
groups (a problem posed by J.-P. Serre in the1950s). For a simply connected nilpo-
tent Lie groupG, every element ofMG is uniquely determined by ad-harmonic
nilpotent matrix 1-formω onM such thatω∧ω represents 0 in the corresponding
de Rham cohomology group. This follows, for example, from a theorem on for-
mality of a compact Kähler manifold [DGMS]. The main result of our paper gives,
in particular, a similar description for elements ofMG with a simply connected
solvable Lie groupG. Our arguments are straightforward and based on cohomol-
ogy techniques only. As a consequence of the main theorem we obtain several
results on the structure of Kähler groups. We now proceed to a formulation of the
results.

It is well known thatMGLn(C) is equivalently characterized as moduli spaces
of flat bundles overM with structure group GLn(C). In this paper we consider a
family of C∞-trivial complex flat vector bundles overM. Every bundle from this
family is determined by a flat connection on the trivial bundleM ×Cn, that is, by
a matrix-valued 1-formω onM satisfying

dω − ω ∧ ω = 0. (1.1)

Moreover, we assume that the(0,1)-componentω2 of ω is an upper triangular
matrix form. Denote this class of connections byAtn.
Remark 1.1. Connections fromAtn determine (by iterated path integration) all
representations ofπ1(M) into simply connected complex solvable Lie groups.
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(Here, according to Lie’s theorem, we think of every such group as a subgroup of
a complex Lie group of upper triangular matrices.)

Let Tn(C) denote the complex Lie group of upper triangular matrices in GLn(C).
Then the groupC∞(M, Tn(C)) acts byd-gauge transforms on the setAtn:

dg(α) = g−1αg − g−1dg, g ∈C∞(M, Tn(C)), α ∈Atn. (1.2)

Denote the corresponding quotient set byB tn. (We regardB tn as the set ofd-gauge
equivalent classes of connections fromAtn.) In this paper we study the structure
of B tn. Also, our result gives a characterization of the subset ofMGLn(C) consist-
ing of conjugate classes of representations determined by elements ofAtn.

Let U n⊕ be a class of flat vector bundles overM of complex rankn whose ele-
ments are direct sums of topologically trivial flat vector bundles of complex rank 1
with unitary structure group. Note that everyE ∈ U n⊕ can be represented by a
unitary diagonal cocycle{cij }i,j∈I defined on an open covering{Ui}i∈I . All defi-
nitions formulated herein depend not on the choice of such a cocycle but only on
its cohomology class.

A family {ηi}i∈I of matrix-valuedp-forms satisfying

ηj = c−1
ij ηicij on Ui ∩ Uj (1.3)

is, by definition, ap-form with values in the bundle End(E). We say that such a
form is nilpotent if every ηi takes its values in the Lie algebra of the Lie group
of upper triangular unipotent matrices. Since End(E) ∈ U n2

⊕ , there exists a nat-
ural flat Hermitian metric on End(E). As usual, one can use the metric to con-
struct ad-Laplacian on the space of End(E)-valued forms. In what follows,
harmonic forms are determined by this Laplacian. Denote byH1

d(End(E)) the
finite-dimensional complex vector space of End(E)-valued harmonic 1-forms,
and denote byH 2(End(E)) the de Rham cohomology group of End(E)-valued
d-closed 2-forms. Further, consider the setH t

0(End(E)) ⊂ H1
d(End(E)) of har-

monic formsη that satisfy the following conditions:

(i) the (0,1)-componentη2 of η is nilpotent;
(ii) η ∧ η represents 0 inH 2(End(E)).

Observe thatH t
0(End(E)) is a complex affine subvariety ofH1

d(End(E)) defined
by homogeneous quadratic equations.

Let Auttf (E) be the group of triangular flat automorphisms ofE. Elements of
Aut tf (E) are, by definition, locally constant sections of End(E) satisfying (1.3)
with ηi ∈ Tn(C) (i ∈ I ). Clearly, Auttf (E) is a complex solvable Lie group. It
acts by conjugation on the space of End(E)-valued forms and commutes with the
Laplacian. In particular, it acts onH t

0(End(E)). Consider the quotient setS nE :=
H t

0(End(E))/Aut tf (E), and denote byS n the disjoint union
⊔
E∈U n⊕ S

n
E. (Note

that, according to Green–Lazarsfeld theorem [GL], if the dimension of the image
of the Albanese mapping ofM ≥ 2 then the setS nE with the genericE consists of
a single point.)

Theorem1.2. There is a one-to-one correspondence between the setsB tn andS n.
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Using Theorem 1.2 for the case of flat connections corresponding to unipotent rep-
resentations ofπ1(M), one can give alternative proofs of some results due for ex-
ample to Campana (for references see [ABCKT]) andBenson and Gordon [BG].
In the following section we describe the 1–1 correspondence in more detail.

1.2

We now formulate several geometrical applications of Theorem1.2. They describe
some properties of the setSn(M) of representations ofπ1(M) into GLn(C) gen-
erated by connections fromAtn.

Let T u2 denote the Lie group of upper triangular 2× 2 matrices with unitary
elements on the diagonal. Further, denote bySu2(M) a class of homomorphisms
ρ : π1(M) → T u2 whose diagonal elementsρii satisfyρii = exp(ρ̃ii) for some
ρ̃ii ∈ Hom(π1(M),C), i = 1,2. (For example, ifH 2(M,Z) is torsion-free then
each element of Hom(π1(M), T

u
2 ) belongs toSu2(M).) In what follows,f : M1→

M2 is a complex surjective mapping of compact Kähler manifolds andG′,G′′ de-
note the first and second (resp.) commutant groups of a groupG.

Theorem 1.3. Assume that for anyτ ∈ Su2(M1) there is aτ ′ ∈ Su2(M2) such that
τ = τ ′ B f∗. Then, for anyρ ∈ Sn(M1), there existsρ ′ ∈ Sn(M2) such thatρ =
ρ ′ B f∗.

Remark 1.4. A result similar to Theorem 1.3 is also valid in the case of repre-
sentations generated by connections fromAtn with nilpotent(0,1)-components.
In this case it suffices to assume thatf induces an isomorphism ofH1(M1,R) and
H1(M2,R); see [Br]. This assumption holds, for example, iff is a smoothing
of the Albanese mapαM of a compact Kähler manifoldM (hereM1 andM2 are
desingularizations ofM andαM(M) ⊂ Alb(M), respectively). Then the analog
of Theorem 1.3 implies the following (see e.g. [ABCKT, Prop. 3.33]).

Theorem (Campana). The mappingf induces an isomorphism of the de Rham
fundamental groups ofM1 andM2.

Let us now introduce the classS of compact Kähler manifoldsM for which⋃
n≥1Sn(M) separates the elements ofπ1(M).

Theorem 1.5. Assume thatM1∈ S andf induces an isomorphism ofπ1(M1)/

π1(M1)
′′ and π1(M2)/π1(M2)

′′. Thenf∗ imbedsπ1(M1) as a subgroup of finite
index inπ1(M2).

In a forthcoming paper we will demonstrate the following application of Theo-
rem 1.2.

Theorem. Assume thatM ∈ S satisfies

(i) π2(M) = 0 and
(ii) dimCM ≥ 1

2 rank(π1(M)/π1(M)
′′).
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Then

(a) dimCM = 1
2 rank(π1(M)/π1(M)

′′) and
(b) π1(M) is isomorphic to a lattice in a Lie groupG that is a semidirect product

of Cm andR2k determined by a unitary representationR2k → Um(C).
Here2m+ 2k = rank(π1(M)/π1(M)

′′) and2m = rank(π1(M)/π1(M)
′).

This gives, in particular, a classification of compact solvmanifolds admitting a
Kähler structure.

At the end of the paper we will show that the results just formulated hold also
for the class of manifolds dominated by a compact Kähler manifold.

2. Theorem 1.2: Main Steps toward the Proof

2.1

The proof of Theorem 1.2 follows from the results formulated in this section. In
order to formulate the first of them, recall that any flat connectionω on a topologi-
cally trivial complex vector bundleM ×Cn (over a compact Kähler manifoldM)
determines a system of ODEs

df = ωf, f ∈C∞(M,GLn(C)), (2.1)

with ω satisfying(1.1)(the condition of local solvability). Conversely, for a family
{fi}i∈I of local solutions of (2.1) defined on an open covering{Ui}i∈I , the flat struc-
ture onM ×Cn is determined by the locally constant cocycle{cij := f −1

i fj }i,j∈I .
Furthermore, we can rewrite (2.1) in the equivalent form

∂f = ω1f, (2.2)

∂̄f = ω2f, (2.3)

whereω1 andω2 are a(1,0)-form and a(0,1)-form (respectively) andω =
ω1+ ω2. As follows from(1.1), thesystem (2.2)–(2.3) is locally solvable. Note
that the local solvability of each of these equations separately is equivalent to the
fulfillment of one of the corresponding conditions:

∂ω1− ω1∧ ω1= 0, (2.4)

∂̄ω2 − ω2 ∧ ω2 = 0. (2.5)

Our first result is related to the following.

