Expanding Factors for
Pseudo-Anosov Homeomorphisms

E. RYKKEN

1. Introduction and Definitions

Thurston classified homeomorphisms on compact surfaces up to isotopy (see [3;
5]). He showed that any homeomorphism on a compact surface may be decom-
posed into simpler homeomorphisms on simpler compact surfaces. These simpler
homeomorphisms are either periodic or pseudo-Anosov. Here we study the dy-
namics of the pseudo-Anosov homeomorphisms, because they are much more
complicated and much richer than those of the periodic ones. In addition, pseudo-
Anosov homeomorphisms on compact surfaces can be thought of as a natural ex-
tension of the study of hyperbolic toral automorphisms on the 2-dimensional torus.
Using the Markov matrix, Markov partitions of these maps allow us to make a nat-
ural association with symbolic dynamics.

Inthe first section, we recall the basic definitions and background theorems. The
second section provides several examples of pseudo-Anosov homeomorphisms on
the two-dimensional sphere. In the final section, using tools from algebraic topol-
ogy, we prove the following theorem, which extends a theorem concerning hyper-
bolic toral automorphisms ofi? [14].

THEOREM 3.3. Letf: M — M be a pseudo-Anosov homeomorphism on an ori-
entable surface of genyswith oriented unstable manifolds. L&tbe a Markov
partition for f with Markov matrixA. If f preserves the orientation of unstable
manifolds, then the eigenvalues of : H1(M; R) — Hi(M; R) are the same as
those ofA including multiplicity, with the possible exception of some zeros and
roots of unity.

Hence, the expanding factaris an eigenvalue of,,: Hi(M; R) — Hi(M; R).
Similarly, if f reverses the orientation of unstable manifolds, then the eigenvalues
of fu1: Hi(M; R) — Hy(M; R) are the same as those-ef4 including multiplic-

ity, with the possible exception of some zeros and roots of unity. Heicis an
eigenvalue off,;: Hi(M; R) — Hi(M; R). As a consequence of this theorem,
we have the following corollary.

CoroLLARY 3.8. Let be the expanding factor of a pseudo-Anosov homeomor-
phism f. If A is the root of an irreducible quadratic equation over the rationals,
thena satisfies a quadratic of the forn? + nx 1, wheren € Z and |A| # 1.
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This is the same sort of quadratic equation that must be satisfied by the expanding
factor of a two-dimensional hyperbolic automorphism.

DeriniTION 1.1, LetM be a compact two-dimensional orientable manifold with
a flat Euclidean structure with a finite sgbf isolated cone singularities [10]. A
pseudo-Anosov homeomorphismM is a homeomorphisnf: M — M such
that there exist two perpendicular foliations!( /) andW?*(f) and a real number

A > 1 with the property that the image undgiof a leaf is a leaf and:

Q) d(f(x), f(y)) = rd(x, y) if x, y are in the same leaf &V *(f);
(2) d(f(x), f(y) = %d(x, y) if x, y are in the same leaf a¥*(f).

We call W"(f) theunstable foliation, W*( f) the stable foliation,and A the ex-
panding factorof f.

A pseudo-Anosov homeomorphisyhis hyperbolic and locally affine. That is,

in local coordinates (which are compatible with the flat Euclidean structure), the
map f is affine except at points ¢f. Furthermoref(S) = S and a singularity of
angleksr maps to a singularity of angler.

DerNITION 1.2.  ArectangleR in M is the image of a closed Euclidean rectan-
gle R under a continuous mapsuch thatr is a one-to-one Euclidean map on the
interior of R.

DerFINITION 1.3.  LetW!(x, f) be the leaf of the unstable foliation that contains
x. Let W¥(x, f) be the leaf of the stable foliation that contamsFor x € int R,

let W"(x, f, R) be the component oV“(x, f) N R that containst and define
WS (x, f, R) similarly. Let the width of a rectangl®; be given byr; = length

of W¥(x, f, R;), wherex € R;. Let the length of a rectangl®; be given byi; =
length of W"(x, f, R;), wherex € R;.