Complement Problem:Givenω2 satisfying (2.5), findω1 for which the
system (2.2)–(2.3) is locally solvable.

Theorem 2.1. Suppose thatω2 is a triangular(0,1)-form satisfying(2.5). Then
there exists a triangular(1,0)-formω1 such thatω = ω1+ ω2 ∈Atn; that is,ω
satisfies(1.1). In addition, there exists aTn(C)-valuedd-gauge transform sending
ω to a triangular1-formη = η1+ η2 such that
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diag(η2) = −η1.

Herediag(φ) is the diagonal ofφ, and φ̄ denotes the complex conjugate ofφ.

2.2

LetE be a flat vector bundle overM of complex rankn represented via a locally
constant cocycle{cij }i,j∈I defined on an open covering{Ui}i∈I . Denote by End(E)
the vector bundle of linear endomorphisms ofE. According to (1.3), the opera-
torsd and∧ are well-defined on the set of matrix-valued 1-forms with values in
End(E). In particular, it makes sense to consider 1-forms satisfying an equation
similar to(1.1). Leth be a linearC∞-automorphism ofE determined by a family
{hi}i∈I , hi ∈C∞(Ui,GLn(C)), satisfying

hj = c−1
ij hicij on Ui ∩ Uj .

Then ad-gauge transformationdEh defined on the set of matrix-valued 1-formsα
with values in End(E) is given by a formula similar to (1.2),

dEh (α) = h−1αh− h−1dh.

Clearly, dEh preserves the class of 1-forms satisfying an End(E)-valued equa-
tion (1.1). Let nowE ∈ U n⊕ andh belong to Autt∞(E), the group of triangular
C∞-automorphisms ofE. ThendEh preserves also the class of End(E)-valued 1-
forms with nilpotent(0,1)-components. SinceE is a direct sum of topologically
trivial vector bundlesM×C, the group Autt∞(E) is isomorphic toC∞(M, Tn(C)).
In what follows we identify these two groups.

We now proceed to describe the correspondence map from Theorem 1.2. De-
note byEψ the class of connections fromAtn such that the diagonals of their
(0,1)-components are equal toψ.

Proposition 2.2. (1)For every∂̄-closed(0,1)-formψ there is an invertible di-
agonal matrix-valued functionhψ such thatdhψ(Eψ) = Eψ̃ , whereψ̃ is the har-
monic component in the Hodge decomposition ofψ.

(2) For every diagonal harmonic(0,1)-formψ there exist a vector bundleEψ
overM and an injective mappingτψ of Eψ to the set ofEnd(Eψ)-valued1-forms
such that:

(a) Eψ ∈U n⊕;
(b) τψ B dg = dEψg B τψ for everyg ∈C∞(M, Tn(C)); and
(c) τψ(Eψ) consists of forms with nilpotent(0,1)-components satisfying(1.1).

The proof of the proposition (in Section 5) will also show that every element of
U n⊕ coincides with someEψ.

According to Proposition 2.2, the moduli spaceB tn of flat connections fromAtn
is isomorphic to a similar moduli space of forms fromτψ(Eψ).
Proposition 2.3. For everyη ∈ τψ(Eψ), there is a transformdEψg with g ∈
Aut t∞(Eψ) such that
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dEψg (η) = η̃1+ η̃2,

where∂η̃1= 0 and η̃2 is ad-closed nilpotent antiholomorphic form.

This result implies that̃η1 can be decomposed into the sumα + ∂h, whereα is
its harmonic component in the Hodge decomposition. Observe thatη̃2 andα be-
long to the spaceH1

d(End(Eψ)) of d-harmonic forms described in Section 1.1
(see also Proposition 3.7). Moreover, condition(1.1) together with the∂∂̄-lemma
(see Lemma 3.8) implies that [α + η̃2, α + η̃2] represents 0 in the de Rham co-
homology groupH 2(M,End(Eψ)). The converse of the latter statement is also
true. Namely, letα be an End(Eψ)-valuedd-harmonic(1,0)-form and letθ be a
d-harmonic nilpotent End(Eψ)-valued(0,1)-form.

Proposition 2.4. Let [α + θ, α + θ ] represent zero inH 2(M,End(Eψ)).
Then there exists a unique(up to a flat additive summand) sectionh such that
(α + ∂h)+ θ satisfies(1.1).

Finally, to complete Theorem 1.2 we must prove the following uniqueness result.

Proposition 2.5. Let α1, β1 andα2, β2 beEnd(Eψ)-valued(1,0)- and (0,1)-
forms, respectively. Suppose that

(a) α1+ α2 andβ1+ β2 belong toτψ(Eψ) and ared-gauge equivalent, and that
(b) α2, β2 ared-closed nilpotent forms.

Then thed-gauge equivalence is defined by a flat automorphism ofEψ.

In other words,̃η1+ η̃2 in Proposition 2.3 is unique up to conjugation by flat au-
tomorphisms. We now summarize the foregoing results.

The spaceB tn is isomorphic to the disjoint union of moduli spacesEψ/
C∞(M, Tn(C)) with diagonal harmonic(0,1)-formsψ. Further, the mappingτψ
defines an isomorphism betweenEψ/C∞(M, Tn(C)) andτψ(Eψ)/Aut t∞(Eψ). The
latter, in turn, is isomorphic toS nEψ := H t

0(End(Eψ))/Aut tf (Eψ). This completes
the description of the correspondence of Theorem 1.2.

Remark 2.6. It was proved by Goldman and Millson [GM] and independently
by Simpson [S] that the representation varieties of Kähler groups have at worst
quadratic singularities at reductive representations. Theorem 1.2 shows that this
“quadratic law” is also of global nature if we restrict ourselves to some naturally
determined subsets ofMGLn(C).

3. Auxiliary Results

3.1

LetD be one of the operatorsd, ∂̄, or ∂. If g ⊂ gln(C) is the Lie algebra of a Lie
groupG ⊂ GLn(C) then we denote byAD(g) the space of locally integrableD-
connections in the principle bundleM ×G overM defined by
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Df = ωf, f ∈C∞(M,G) (3.1)

with a g-valued differential formω. The condition of integrabilty of a connec-
tion is

Dω − ω ∧ ω = 0.

LetBD(g) denote the moduli space ofAD(g), that is, the set ofD-gauge equiv-
alent classes of connections fromAD(g). Further, we introduce the classVD(G)
of isomorphicG-topologically trivial vector bundles withD-trivial cocycles{cij }
(this means that the principleG-bundle constructed by this cocycle is topologi-
cally trivial andDcij = 0 for all i, j). In particular,{cij } is holomorphic forD =
∂̄, locally constant forD = d, and antiholomorphic forD = ∂.

Then there is a bijection

iD : BD(g)→ VD(G)
defined in the following way (see e.g. [O, Sec. 5, 6] for details). Let{Ui}i∈I be
an open covering ofM and letfi ∈C∞(Ui,G) be a solution of (3.1) onUi. If we
setcij = f −1

i fj, then{cij } is aD-trivial cocycle and so determines an element of
VD(G). The construction is independent of the choice of the element of an equiv-
alence class inBD(g) and thus it correctly defines the required mappingiD. For
anω ∈AD(g) we let [ω] ∈BD(g) denote itsD-gauge equivalence class.

Because each locally constant cocycle is holomorphic and antiholomorphic si-
multaneously, the identity mapping induces natural mappings

h : Vd(G)→ V∂̄ (G) and h̄ : Vd(G)→ V∂ (G). (3.2)

Namely, ifE is the sheaf of locally constant sections of a vector bundleE ∈Vd(G)
then vector bundlesh(E) and h̄(E) are determined by sheavesE ⊗C OM and
E⊗C ŌM, respectively.

It is worth noting that the moduli space of isomorphic vector bundles with lo-
cally constantG-cocycles (flat bundles) is isomorphic to the quotientMG :=
Hom(π1(M),G)/G of the space of representations ofπ1(M) in G, by the action
of G given by conjugation (see e.g. [KN, Chap. 2, Sec. 9]).

Proposition 3.1. Letω2 ∈A∂̄ (gln(C)). Then the following statements are equiv-
alent:

(i) there exists agln(C)-valued(1,0)-formω1 such thatω = ω1+ ω2 belongs
toA d(gln(C));

(ii) there exists an elementE ∈Vd(GLn(C)) such that

h(E) = i∂̄ ([ω2]).

Proof. Let50,1: E1(M) ⊗ gln(C)→ E 0,1(M) ⊗ gln(C) be the projection from
the space of matrix-valued 1-forms defined onM onto the space of(0,1)-forms in-
duced by the type decomposition. Clearly,50,1 mapsA d(gln(C)) inA∂̄ (gln(C))
and commutes with the actions of the corresponding gauge groups. Denote by
5̃0,1: Bd(gln(C)) → B∂̄ (gln(C)) the mapping induced by50,1. Then the re-
quired statement follows from the commutativity of the diagram
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Bd(gln(C))
5̃0,1−−→ B∂̄ (gln(C))

id

y yi∂̄
Vd(GLn(C))

h−−→ V∂̄ (GLn(C)).

(3.3)

3.2

Hereafter we denote byV the category of vector bundles equipped with one of the
following structures:C∞, holomorphic, antiholomorphic, or flat. IfE ∈ V then
E denotes the sheaf of its local sections determining the structure ofE.

Let nowE,E1, E2 belong toV.
Definition 3.2. The elementE is said to be anextensionof E2 by E1 if the
sequence

0 −−→ E1 −−→ E −−→ E2 −−→ 0 (3.4)

is exact. ExtensionsE ofE2 byE1 andF of F2 byF1 areisomorphicin V if there
exists a commutative diagram

0 −−→ E1 −−→ E −−→ E2 −−→ 0

j1

y j

y j2

y
0 −−→ F1 −−→ F −−→ F2 −−→ 0,

(3.5)

wherej1, j, j2 are isomorphisms of the correspondingV-bundles. In the case of
j1= id andj2 = id, these extensions are calledequivalent.

LetE be an extension ofE2 byE1. Then (3.4) induces the exact sequence

0 −−→ Hom(E2, E1) −−→ Hom(E2, E) −−→ Hom(E2, E2) −−→ 0

(here all bundles have the same structure asE1 andE2). This sequence, in turn, in-
duces the exact sequence ofČech cohomology groups of the corresponding sheaves

0 −−→ H 0(M,Hom(E2,E1)) −−→ H 0(M,Hom(E2,E)) −−→
H 0(M,Hom(E2,E2))

δ−−→ H 1(M,Hom(E2,E1)) −−→ · · · .
Let I ∈H 0(M,Hom(E2,E2)) be the identity section. Then it is well known that
δ(I ) uniquely determines the class of extensions ofE2 byE1 equivalent toE.

Proposition 3.3 [A, Prop. 2]. The equivalence classes of extensions ofE2 by
E1 are in one-to-one correspondence with the elements ofH 1(M,Hom(E2,E1)),

and the trivial extension corresponds to the trivial element.

Remark 3.4. It follows directly from Definition 3.2 that ifEi ∈ VD(GLki(C))
(i = 1,2) thenE ∈ VD(G), where the structure groupG consists of elements of
the form (

A1 ∗
0 A2

)
with Ai ∈GLki(C), i = 1,2.
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Let nowE andF be isomorphic extensions ofE2 byE1 andF2 byF1, respectively.
Let ki be the rank ofEi (i = 1,2), and letG be the Lie group from Remark 3.4.
Consider principle bundlesEG andFG with the structure groupG corresponding
toE andF. Then our next proposition follows immediately from the definitions.

Proposition 3.5. Any isomorphismj : E→ F determined by(3.5) induces an
isomorphismjG ofG-bundlesEG andFG. Moreover, restriction ofjG to a fibre
is determined as left multiplication by an element ofG.

Consider now an extensionE of E2 by E1 in the category of flat bundles. (So
structure groupG of E is now defined as in Remark 3.4.) In this case, the natural
mappingsh : Vd(G) → V∂̄ (G) andh̄ : Vd(G) → V∂ (G)—see (3.2)—determine
extensionsh(E) of h(E2) by h(E1) andh̄(E) of h̄(E2) by h̄(E1). According to
Proposition 3.3 and the Dolbeault theorem, the former extension is defined by an
element of the groupH 1(M,Hom(E2⊗COM,E1⊗COM)), and each element of
this group is given by ā∂-closed(0,1)-form with values in Hom(E2, E1). The
latter extension is defined in the same way by a∂-closed(1,0)-form with values
in Hom(E2, E1).

The elements of the cohomology groups that appeared here can be described as
follows. Letη ∈ H 1(M,Hom(E2,E1)) be an element defining the extensionE.
Let50,1 and51,0 be the natural projections from the space of 1-forms onto spaces
of (0,1)- and(1,0)-forms, respectively. By the same symbols we denote map-
pings of the corresponding cohomology groups induced by50,1 and51,0. Hence

50,1(η)∈H 1(M,Hom(E2⊗C OM,E1⊗C OM)),
51,0(η)∈H 1(M,Hom(E2⊗C ŌM,E1⊗C ŌM)).

Proposition 3.6. The classes of extensions equivalent toh(E) and h̄(E) are
uniquely defined by50,1(η) and51,0(η), respectively.

Proof. In the case ofh(E), the result follows directly from de Rham’s and Dol-
beault’s theorems applied to the second column of the commutative diagram

H 0(M,Hom(E2,E2))
δ−−→ H 1(M,Hom(E2,E1))

h

y y50,1

H 0(M,Hom(E2 ⊗C OM,E2 ⊗C OM)) δ−−→ H 1(M,Hom(E2 ⊗C OM,E1 ⊗C OM)).
The case of̄h(E) is similar.

3.3

In this section we collect several facts on the classSB of bundles with connected
solvable complex Lie groups as structure groups.

(a) The classSB is closed under tensor products and duality; that is,E∗ and
E ⊗D belong toSB together withE andD.

(b) Every elementE ∈ SB can be thought of as a vector bundle with structure
groupTn(C) (for somen).
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Actually, according to the Lie theorem, for any connected solvable subgroupG

of GLn(C) there exists a matrixB ∈GLn(C) such thatB−1GB is imbedded as a
subgroup in the groupTn(C). Moreover, letE have one of the structures: holo-
morphic, antiholomorphic, or flat. Then the foregoing transform generates an iso-
morphism ofE preserving this structure.
(c) EveryE ∈SB is the result of successive extensions of bundles with triangular

structure groups by means of rank-1 vector bundles.
Indeed, for the action ofTn(C) onCn there exists a 1-dimensional invariant sub-
space such thatTn−1(C) acts on the factor space. Therefore,E with structure group
Tn(C) is an extension of the bundleEn−1 by the bundleE1; hereEi has structure
groupTi(C) (i = 1 orn−1).

Let
{0} = E0 ⊂ E1⊂ E2 ⊂ · · · ⊂ En−1⊂ En = E

and
{0} = F0 ⊂ F1⊂ F2 ⊂ · · · ⊂ Fn−1⊂ Fn = F

be isomorphic flags of bundles with triangular structure groups. According to
Proposition 3.5, this isomorphism is defined (in corresponding local coordinates
onE andF ) by triangular matrices.

Let now

Gr∗E :=
n⊕
i=1

Ei/Ei−1

be the associated graded vector bundle with cocycle defined as the diagonal of the
cocycle ofE.
(d) The bundleE is isomorphic to Gr∗E in the category ofC∞-bundles.
By Proposition 3.3, every vector bundleE overM with structure groupTn(C) is
defined byE1, En−1, and an elementH 1(M,Hom(En−1,E1)). But the latter group
is trivial in the category ofC∞-bundles, because Hom(En−1,E1) is a fine sheaf.

As a corollary we have the following statement.
(e) Every bundleE ∈VD(Tn(C)) is Tn(C)-isomorphic to the direct sum of topo-

logically trivial vector bundlesM × C.
(f ) The class

⋃
n≥1VD(Tn(C)) is closed under tensor products and duality.

3.4

In this section we recall some facts of Hodge theory.
LetE be a flat vector bundle with structure groupUn(C) over a compact Käh-

ler manifoldM. Then the operator of differentiationd is well-defined on the set
E(E) of E-valued forms and determines a connection onE compatible with the
complex structure and the flat Hermitian metric onE. LetZp,qd (E) be the space of
d-closedE-valued(p, q)-forms. As usual, one defines the cohomology groups
of E by

Hp,q(E) := Zp,qd (E)/(dE(E) ∩ Zp,qd (E)),

Hp,q(E) := {η ∈ Ep,q(E), 1dη = 0}, H r
d := {η ∈ E r(E), 1dη = 0},

where1d denotes thed-Laplacian onE.