DEFINITION 1.4.  Suppos# is a pseudo-Anosov homeomorphismMdnA Mar-

kov partitionfor f on M is a finite covering oM by rectangles{R;, R», .. ., R,},

such that:

(1) fori # j, intR; NintR; = ¢;

(2) ifx €intR; and f(x) e int R;, then f(W"(x, f, R;)) D W*(f(x), f, R;) and
SW(x, f, R)) C W (f(x), f, R)).

For an example of a Markov patrtition for a hyperbolic toral automorphisiion
see [12, Sec. 8.5.1].

DEeFINITION 1.5.  We define thdlarkov matrixfor a Markov partitionP with n
rectangles to be the x n matrix given by

M;; = #[int f(W"(x;, f, R})) Nint W*(x;, f, R)],

wherex; € intR; andx; €intR; for1 < i, j < n and where we have used “#” to
denote “the number of components of”.
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The matrix does not depend on the choice 0r x;, andM; ; should be thought
of as the number of times that ifitR;) crosses inR;.

THEOREM 1.6. Let f: M — M be a pseudo-Anosov homeomorphism. Tfen
has a Markov partition.

Proof. See the proof by Fathi and Shub [5]. O

Let M be the Markov matrix for a Markov partition of a pseudo-Anosov homeo-
morphism. SinceM > 0 is mixing, by the Perron—Frobenius theorem (see [9])
we have thatM has a unique, real, and positive largest eigenvalue that exceeds the
moduli of all the other eigenvalues. To this maximal eigenvalue there corresponds
an eigenvector with positive coordinates. Moreover, no irreducible and nonneg-
ative matrix can have two linearly independent nonnegative eigenvectors. Thus,
if we can find an eigenvalue o$1 with positive eigenvector, then it must be the
unique, real, and positive largest eigenvalue\df The following result is well
known and an easy computation.

THEOREM 1.7. Let f be a pseudo-Anosov homeomorphism with expanding fac-
tor A, and letP be a Markov partition forf with » rectangles with Markov matrix
M. Letr = {ry, ra, ..., r,}, wherer; is the width of the rectangl®;, and let/ =

{li, 15, ..., 1,}, wherel; is the length of the rectanglR;. Thenr is a right eigen-
vector for M with eigenvalue., and! is a left eigenvector foA with eigenvalue

A. Hencex is the unique, real, and positive largest eigenvalue\df

We can consider thimdex for singularities of a line field or foliationFor a foli-

ation, pick any line field along the foliation. Here we consider a disk around the
singularity and consider a vector in the direction of the line field. We then calculate
the winding number as the vector travels counterclockwise around the boundary
circle. If the line field has an even number of prongs at the singularity, then it is
orientable and the index is an integer. If there are an odd number of prongs at the
singularity, then the line field is not orientable and the index is a fraction. In gen-
eral, if there aré prongs, ther?, = (2 — k)/2 (see Figure 1). This is analogous

to the fixed point index for a vector field.

\

index =1/2 index =0 index = —1/2

Figure 1 Index for singularities of a line field or foliation.
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THEOREM 1.8.

(1) (Poincare—HopfpupposeX is a smooth vector field with isolated zeros on a
compact manifold/ (if M has a boundary, then assumepoints outward at
all boundary points Then)_ I, = x(M).

(2) SupposéM is a compac®-dimensional manifold with a flat Euclidean struc-
ture having isolated cone singularities. Assume that there is an Euclidean
foliation onM. Let M be the branched double coverfthat orients the line
field. Theny(M) = 2x(M) — n, wheren is the number of singularities with
an odd number of prongs.

(3) Supposé&M is a compac®-dimensional manifold with a flat Euclidean struc-
ture having isolated cone singularities. Assume that there is an Euclidean
foliation onM. Then)_ I, = x(M).

Proof.

(1) For a proof, see [11, pp. 35—-41].

(2) See[4].

(3) The proofis straightforward and follows from the Poincare—Hopf theorem by
using the branched double cover of the manifold that orients the line field.