Classification Theorem for Flat Connections and Representations 499

LetH r(M,E) denote thěCech cohomology of the sheafE of locally constant
sections ofE.

Proposition 3.7 (Hodge Decomposition).

H r(M,E) ∼=
⊕
p+q=r

Hp,q(E) ∼=
⊕
p+q=r

Hp,q(E), Hp,q(E) ∼= H q,p(E∗).

The proof follows from Kähler’s identities for the connectiond. See, for example,
[ABCKT, p. 104], which give the identities between Laplacians

1d = 21∂ = 21∂̄,

where1∂ and1∂̄ are∂- and∂̄-Laplacians onE.
These identities and the Dolbeault theorem give also the isomorphisms

Hp,q(E) ∼= Hp,q

∂̄
(E) ∼= Hq(M,�

p

M ⊗C E),

where�p

M is the sheaf of germs of holomorphicp-forms onM.
Arguing as in the proof of the lemma in [GH, Chap. 1, Sec. 2] and applying the

very same identities, we obtain the following.

Lemma 3.8 (∂∂̄-Lemma). Let E be a flat bundle with structure groupUn(C).
Suppose thatω is a d-closedE-valued(p, q)-form that is∂- or ∂̄-exact. Then
there exists anE-valued(p −1, q −1)-form κ such that

ω = ∂∂̄(κ).

3.5

In this section we collect several facts on relations between equations of type (2.1)
and vector bundles Hom(E1, E2).

We begin with the equation

df = ω1f − fω2, (3.6)

whereω1, ω2 satisfy(1.1). Theright side can be written as(1⊗ ω1− ωt2 ⊗ 1)f,
wheref is now thought of asn2-vector. The mappingid in the following propo-
sition is defined as in Section 3.1.

Proposition 3.9. id(1⊗ ω1 − ωt2 ⊗ 1) is a flat vector bundle isomorphic to
Hom(id(ω2), id(ω1)).

Proof. Let {Ui}i∈I be an open covering ofM, and letfki ∈C∞(Ui,GLn(C)) be a
solution onUi of equation (2.1) withω = ωk (k = 1,2). Then

d((f t2i)
−1⊗ f1i) = −ωt2(f t2i)−1⊗ f1i + (f t2i)−1⊗ ω1f1i

= (1⊗ ω1− ωt2⊗1)((f t2i)
−1⊗ f1i).

This means that equation (3.6) is locally solvable and defines a flat vector bundle
with cocycle
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{((f t2i)−1⊗ f1i)
−1 · ((f t2j )−1⊗ f1j )} := {(c t2ij )−1⊗ c1ij }.

Here{ckij := f −1
ki fkj } is a cocycle determining flat vector bundleid(ωk), k = 1,2.

Moreover,{(c t2ij )−1} is a cocycle determining conjugate vector bundle(id(ω2))
∗

(see [GH, Chap. 0]). This implies thatid(1⊗ ω1− ωt2⊗1) is a flat vector bundle
isomorphic to(id(ω2))

∗ ⊗ (id(ω1)). But the latter is isomorphic to Hom(id(ω2),

id(ω1)).

Let nowη be a vector-valued(p, q)-form onM satisfying

∂̄η = 50,1(ω) ∧ η, (3.7)

whereω satisfies(1.1) and50,1 is the natural projection fromE1(M) ontoE 0,1(M).

Let us check thatη is a ∂̄-closedid(ω)-valued(p, q)-form. Clearly,η is a sec-
tion of id(ω) that isC∞-isomorphic to the vector bundleM × Cn (for somen).
Furthermore, in flat coordinates onid(ω) determined by flat connectionω, the
sectionη is given by the family

{ηi := f −1
i η}i∈I .

Herefi is a local solution onUi of equation (2.1) with the formω. From the defi-
nition of fi it follows that

∂̄(f −1
i η) = −(f −1

i 50,1(ω)) ∧ η + f −1
i (50,1(ω) ∧ η) = 0.

Therefore,η is ∂̄-closed.
Applying the same arguments in reverse order, one deduces that each∂̄-closed

id(ω)-valued(p, q)-form given by a family{ηi}i∈I defines a global formη onM,
equal tofiηi onUi, satisfying (3.7). In the same way, we can also examine the
equation

∂η = 51,0(ω) ∧ η (3.8)

and prove thatη is a∂-closedid(ω)-valued(p, q)-form. Here51,0 : E1(M) →
E1,0(M) is the natural projection.

Finally, let us consider the equations

∂̄η = 50,1(ω1) ∧ η + (−1)p+q+1η ∧50,1(ω2), (3.9)

∂ψ = 51,0(ω1) ∧ ψ + (−1)p+q+1ψ ∧51,0(ω2), (3.10)

with matrix (p, q)-formsη andψ. They can be written in equivalent forms as

∂̄η = (1⊗50,1(ω1)−50,1(ω
t
2)⊗1) ∧ η,

∂ψ = (1⊗51,0(ω1)−51,0(ω
t
2)⊗1) ∧ ψ,

whereη andψ are thought of asvector(p, q)-forms.
Together, the results proved above for such equations yield the following.

Proposition 3.10. There exists a one-to-one correspondence between solutions
of equations(3.9) (or (3.10))with ωi satisfying condition(1.1) (i = 1,2) and ∂̄-
closed(∂-closed, respectively) (p, q)-forms with values inHom(id(ω2), id(ω1)).
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4. Proof of Theorem 2.1

The proof is based on Lemmas 4.1 and 4.2. To formulate the first of these results,
letT un denote the subgroup of elementsA∈ Tn(C) such that all of its diagonal ele-
ments belong toU1(C) := {z; |z| = 1}. One considers a classUn of flat vector
bundlesF with the structure groupT un satisfying

h̄(F ) is isomorphic to Gr∗ h̄(F ) in the category of

antiholomorphic vector bundles with structure groupTn(C). (4.1)

Let U =⋃n≥1Un. Clearly,U is closed under tensor products and duality.
As explained in Section 3.3(c), any bundleF ∈ Un is a result of successive ex-

tensions of flat bundlesFi with structure groupT ui by flat bundlesF i of complex
rank 1 with structure groupU1(C) (i = 1, . . . , n), so thatF = Fn. From property
(4.1) it follows thath̄(Fi) is the trivial extension of̄h(Fi−1) by h̄(F i). Hence, the
short exact sequence of sheaves of germs of antiholomorphicp-forms (p ≥ 0)
with values in the corresponding bundles

0 −−→ �̄p(h̄(F i))
λ−−→ �̄p(h̄(Fi))

κ−−→ �̄p(h̄(Fi−1)) −−→ 0 (4.2)

is split.
For a flat vector bundleF we let�̄1

d(F ) denote the space ofF -valuedd-closed
antiholomorphic 1-forms. The space defines a subgroup [�̄1

d(F )] of H 1(M,F).
Here F is the sheaf of locally constant sections ofF. Further, let50,1:
H 1(M,F)→ H 1(M,OM ⊗C F) be the mapping induced by the projection send-
ing a 1-form to its(0,1)-component.

Lemma 4.1. LetF ∈U . Then the following statements hold:

(a) 50,1 : [�̄1
d(F )] → H 1(M,OM ⊗C F) is a surjection; and

(b) every holomorphicF -valuedq-formα is d-closed.

In addition, ifα is ∂-exact thenα = 0.

Proof. We will prove the lemma by induction on the dimensioni of a fibre ofF.
(a) In casei = 1, the structure group ofF1 is U1(C). Then, according to

the Hodge decomposition (see Section 3.4), there exists an isomorphismf :
H 1(M,OM ⊗C F1)→ [�̄1

d(F1)] such that50,1 B f = id.
Assume now that statement (a) holds fori − 1≥ 1; we will prove it for i. The

definition of extensions of bundles leads to the following commutative diagram:

H 1(M,OM ⊗C F i )
λ−→ H 1(M,OM ⊗C Fi)

κ−→ H 1(M,OM ⊗C Fi−1)
δ−→ H 2(M,OM ⊗C F i )

50,1

x 50,1

x 50,1

x
H 1(M,F i )

λ−→ H 1(M,Fi)
κ−→ H 1(M,Fi−1)

δ−→ H 2(M,F i ) .

By de Rham’s and Dolbeault’s theorems, each of the elements of these cohomology
groups is represented by anF -valued form. Letα be aFi-valued∂̄-closed(0,1)-
form representing an element ofH 1(M,OM ⊗C Fi) ∼= H

0,1
∂̄
(M, Fi). According
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to the above diagram and the inductive hypothesis, there exists aC∞-sectiong of
Fi−1 such that

κ(α)+ ∂̄(g)∈ �̄1
d(Fi−1).

BecauseFi is a trivial extension in the category ofC∞-bundles, we can find a
C∞-sectiont of Fi such thatκ(t) = g. Thenω := κ(α− ∂̄t) is ad-closed 1-form
and thus the(1,1)-form

α ′ := d(α − ∂̄t) = ∂(α − ∂̄t)
can be considered as anF i-valued one. Sinceλ(α ′) represents 0 inH 1,1

∂ (M, Fi) ∼=
H 1(M, �̄1(h̄(Fi))), and since the mapping

λ : H 1(M, �̄1(h̄(F i)))→ H 1(M, �̄1(h̄(Fi)))

is an injection (by (4.2)), we can deduce that

[α ′ ] = 0∈H 1(M, �̄1(F i)).

Henceα ′ is ad-closed∂-exact(1,1)-form with values in a flat vector bundle with
structure groupU1(C). Then, according to the∂∂̄-lemma of Section 3.4, there
exists aC∞-sections of F i such that

∂∂̄(s) = α ′.
We now set

β := α − ∂̄t − ∂̄(λ(s)).
Thenβ is a ∂̄-closed(0,1)-form such that

[β] = [α] ∈H 1(M,OM ⊗C Fi) and dβ = 0.

Therefore,β represents an elementβ̃ of [�̄1
d(Fi)] such that50,1(β̃) = [α]. The

proof of part (a) is complete.
(b) We again make use of induction oni. Let ωi be aFi-valued holomorphic

q-form. In casei = 1, the Hodge identity for Laplacians (see Section 3.4) acquires
the form

1d(ω1) = 21∂̄(ω1) = 0,

and from this it follows thatdω1 = 0. In addition, if ω1 is ∂-exact then itsd-
harmonicity impliesω1= 0.

Assume now that statement (b) holds fori − 1≥ 1; we will prove it for i. By
the induction hypothesis we haved(κ(ωi)) = 0. But d(κ(ωi)) = κ(dωi) and so
dωi can be regarded as ad-closedF i-valued holomorphic(q +1)-form.

It is clear, as well, that

[dωi ] = [∂ωi ] ∈Hq+1,0
∂ (M, F i) ∼= Hq+1(M, ŌM ⊗C F i ).

Now, on account of (4.2), the mapping

λ : H q+1(M, ŌM ⊗C F i )→ Hq+1(M, ŌM ⊗C Fi)



Classification Theorem for Flat Connections and Representations 503

is an injection. On the other hand,λ([∂ωi ]) = 0 and hence [∂ωi ] = 0 in
H q+1(M, ŌM ⊗C F i ). Taking into account the aforementioned identity for La-
placians in the 1-dimensional case, we can deduce that∂ωi is ad-harmonicF i-
valued form. Since it is∂-exact, we have∂ωi = dωi = 0.

It remains to prove that ifωi is, in addition, a∂-exact form, then it equals 0.
But in this caseκ(ωi) is a∂-exactFi−1-valued holomorphic form; consequently,
κ(ωi) = 0 by the induction hypothesis. Henceωi can be regarded as aF i-valued
holomorphic form. Moreover, according to the equality

H q(M, ŌM ⊗C Fi) = Hq(M, ŌM ⊗C F i )⊕Hq(M, ŌM ⊗C Fi−1)

(see (4.2)),ωi is ∂-exact. Therefore,ωi is aF i-valued∂-exact holomorphic form
and thus it equals 0, as we have already shown at the first step of the induction.

Let us now suppose thatω2 is a triangular(0,1)-form of the classA∂̄ (tn) (see Sec-
tion 3.1 for the definition of this class). Heretn denotes the Lie algebra ofTn(C).

Lemma 4.2. The following conditions are equivalent:

(i) for ω2, Theorem 2.1 holds;
(ii) there exists aT un -topologically trivial flat vector bundleF ∈U such that

h(F ) = i∂̄ (ω2) (∈V∂̄ (Tn(C))).
Proof.

(i) ⇒ (ii) According to Theorem 2.1, there exists a formη ∈ A d(tn) with the
canonical decompositionη = η1+ η2 such that

[ω2] = [η2] ∈B∂̄ (tn) and diag(η2) = −η1.

Since diag(η) = η1−η1 is (
√−1·R)n-valued, the formη defines a unique element

ofBd(t un). Heret un is the Lie algebra ofT un ,which clearly consists of elementsA∈
Tn(C) with diag(A) ∈ (√−1 · R)n. Therefore, the flat bundleid(η) has structure
groupT un (see Section 3.1).

Now we make use of the identities

h̄(id(η)) = i∂ (η1)∈V∂ (Tn(C)), h(id(η)) = i∂̄ (ω2)∈V∂̄ (Tn(C))
(see Proposition 3.1 for details). Butη1 is a diagonal matrix form, and thus the
first identity implies thath̄(id(η)) is isomorphic to Gr∗ h̄(id(η)) in the category
of antiholomorphic vector bundles with structure groupTn(C). Thereforeid(η)
belongs to the classU of flat vector bundles with structure groupsT un and is
Tn(C)-topologically trivial by the definition of the classVD(Tn(C)). Moreover,
everyTn(C)-topologically trivial vector bundle with structure groupT un is T un -
topologically trivial. Bearing in mind the second identity, we deduce now that
id(η) can be taken as the bundleF of statement (ii).

(ii) ⇒ (i) Let F be the vector bundle of statement (ii). According to the results
of Section 3.1, there exists a formθ ∈ A d(t

u
n) with the canonical decomposition

θ = θ1+ θ2 such that
id(θ) = F.
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In particular, we have diag(θ1) = −diag(θ2). Moreover, as established in the first
part of the proof, the equalities

i∂ (θ1) = h̄(id(θ)) = h̄(F ) = h̄(Gr∗F ) = h̄(id(diag(θ))) = i∂ (diag(θ1))

hold in the classV∂ (Tn(C)). This implies the existence of a∂-gauge transform∂g
with a triangular matrix functiong such that

∂g(θ1) = diag(θ1).

Then, forψ := dg(θ) we have

id(ψ) = id(θ) = F,
and the first componentψ1 of the canonical decompositionψ = ψ1+ ψ2 equals
∂g(θ1), (i.e., is a diagonal(1,0)-form). Moreover,

id(diag(ψ)) = id(diag(θ))

in the category of flat vector bundles with the diagonal matrix structure group.
This implies the existence of ad-gauge transformdh with a diagonal matrix func-
tion h such that

∂̄h(diag(ψ2)) = −ψ1.

Putting now
η := dh(ψ)

we have defined atn-valued 1-form such that diag(η2) = −η1. Soη satisfies the
conditions of Theorem 2.1.

It remains to define a triangular formω with the second componentω2 in its
canonical decomposition satisfyingη = dq(ω) for someTn(C)-valued function
q. To accomplish this, we note that

i∂̄ (θ2) = h(F ) = i∂̄ (ω2)

and thereforē∂p(θ2) = ω2 for someTn(C)-valued functionp. If we setω :=
dp(θ), thenω satisfies condition(1.1)becauseθ ∈A d(t

u
n). Moreover,dq(ω) = η

whereq := hgp−1.

Proof of Theorem 2.1. Letω2 ∈ A∂̄ (tn). According to Lemma 4.2, we must
find aT un -topologically trivial flat vector bundleF ∈U such that

h(F ) = i∂̄ (ω2)∈V∂̄ (Tn(C)).
We will prove this by induction on the rankn of the holomorphic vector bundle
i∂̄ (ω2). This bundle is a result of successive extensions of holomorphic vector
bundlesVi ∈ V∂̄ (Ti(C)) by rank-1 holomorphic vector bundlesV i ∈ V∂̄ (C∗), i =
1, . . . , n−1(see Section 3.3). In particular,i∂̄ (ω2) is an extension ofVn−1 byV n−1.