Recall thatx(S?) = 2 and that, ifM is an orientable surface of gengsthen
x(M) = 2 — 2g. The equality) I, = x(M) places restrictions on the combi-
nations of singularities that can exist on a given manifold. For example, if the
manifold isS? then there must be at least four singularities with angle

2. Examples of Pseudo-Anosov Homeomorphisms

We will consider examples of orientation-preserving pseudo-Anosov homeomor-
phisms that lie or§2. Since orientation-preserving homeomorphismss dfare
homotopic to the identity, they have at least one fixed point. The group of isotopy
classes of homeomorphisms$fwith one distinguished fixed point that permutes
a specified set of other points is isomorphic to the braid grouposymbols [1].
The braid group on symbols is generated by permutations that permute two ele-
ments at a time. Consider a tree wittvertices and: — 1 edges embedded in a
disk. The isotopy class of a map on this disk that permutes the vertices and point-
wise fixes the boundary can be thought of as an element of the braid group. If the
image of the tree lies in a small neighborhood of the tree, then we can also think
of the map as a map of the tree. We will call this a map diniek tree structure.
A paper by Franks and Misiurewicz [8] explains how to generate pseudo-Anosov
homeomorphisms by considering certain irreducible maps on thick tree structures.
To generate examples, given two vertices on the tree that are joined by an edge,
we define the following map. Consider a disk containing the two vertices that lies
in a small neighborhood of the tree. Consider a slightly larger disk which contains
the first disk but which also lies in a small neighborhood of the tree. On the inner
disk, rotate by 180in either the clockwise or counterclockwise direction. Fix the
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outer disk and, on the annulus between them, interpolate in a continuous way. We
will call this a flip (in either a clockwise or counterclockwise direction). bgg
denote a clockwise flip on verticesand B, and lets,  denote the counterclock-
wise flip.

ExampLELl. Consideratree, withtwo edges (1and 2) and three vettices, C),
embedded in a disk; see Figure 2. We will generate a map on this dis)gb)(;,
that is, by first flipping verticed andB in a counterclockwise direction and then
flipping verticesA andC in a clockwise direction. This gives us the picture shown
in Figure 2 of a map on a tree embedded in a disk.

tree 4

map on tree

Figure 2 Map on tree for Example 1.

Because the image of the tree lies in a small neighborhood of the tree, we think
of this map as a map of the tree. We have a Markov partition of this map on the
tree, with each edge being a rectangle. The resulting Markov matrix for this par-

tition is
1 1
M= [1 2}.

In general, given such a map on a tree and its corresponding Markov matrix, we
will use the following procedure to obtain a pseudo-Anosov homeomorphism on
§2. Consider the left eigenvectds, . . ., [,,) and the right eigenvectery, . . ., r,)

for the Perron—Frobenius eigenvaluef the Markov matrix. Construet rectan-
gles,{R;}_;, with R; having dimensiong x r;; then replace the edges in our tree
with the rectangles. With identifications on the boundaries of the rectangles, this
will form a disk.

If |»] > 1, the map on the disk will stretch a rectangle in the horizontal or un-
stable direction by a factor of and shrink the rectangle in the vertical or stable
direction by a factor of A». Thusa is called theexpanding factorIn this exam-
ple, the expanding factor is= (3 + +/5)/2.

The image rectangle is placed in the disk according to the map on the thick tree
structure. Notice that sindé, /,) is a left eigenvector, we havd; = [; + [, and
Alp = 11+ 215, But these are exactly what is needed for the imagR,db cross
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Ry and R, each exactly once and for the imageRf to crossR; exactly once
and R, exactly twice. Sincér, r) is a right eigenvector, we have+ rp = Arp
andri+ 2ro = Arp. Again, this is exactly what is needed for the images of the
rectangles to fit in the horizontal direction.

We identify the edges of the rectangles that correspond to tither with parts
of themselves or with edges of other rectangles. For example, if a vertex is at the
end of the tree then there is a single edge incident to it. Hence, there is a single rec-
tangle incident to that vertex, and we give identification to the side of the rectangle
incident to it with lengthr; by folding it at its center. We make all identifications
in such a fashion that the images of the rectangles will cross the rectangles in the
same order as the images of the edges wrap around the edges on the thick tree.
This procedure may not always work.