We begin with the observation that every rank-1 holomorphic vector bundleV ∈
V∂̄ (C∗) is determined by an equation∂̄f = κf,with a 1-formκ satisfying the con-
dition ∂̄κ = 0. Moreover, a∂̄-gauge transform̄∂g in this case has the form

ω 7→ ω − g−1∂̄g, g ∈C∞(M,C∗).
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Now we are in a position to prove the result for the 1-dimensional case. LetV and
κ be as before. SinceM is a compact Kähler manifold, there exists a functionr ∈
C∞(M) such thatγ = κ − ∂̄r is a harmonic form and, in particular, isd-closed.
It is clear that∂̄g(γ ) = κ, whereg = exp(−r). Let us consider now the locally
solvable equation

df = (γ − γ̄ )f.
It follows thatdg(γ − γ̄ ) = σ + κ, whereσ = −γ̄ + g−1∂g. Hence, we obtain

h(id(γ − γ̄ )) = i∂̄ (κ) = V.
But γ − γ̄ ∈√−1 · R and thereforeid(γ − γ̄ )∈Vd(U1(C)). It remains to set

F := id(γ − γ̄ ).
Let us assume that the result holds for rankn−1;we will prove it forn. Toward

this end, leti∂̄ (ω2) be an extension ofVn−1 by V n−1. According to the induction
hypothesis, there exist bundlesFn−1∈ Vd(t un−1) ∩ U andF n−1∈ Vd(U1(C)) such
that

h(Fn−1) = Vn−1 and h(F n−1) = V n−1.

From this it follows that the sheavesOM ⊗C Fn−1 andOM ⊗C Fn−1 determine
Vn−1 andV n−1, respectively (see Section 3.1). By Proposition 3.3 there exists
an elementδ of H 1(M,OM ⊗C Hom(Fn−1,Fn−1)) that determinesVn. Since
the flat bundle Hom(Fn−1, F

n−1) is isomorphic to(Fn−1)
∗ ⊗ F n−1 and thus be-

longs toU, we can apply Lemma 4.1. By the lemma there exists an elementβ ∈
[�̄1

d(Hom(Fn−1, F
n−1))] ⊆ H 1(M,Hom(Fn−1,Fn−1)) such that

50,1(β) = δ and 51,0(β) = 0.

Moreover,β defines an extensionFn of Fn−1 by F n−1 by Proposition 3.3. From
these two statements and Proposition 3.6, we conclude that

h(Fn) = Vn and h̄(Fn) = h̄(Fn−1)⊕ h̄(F n−1).

But Fn−1∈U by the induction hypothesis and so the latter direct sum equals
n−1⊕
k=1

h̄(F k)⊕ h̄(F1) = Gr∗ h̄(Fn).

ThusFn belongs toU . Furthermore,Fn is an extension of the bundleFn−1 by the
bundleF n−1, and by the induction hypothesis these two bundles areT un−1- and
T u1 -topologically trivial, respectively. Hence,Fn isT un -topologically trivial and so
the proof is complete.

Remark 4.3. If in Theorem 2.1 the formω2 is nilpotent, then it is̄∂-gauge equiv-
alent to an antiholomorphic nilpotent form.

5. Proof of Theorem 1.2

In order to prove the theorem we must prove propositions of Section 2.

Proof of Proposition 2.2. (1) Letψ be a diagonal̄∂-closed(0,1)-form onM.
According to the Hodge decomposition,
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ψ = ψ̃ + ∂̄f, (5.1)

whereψ̃ is a diagonal harmonic(0,1)-form. Puthψ := exp(f ). Then we have
dhψ(ω)∈ Eψ̃ for anyω ∈ Eψ.

(2) Letψ be a diagonal harmonic(0,1)-form on a compact Kähler manifold
M (which, in particular, isd-closed antiholomorphic). Then we determine a flat
vector bundleEψ overM asEψ = id(ψ − ψ̄). As follows from arguments used
in the proof of Theorem 2.1,Eψ ∈ U n⊕; that is, it is a direct sum of rank-1 topo-
logically trivial flat vector bundles with structure groupU1(C). Moreover, each
element ofU n⊕ coincides withid(ψ − ψ̄) for some diagonal harmonic(0,1)-form
ψ. This proves part (a).

Let now ω ∈ Eψ ; that is, it has a triangular(0,1)-componentω2 such that
diag(ω2) = ψ and satisfies(1.1). Further, define the mappingτψ by

τψ(ω) := ω − (ψ − ψ̄). (5.2)

The latter form can be thought of as a 1-form with values in the flat vector bun-
dle End(Eψ) whose(0,1)-component is nilpotent. In fact, let{gi}i∈I be a family
of invertible diagonal matrix functions defined on an open covering{Ui}i∈I and
satisfying

dgi = (ψ − ψ̄)gi, i ∈ I.
Then, in a flat coordinate system on End(Eψ), the formτψ(ω) is given by the
family {θi := g−1

i τψ(ω)gi}i∈I . Clearly, the(0,1)-component ofθi is nilpotent and
henceτψ(ω) is, by definition, an End(Eψ)-valued form with a nilpotent(0,1)-
component. Simple calculation—based on the identities

dω − ω ∧ ω = 0

and
d(ψ − ψ̄) = (ψ − ψ̄) ∧ (ψ − ψ̄) = 0

and the diagonality ofgi andψ—yields

dθi − θi ∧ θi = 0, i ∈ I.
This proves part (c).

Let h ∈ C∞(M, Tn(C)). Then h determines an element from the group
Aut t∞(Eψ) of triangular automorphisms ofEψ given by the family{hi :=
g−1
i hgi}i∈I . Substituting these expressions in the definition of thed-gauge trans-

form dEψh and taking into account diagonality ofgi andψ, we obtainτψ B dh =
dEψh B τψ . This proves part (b).

To finish the proof of the proposition, observe that the mappingτψ defined on
Eψ by (5.2) is injective; it has the inverse defined on the set of End(Eψ)-valued
1-forms with nilpotent(0,1)-components satisfying(1.1).

Proof of Proposition 2.3. In proving the proposition we make use of the rela-
tion between elements ofEψ with a diagonal harmonic(0,1)-formψ and End(Eψ)-
valued locally solvable equations with nilpotent(0,1)-components (see Proposi-
tion 2.2).
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Let ω ∈ Eψ and letη := τψ(ω) be an End(Eψ)-valued differential 1-form with
a nilpotent(0,1)-component satisfying the analog of(1.1). Asfollows from The-
orem 2.1,ω can be reduced by ad-gauge transformdg with g ∈C∞(M, Tn(C)) to
a formω ′ ∈ Eψ with the type decompositionω ′1 + ω ′2 such thatω ′2 − diag(ω ′2) ∈
Eψ. Set now

η̃1 := τψ(ω ′1+ diag(ω ′2)) and η̃2 := τψ(ω ′2 − diag(ω ′2)).

Then clearlyτψ(ω ′1+ ω ′2) = η̃1+ η̃2 (type decomposition). According to Propo-
sition 2.2(2)(b),dEψg (η) = τψ(ω ′) = η̃1+ η̃2, whereg is now thought of as an
element of Autt∞(Eψ). It remains to prove that∂η̃1 = 0 and that̃η2 is ad-closed
antiholomorphic 1-form.

By definition, the(0,1)-form η̃2 satisfies the End(Eψ)-valued equation(1.1).
This implies immediately that̃η2 is antiholomorphic and (owing to the Hodge de-
composition; see Section 3.4)d-closed. Next we prove thatη̃1 is ∂-closed. To ac-
complish this we observe that conditions(1.1) forformsω ′1+ω ′2 andω ′2 − diag(ω ′2)
include, in particular, the following identities:

∂̄ω ′1 = ω ′1∧ ω ′2 + ω ′2 ∧ ω ′1− ∂ω ′2; (5.3)

∂̄(−diag(ω ′2)) = (−diag(ω ′2)) ∧ ω ′2 + ω ′2 ∧ (−diag(ω ′2))− ∂ω ′2. (5.4)

Then, subtracting the second equation from the first we obtain

∂̄(ω ′1+ diag(ω ′2)) = (ω ′1+ diag(ω ′2)) ∧ ω ′2 + ω ′2 ∧ (ω ′1+ diag(ω ′2)). (5.5)

Consider now the flat vector bundleF := id(ω ′2 − diag(ω ′2)). From (5.5) it
follows thatω ′1+ diag(ω ′2) is an End(F )-valued holomorphic 1-form (see Sec-
tion 3.5). SinceF belongs to the classU, which is closed with respect to tensor
products and duality, Lemma 4.1(b) implies in this case thatω ′1+ diag(ω ′2) is a
d-closed End(F )-valued form. But by the definition, End(F ) is antiholomorphi-
cally isomorphic to End(Gr∗F ), which in turn coincides with End(Eψ) (see the
proof of Proposition 2.2). This shows thatω ′1+ diag(ω ′2) (regarded now as an
End(Eψ)-valued 1-form) is∂-closed. It remains to note that the latter form coin-
cides withη̃1. The proof of Proposition 2.3 is complete.