Finally, we identify points on the boundary by “sewing” it up, preserving arc-
lengths starting at the cusps. This will produce a maganin general, if there
arek cusps then there will be a fixed point on the boundary with akgldn this
case there is only one cusp, so there will be a fixed point on the boundary that
occurs at a singularity with angte In this example, there are exactly four singu-
larities with angler and none with angle more thatr2

tree map on tree

Figure 3 Map on tree for Example 2.

ExampLE 2. Consider a tree with three edges and four vertidess, C, D) em-
bedded in a disk (see Figure 3). The tree is such that all three edges have vertex
D in common. Pairwise, they have no other vertices in common. We will gener-
ate a map on this disk by, 0,0, 5. This gives us the picture shown in Figure 3.

The Markov matrix is
1 1 1
M = |:2 2 3}.

1 0 2

The largest eigenvalue ls= 2+ +/3. Constructing three rectangles, we have the
picture shown in Figure 4. There are four singularities with anglés there are
two cusps, the fixed point on the boundary will have angte 2
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R R

1

2

R,

tmage oz, [N
tmageof &, [ ]

Figure 4 Pseudo-Anosov homeomorphism of Example 2.

Figure 5 Tree for Example 3.

ExampLE 3. Consider the tree shown in Figure 5, with four edges and five ver-
tices(A, B, C, D, E), embedded in a disk. We will generate a map on this disk
by 04-0cp0,p0sz- IN this case the Markov matrix is

1

PN AR

11

2 3 6
0 2 3
0 0 2

The largest eigenvalue is
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1(7 V13 7 VI3V
§<§+T+\/—4+<—E—T>>.

In this example, there are five singularities with angland the singularity on the
boundary has angler3

3. Lifts of Pseudo-Anosov Homeomorphisms
and the Expanding Factor

Supposef is a pseudo-Anosov homeomorphism &@h Let M’ = M \ {singu-
larities with an odd number of prongsThenM’ has a two-fold covering space
M'’, which orients the line field. From algebraic topology, we have the following
theorem.

THeorEM 3.1. Let Y be connected and locally path connected, andget
(Y, o) — (X, xo) be continuous. If( X, p) is a covering space of, then there
exists a uniqueg : . yo) — (X, %0) (wherexg € p~X(xo)) lifting g if and only if

g«m1(Y, yo) € p.mi(X, Xo).

Proof. See [13, pp. 284—-286]. O

Since f permutes the singularities with~an odd number of prorfgsM’ — M’
is also a homeomorphism. If we Ilét:~ M: andg =fop then, by Theorem 3.1,
we have thatf : M’ — M’ willliftto f: M’ — M’; that s, the diagram

M/ f M/

L

M L w
will commute if and only if f,(p,r1(M’)) € psmi(M'). But p,my(M') is the
subgroup otz (M’) of homotopy classes of loops that respect orientation of the
line field, andf, will preserve this subgroup. Hencg,(p.mi(M’)) C p.mi(M’)
and f lifts. Since f is a homeomorphism, we can consiger. We can also
lift £~ to a continuous mapf 1y that satisfiesf 1o p = p o (f 1). Hence,
po(fHof=flopof=Ff Lo fop=p. Thus(f o f is alift of the
identity map onM’. This implies thai f 1) o f is a covering translatios. Slnce
covermg translations are homeomorphisms, we will havé o (f ) o f =
and f is a homeomorphism. If we replace theleleted points and extentl we
will have a homeomorphisnf: M — M such thatf o p = po f. Thus we have
the following theorem.

THEOREM 3.2. If f: M — Misa p§eugo—Angsov horrleomorphism, thidifits
to a pseudo-Anosov homeomorphigmM — M, whereM is the branched dou-
ble cover that orients the unstable line fieldit
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Proof. From the foregoing discussion we have tifalifts to a homeomorphism
f: M — M. The branched double covaf has a pseudo-Euclidean structure.
The foliationsW*( f) and W*(f) will lift to two perpendicular foliations ori.
Furthermore, the expanding factor féwill be the same as the one fgr Hence