Let now{η̃1} and{η̃2} be the harmonic components in the Hodge decomposition
of End(Eψ)-valued forms̃η1 andη̃2, respectively. Then the End(Eψ)-valued con-
dition (1.1) and the∂∂̄-lemma of Section 3.4 yield

[{η̃i}, {η̃i}] = 0, i = 1,2;
[{η̃1}, {η̃2}] represents 0 inH 2(M,End(Eψ)).

Proof of Proposition 2.5. Letα1, β1 be End(Eψ)-valued(1,0)-forms, and let
α2, β2 be End(Eψ)-valuedd-closed nilpotent(0,1)-forms. Recall thatEψ is a di-
rect sum of rank-1 topologically trivial flat vector bundles with unitary structure
group. Suppose that
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dEψg (α1+ α2) = β1+ β2 (5.6)

for someC∞-automorphismg of Eψ, and thatα1+ α2 andβ1+ β2 belong to
τψ(Eψ).

We have to prove thatg is flat. According to Propositions 2.2 and 2.3, there
exist triangular(0,1)-formsθ1 andθ2 such that:

(i) τψ(θ1− ψ̄) = α2 andτψ(θ2 − ψ̄) = β2;
(ii) diag(θi) = ψ for i = 1,2; and
(iii) θi − diag(θi)∈ Eψ for i = 1,2.

If we now identify the group ofC∞-automorphisms ofEψ with C∞(M,GLn(C))
(as in the case of triangular automorphisms), then—arguing as in the proof of
Proposition 2.2—we obtainτψ B dg = dEψg B τψ . In particular, (5.6) implies

∂̄g = θ1g − θ2g.

But this is a special case of equation (3.9). Applying Proposition 3.10, we conclude
thatg is a holomorphic section of flat vector bundleV := Hom

(
id(θ2−diag(θ2)),

id(θ1 − diag(θ1))
)
. This vector bundle belongs to the classU, and thereforeg

is d-closed by Lemma 4.1(b). Since by definitionV is antiholomorphically iso-
morphic to End(Eψ), the automorphismg of Eψ is ∂-closed. Applying now the
Hodge decomposition of Section 3.4, we deduce thatg is locally constant—that
is, flat.

Proof of Proposition 2.4. Letα be a holomorphic End(Eψ)-valued form and
θ an antiholomorphic nilpotent one, and let the 2-form [α + θ, α + θ ] represent 0
in H 2(M,End(Eψ)). We have to prove that there exists a sectionh, unique up to
an additive flat summand, such that the equation

df = (α + θ + ∂h)f
is locally solvable. To accomplish this, we first remark that∂∂̄-lemma of Sec-
tion 3.4 implies that

α ∧ θ + θ ∧ α = [α + θ, α + θ ],

since the form on the right represents 0 inH 2(M,End(Eψ)). Applying the∂∂̄-
lemma to the left-hand side and taking into account the holomorphicity ofα, we
obtain

∂̄α − α ∧ θ − θ ∧ α = ∂∂̄P (5.7)

for someC∞-sectionP of End(Eψ). Since by assumptiondθ − θ ∧ θ = 0,
arguments similar to those of Proposition 2.2 show that there exists a triangular
(0,1)-form η defined onM such thatη−diag(η̄) satisfies(1.1),diag(η) = ψ, and
τψ(η − diag(η̄)) = θ. Then, in the globalC∞-coordinates on End(Eψ) (chosen
as in the proof of Proposition 2.2), (5.7) can be written as

∂̄α ′ − η ∧ α ′ − α ′ ∧ η = ∂β + diag(η̄) ∧ β + β ∧ diag(η̄)
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(see Section 3.5). Hereα := g−1
i α

′gi onUi, ∂̄P := g−1
i βgi onUi, and{gi}i∈I is a

family of invertible diagonal matrix functions satisfyingdgi = (ψ − ψ̄)gi onUi.
Consider now the flat vector bundleF := id(η− diag(η̄)) of the classU . If we

think of α as an End(F )-valued(1,0)-form (F is C∞-trivial), then the left-hand
side of the previous expression determines its∂̄-differential. But the right-hand
side shows that̄∂α is a∂-exact End(F )-valued form. The proof of the theorem
will be complete if we find aC∞-sectionh of End(F ) such thatα + ∂h is a
holomorphic End(F )-valued form. Actually, let{fi}i∈I be a family of triangular
invertibleC∞-functions determined on the open covering{Ui}i∈I (the same cov-
ering as for{gi}i∈I previously) and satisfyingdfi = (η − diag(η̄))fi, i ∈ I. Then
the holomorphicity ofα + ∂h is equivalent to the equation

∂̄(α ′ + γ ) = (α ′ + γ ) ∧ η + η ∧ (α ′ + γ ),
whereγ = fi∂hf −1

i onUi. The latter equation, in turn, determines the End(Eψ)-
valued equation

∂̄(α + γ̃ ) = (α + γ̃ ) ∧ θ + θ ∧ (α + γ̃ ). (5.8)

Hereγ̃ = g−1
i γgi onUi.

Clearly,∂(g−1
i fi) = 0 and therefore

γ̃ = ∂(g−1
i fihf

−1
i gi)

on Ui. But {g−1
i fihf

−1
i gi}i∈I determines a sectioñh of End(Eψ), so γ̃ = ∂h̃.

Equation (5.8) is one of the conditions of local solvability contained in(1.1). Ob-
serve that(1.1) in ourcase is equivalent to the fulfillment of (5.8) together with the
identity

(α + ∂h̃) ∧ (α + ∂h̃) = 0, (5.9)

since∂(α + ∂h̃) = 0 by assumptions of the proposition.
To check this identity, we first note that End(Eψ) is antiholomorphically iso-

morphic to End(F ). This isomorphism is given locally by conjugations by matrix
functionsf −1

i gi (i ∈ I ) and so it commutes with the operator∧. Therefore, it suf-
fices to prove an identity similar to (5.9) forα + ∂h. Hereα is thought of as an
End(F )-valued section (image ofα by the previous isomorphism). Furthermore,
sinceα ∧ α = 0 we have

(α + ∂h) ∧ (α + ∂h) = ∂(hα − αh+ h∂h). (5.10)

This implies that the End(F )-valued holomorphic 1-formα + ∂h is ∂-exact. Ap-
plying Lemma 4.1(b) to this form, one concludes that the identity (5.9) holds. The
uniqueness part of the proposition follows from the fact that there is a unique (up
to a flat additive summand) sectionh such thatα + ∂h is End(F )-valued holo-
morphic (see Lemma 4.1(b)).

Thus it remains to find the sectionh such thatα+∂h is a holomorphic End(F )-
valued 1-form. We do this by a procedure reducing then-dimensional statement
to the(n−1)-dimensional one; heren is the dimension of a fibre of End(F ).
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We begin with the following remark. Since End(F ) ∈ U it can be regarded as
an extension of a rank-1 flat vector bundleF1 with unitary structure group by a
flat vector bundleFn−1 ∈U . In other words, the following sequence of flat vector
bundles

0 −−→ Fn−1
i−−→ End(F )

j−−→ F1 −−→ 0

is exact. We can analogously representFn−1 as an extension of a rank-1 flat vector
bundle with unitary structure group by a flat vector bundleFn−2 ∈ U, and so on.
In particular,F0 is a vector bundle overM with null-dimensional fibre. In the next
part of the proof we let the same lettersi, j denote the corresponding mappings
induced byi, j on the space of differential forms.

Let us consider now theF1-valued∂-exact(1,1)-form j(∂̄α) = ∂̄(j(α)). Since
∂α = 0, we have∂̄α = dα and hencej(∂̄α) is ad-exactF1-valued 1-form. The
∂∂̄-lemma implies then that

∂̄(j(α)) = ∂̄∂(g)
for g ∈ C∞(F1). Because End(F ) is a trivial extension ofF1 by Fn−1 in the cat-
egory ofC∞-bundles, there exists an End(F )-valuedC∞-sectionk1 such that
j(k1) = g.

If we put nowα1 := α − ∂k1, then

∂α1= ∂α = 0 and ∂̄(j(α1)) = j(∂̄α1) = j(∂̄α − ∂̄∂k1) = 0.

It follows from the second identity that̄∂α1 can be regarded as anFn−1-valued
form. Since End(F ) = F1⊕Fn−1 in the class of antiholomorphic vector bundles,
the mapping

i : H 1(M, �̄1(Fn−1))→ H 1(M, �̄1(End(F )))

is an injection. Furthermore, the∂-exactness of̄∂α implies that

i([∂̄α1]) = 0∈H 1(M, �̄1(End(F )))

and so [̄∂α1] = 0 ∈ H 1(M, �̄1(Fn−1)). From this it follows that̄∂α1 is anFn−1-
valued∂-exact form.