f is a pseudo-Anosov homeomorphism. O

From Theorem 1.8 we have thatM) = 2x(M) — n, wheren is the number of
singularities with an odd number of prongs. Thus, in Examples 1 apdi2) =
0: in these exampled/ is the 2-dimensional torus. In Example,@M) = —2;
hereM is the orientable surface of genus 2. In generdl,if odd then singulari-
ties with anglekzr contribute(2 — k)/2 to the Euler characteristic @f, but their
lifts contribute 1— k to the Euler characteristic df. If k is even then they con-
tribute (2 — k)/2 to the Euler characteristic @f, but their lifts contribute 2- k
to the Euler characteristic aff. This implies that, ifM has only singularities of
anglerr or 27, thenM is the 2-dimensional torus. M has singularities of angle
37 or more, we no longer lift to the torus but instead to an orientable surface of
genusg with g > 2.

If the covering space is the torus then, since singularities of angted 2 both
lift to points of angle 2, 7 will be a hyperbolic toral automorphism. The only
expanding factors for hyperbolic toral automorphism&éfare roots of quadrat-
ics of the formx? + nx +1, wheren € Z and|A| # 1. Thus our original expanding
factor must be a root of a quadratic of this form.

The covering space will always be an orientable surface of ggmwish ori-
ented unstable manifolds. In general, we have the following result.

THEOREM 3.3. Let f: M — M be a pseudo-Anosov homeomorphism on an ori-
entable surface of genyswith oriented unstable manifolds. L&tbe a Markov
partition for f, with Markov matrixA. If f preserveshe orientation of unstable
manifolds then the eigenvalues fif: H;(M; R) — Hi(M; R) are the same as
those ofA including multiplicity, with the possible exception of some zeros and
roots of unity. Hence, the expanding factds an eigenvalue of,1: Hi(M; R) —
H;(M; R). If f reverseshe orientation of unstable manifolds then the eigenvalues
of fi1: Hi(M; R) — Hi(M; R) are the same as those {4 including multiplic-

ity, with the possible exception of some zeros and roots of unity. Hehég an
eigenvalue off,1: Hi(M; R) — Hy(M; R).

In order to prove this theorem, we will need the following two lemmas.

LEMMA 3.4. Suppose we have the commutative diagram

0 AL, B2 0
|
0 AL, B2 ¢ 0,

where the rows are exact and whete B, and C are vector spaces. Then there
exists a choice of basis such that
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o ok
and hence the set of eigenvaluegasé the union of those af and y.

The proof is straightforward.

LemMma 3.5. Suppose we have the commutative diagram

AL Bt c D
| I
A—Ls Bt ¢ D,

where the rows are exact and whete B, C, and D are vector spaces. Then the
eigenvalues ofy are a subset of those ¢f and§.

Proof. Consider the short exact sequence

0 — B/Imf —*5 ¢ - Imh 0.

Sincedh = hy, we haves(Im i) € Im z. Furthermore, sincgf = fa, we have
B(m f) € Im f. HenceB: B/Im f — B/Im f is well-defined. Thus we have
the commutative diagram

0 — B/Imf —*5 ¢ - Imh 0

bk e

0 —> B/Imf —*

f, ¢ S imn 0.

By Lemma 3.4, the set of eigenvalues)ofs the union of those of ands|im .
However, the eigenvalues 6f, , are a subset of those 8f And since we have
the commutative diagram

0— Imf - B -5 B/imf — 0

lﬂ‘lmf lﬂ lB
0— Imf —> B "5 B/Imf —> 0,

it follows that the eigenvalues ¢ are a subset of those gf O

Proof of Theorem 3.3Let S be the union of the stable boundaries of the rectan-
gles in our partition. This is a finite set of contractible intervals or prongs. Let
U be the union of the interiors of the unstable boundaries of the rectangles in our
partition. The seU is a finite set of contractible intervals. L¥t= M \ U. Then

SC X C M. Now f(S) € Sand f(X) C X, which gives us the following com-
mutative diagram of pairs of spaces:
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X,8) — M,S) — (M, X)

lf\x lf lf
(X,$) —> (M, S) —> (M, X).

By the theorem of exact sequences of triples in algebraic topology, we have the
following commutative diagram with exact rows:

— Hy(M,X) — Hi(X,S) — Hi(M,S) — Hi(M,X) —

lf*Z l(f|X)*l lf*l lf*l

— Hx(M,X) — H1(X,S) — HiM,S) — Hi(M,X) — .

ConsiderH,(M, X). Every line segment il with endpoints inX can be de-
formed within its homotopy class to a line segmé&ntHence,H,(M, X) = 0.

Next considen f|x)«1: Hi(X, S) — Hy(X, S). For each rectangle in our par-
tition, consider a line segment across the rectangle in the unstable direction with
endpoints in the stable boundaries, oriented compatibly with the orientation of
the unstable manifolds. This set of line segments forms a set of generators for
Hi(X, S). Supposef is orientation-preserving on unstable manifolds. With re-
spect to this basisf,; is the matrix whoséjth entry is given by the number of
times the image undef of the jth generator crosseth rectangle. Sincg pre-
serves the orientation of unstable manifolds, the image will always cross with
an orientation that is compatible with the orientation of the unstable manifolds.
Hence theijth entry will be the same as the geometric intersection number of
R; N f(R;) and hencgf,1 will be the same asl, the Markov matrix. Similarly, if
f is orientation-reversing on unstable manifolds, thfgrwill be the same as A.

Finally, considerf,>: H>(M, X) — H(M, X). For each component df,
consider a small disk with boundary ¥ that contains this component &f and
no others. This set of disks forms a set of generatoréffgn/, X). Given a com-
ponentu C U, either the closure af contains a periodic point or not. A compo-
nent cannot contain more than one periodic point. Consider an itergte f0f,
such that (a) the periodic points 0 are fixed and (b) if the closure @f con-
tains prongs then the prongs are also fixed. Ed&te the set of these fixed points.
Since underf ! the set of intervals of/ would have to map to themselves, each
component ofy must lie in the unstable manifold of one of the pointsrofIf
the closure of: contains a fixed poinp then f™(u) will intersect itself and per-
haps other generators on the unstable manifold.df the closure ofx does not
contain a fixed point, therf”"(u) for some large: will not intersect any of the
generators. Hence we can order the generators—with those having fixed points
first—such thatf;: Ho(M, X) — H>(M, X) is given by the matrix

1 0 O
F2=1g o 1 ’
ok %k N

whereN is nilpotent. Hence the eigenvalues f are zeros and roots of unity.
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By Lemma 3.5, the eigenvalues @¢f;: H1(M, S) — Hi(M, S) are a subset of
those of(f|x)«: Hi(X, S) — Hi(X, S), thatis, a subset of those gf or —A.
Furthermore, the eigenvalues @f|x).1: Hi(X, S) — Hi(X, S) are a subset of
those off,1: Hi(M, S) — Hy(M, S) and f,»: H,(M, X) — H>(M, X). Hence,
if f is orientationpreservingon unstable manifolds then any eigenvalueldhat
is not zero or a root of unity must also be an eigenvalug.,ef Hi(M, S) —
H;(M, S). Thus the eigenvalues gf1: Hi(M, S) — Hi(M, S) are those of4,
with the possible exception of some zeros and roots of unity. Likewisg,isf
orientationreversingon unstable manifolds then any eigenvalue-of that is not
zero or a root of unity must also be an eigenvalug,ef H1(M, S) — Hi(M, S).
Thus the eigenvalues gf.1: Hi(M, S) — Hi(M, S) are those of-A, with the
possible exception of some zeros and roots of unity.

Since f(S) € S, we may apply the theorem of exact sequences of pairs in al-
gebraic topology to the paitM, S). Thus we have the following commutative
diagram with exact rows:

— Hi(S) — Hi(M) — Hi(M,S) —> Ho(S) —>

J'(fb‘)*l lf*l lf*l l(fls)*o

— Hi(S) — Hi(M) — H{(M,S) —> Ho(S) — .
Sinces is the union of a finite number of contractible intervals or prongs, we know
that H1(S) = 0.
Next consideX f|s)«0: Ho(S) — Ho(S). We can consider each component of
S as a basis element féfy(S). Each basis element is either periodic or eventually
periodic underf|s. Hence, with the proper ordering| s is given by the matrix

0O 0 O O
*« . 0 O
x % 0 0]

x x *x P

whereP is a permutation matrix. Sindgf|s)«o is also given by this matrix, the
eigenvalues of f|s)«0: Ho(S) — Ho(S) are zeros and roots of unity.