Starting with theFn−1-valued form∂̄α1 and proceeding in the same way, we can
now find aC∞-sectionk2 such that, for

α2 := α1− ∂k2 = α − ∂k1− ∂k2,

∂̄α2 is anFn−2-valued∂-exact(1,1)-form. Continuing in this fashion, we obtain
aftern steps the formαn := αn−1− ∂kn−1 such that̄∂αn is anF0-valued∂-exact
(1,0)-form; that is,∂̄αn = 0. If we now set

h := −
n∑
i=1

ki,

thenα + ∂h equals the holomorphic End(F )-valued 1-formαn.

Remark 5.1. If the formα of Proposition 2.4 is, in addition, triangular, then the
sectionh can also be chosen as triangular.
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In fact, let tn be the Lie algebra of the Lie groupTn(C) of upper triangular
matrices. The vector spacetn is invariant with respect to the linear operators
(At )−1⊗ A : Mn(C)→ Mn(C) with A ∈ Tn(C). Hence there exists a subbundle
T ∈ U of the bundle End(F ) in the proof of Proposition 2.4 with a fibre isomor-
phic totn. In fact, the latter bundle is defined by a cocycle of the form

{(c tij )−1⊗ cij ; cij ∈ Tn(C)}
(see Section 3.5). Since the formα is tn-valued andT ∈U, it follows thatα is aT -
valued(1,0)-form. We can now apply the arguments of the proof of Theorem 2.4
to α but withT instead of End(F ). In this way, we obtain the required sectionh
but in this case with values inTn(C).

6. Proof of Theorems 1.3 and 1.5

Proof of Theorem 1.3. LetV2(M) be a class of flat vector bundles overM
whose elements are constructed by homomorphism fromSu2(M). According to the
assumptions, for anyE ∈V2(M1) there exists anF ∈V2(M2) such thatf ∗F ∼= E.
Moreover, every such bundleE is, by definition, determined by Gr∗E = E1⊕E2

and an element ofH 1(M1,Hom(E2,E1)). HereE1, E2 are topologically trivial
rank-1 flat vector bundles with unitary structure group. Then the conditions of the
theorem imply the following.

Statement. For every topologically trivial rank-1 flat vector bundleV1 over
M1 with unitary structure group, there exists a topologically trivial flat vec-
tor bundleV2 overM2 with unitary structure group such thatf ∗V2 = V1 and
f ∗(H 1(M2,V2)) = H 1(M1,V1).

Let nowρ : π1(M1)→ GLn(C) be a homomorphism of the classSn(M1). Then,
according to Theorem 1.2, we have thatρ is uniquely defined by the End(E ′)-
valued harmonic(1,0)-form α and a harmonic nilpotent(0,1)-form η satisfying
[α+ η, α+ η] represents 0 inH 2(M1,End(E ′)). HereE ′ is a direct sum of topo-
logically trivial rank-1 flat vector bundles with unitary structure group. Further-
more, from the Statement it follows that there exist a flat vector bundleF ′ overM2

that is isomorphic to a direct sum of topologically trivial rank-1 flat vector bundles
with unitary structure group and an End(F ′)-valued harmonic(1,0)-form α ′ and
a harmonic nilpotent(0,1)-form η ′ such that

f ∗ End(F ′) = End(E ′), f ∗(α ′) = α, f ∗(η ′) = η.
In addition, assume that [α ′, η ′ ] represents 0 inH 2(M2,End(F ′)). The fore-
going conditions imply also that [α ′, α ′ ] = [η ′, η ′ ] = 0 and hence the triple
(End(F ′), α ′, η ′) determines a representationρ ′ ∈ Sn(M2). Then the uniqueness
part of Theorem 1.2 (see Proposition 2.4) yieldsρ = ρ ′ B f∗.

Thus it remains to prove that [α ′, η ′ ] represents 0 inH 2(M2,End(F ′)). Note
thatf ∗([α ′, η ′ ]) = [α, η] represents 0 inH 2(M1,End(E ′)). The required state-
ment is then a consequence of the following general result.
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Let f : N → M be a surjective mapping of compact Kähler manifolds, and let
E be a flat vector bundle overM with unitary structure group.

Proposition 6.1. Let α ∈ E1,1(E) be ad-closedE-valued form. Iff ∗(α) ∈
E1,1(f ∗E) is d-exact, thenα is alsod-exact.

Proof. Consider the flat vector bundlef ∗E overN and thed-exact formf ∗(α)∈
E1,1(f ∗E). Because this bundle has unitary structure group andN is a compact
Kähler manifold, there exists anh∈C∞(f ∗E) such thatf ∗(α) = ∂̄∂h. Let

N
p1−−→ Y

p2−−→ M

be the Stein factorization off (here the fibres ofp1 are connected andp2 is a fi-
nite analytic covering). For a pointx ∈M, consider an open neighborhoodUx of
x such thatE|Ux is the trivial flat vector bundle. Thenf ∗E is trivial overf −1(Ux)

and, for any fibreV of f over a point ofUx, the restrictionαV := f ∗(α)|V = 0.
This implies thath|V is locally constant. (To prove this fact in the case of singu-
larV, one must pull backh to its desingularization.) Then there exists a sectionh′

of p∗2E such thatp∗2α = ∂̄∂h′ on nonsingular part ofY.
Consider now the average ofh′ over points of regular fibres ofp2,

h′′(y) := 1

#{p−1
2 (y)}

∑
z∈p−1

2 (y)

h′(z), y ∈M.

Clearly h′′ is a bounded section ofE, smooth at regular values ofp2, and so
α = ∂̄∂h′′ outside of a proper analytic subset ofM. Moreover, according to as-
sumptions of the proposition,α is locally ∂̄∂-exact. Further, boundedness ofh′′

together with regularity of the operator∂∂̄ implies thath′′ can be extended toM
as aC∞-section ofE satisfyingα = ∂̄∂h′′. This shows thatα is d-exact.

The proof of Theorem 1.3 is complete.

Proof of Theorem 1.5. Letτ : π1(M1)→ T u2 be a representation of the class
S u2(M1). Clearly Ker(τ ) containsπ1(M1)

′′ and soτ determines a homomorphism
τ1 : π1(M1)/π1(M1)

′′ → T u2 . Furthermore, according to the assumptions of the
theorem, there exists a homomorphismτ2 : π1(M2)/π1(M2)

′′ → T u2 such that
τ1= τ2 B f∗ whose diagonal elements have the logarithm. Obviously, we can ex-
tendτ2 to a homomorphismτ ′ : π1(M2) → T u2 of the classSu2(M2) satisfying
τ = τ ′ B f∗. Thus, the conditions of Theorem 1.3 are fulfilled. According to this
theorem, for any representationρ : π1(M1)→ GLn(C) of the classSn(M1) there
exists a representationρ ′ : π1(M2)→ GLn(C) such thatρ = ρ ′ B f∗. The latter,
in particular, shows that Kerf∗ belongs to the kernel of every matrix representa-
tion of the classSn(M1), n ≥ 1. But by the assumption of the theorem,π1(M1)

belongs to the classS. Therefore Kerf∗ = {e} andf∗ is an injective homomor-
phism. Finally, from the Stein factorization off, one obtains thatf∗(π1(M1)) is a
subgroup of a finite index inπ1(M2).
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7. Concluding Remarks

All results of this paper hold true also for the class of manifolds dominated by a
compact Kähler. We recall the following definition.

Definition 7.1. A manifoldM is said to bedominatedby a compact Kähler
manifoldN if there exists a complex surjective mappingf : N → M.

Let M be a manifold dominated by a compact Kähler manifoldN : N
f−→ M,

and letE be a flat vector bundle overM with unitary structure group. The proof
of the following is similar to that of Proposition 6.1.

Proposition 7.2. (a)Letα ∈ E 0,1(E)be anE-valued∂̄-closed(0,1)-form. Then
there exists aC∞-sectionh ofE such thatα − ∂̄h is d-closed.

(b) Let theE-valued(1,1)-form β satisfydβ = 0 and β = ∂γ for someE-
valued (0,1)-form γ. Then there exists anE-valued functiong such thatβ =
∂∂̄g.

Using this result and applying the very same arguments, one can prove the valid-
ity of the results of this paper for the class of manifolds dominated by compact
Kähler ones.

In [BO] we describe the de Rham1-cohomologyH 1
DR(M,G) of a compact Käh-

ler manifoldM with values in a solvable complex linear algebraic groupG of a
special class. The result obtained is similar to Theorem 1.2.
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