By Lemma 3.5, the eigenvalues ¢f,: Hi(M) — H;(M) are a subset of
those of f,1: Hi(M,S) — Hi(M, S). Furthermore, the eigenvalues g¢f;:
Hiy(M, S) — Hy(M,S) are a subset of those ¢f.,: Hi(M) — Hi(M) and
(fls)«0: Ho(S) — Hy(S). Hence, any eigenvalue ¢f,: Hi(M, S) — Hi(M, S)
that is not zero or a root of unity must be an eigenvalug.of H1(M) — Hy(M).
Thus the eigenvalues of.,: Hi(M) — Hi(M) are those off,1: Hi(M, S) —
Hi(M, S), with the possible exception of some zeros and roots of unityf If
is orientation-preserving on unstable manifolds, this implies that the eigenvalues
of fi1: Hi(M) — Hi(M) are those of4 including multiplicity, with the pos-
sible exception of some zeros and roots of unity. Hehds an eigenvalue of
fea: Hi(M) — Hi(M). If f is orientation-reversing on unstable manifolds, this
implies that the eigenvalues ¢f;: Hi(M) — Hi(M) are those of- A including
multiplicity, with the possible exception of some zeros and roots of unity. Hence
—Ais an eigenvalue of.,: Hi(M) — Hi(M). O
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Now H1(M) has a basis such thgf;: Hi(M) — Hi(M) is given by a 2 x 2g
matrix with integer entries, whereis the genus oM. Since characteristic poly-
nomials are monic, eitheror —A satisfies a monic polynomial with integer coef-
ficients of degree 2

We also have the following results.

ProrosiTioN 3.6. If f: M — M is an orientation-reversing homeomorphism of
aclosed oriented surface andifis an eigenvalue of, : H1(M; R) — Hy(M; R),
then—1/u is also an eigenvalue and has the same multiplicity.

Proof. See [2]. O
Using the ideas of this proof, we can also show that the next proposition holds.

ProrosiTion 3.7. If f: M — M is an orientation-preserving homeomorphism
of a closed oriented surface and jf is an eigenvalue off,: Hi(M;R) —
H,(M; R), thenl/u is also an eigenvalue and has the same multiplicity.

Even if the branched double cover that orients the unstable line field %ot

we can still ask what sort of a quadratic equation is satisfied by a quadratic ex-
panding factor of a pseudo-Anosov homeomorphism. Becaose-A satisfies a
monic polynomial with integer coefficients, if satisfies an irreducible quadratic
then it must be a monic one with integer coefficients. Hentzintegral overZ.
Theorem 3.3 and Propositions 3.6 and 3.7 give us the following result.

CoRroLLARY 3.8. Let A be the expanding factor of a pseudo-Anosov homeomor-
phismf, and suppose is the root of an irreducible quadratic equation over the
rationals. Then satisfies a quadratic of the fors? + nx + 1, wheren € Z and

|A] # 1

Proof. If u is an element of the quadratic fielf+/d] (Whered is a square-free
integer), thenu is of the forma + b+/d with a, b € Q. We define the conjugate

of u aso(p) = a — by/d, and we define the norm gf asN(u) = po(w). If

w is integral overZ, then bothu + o (1) and N(u) are integers. Hence will

satisfy the equation? — (u + o(u))x + N(u) and sox satisfies the equation

x2 — (A +o(1)x + N(»). We will show one of four possible cases. Suppgse
preserves the orientation of both stable and unstable manifolds. By Theorem 3.3,
rlsaroot off,1: Hi(M) — Hi(M); by Proposition 3.7, Ak is also a root off,;.

Now N(A)N(1/x) = N = 1 Since bothk and YA are integral, we must have
N()\) = £1. The other three cases are similar. O

The following is an example of a pseudo-Anosov homeomorphism with a qua-
dratic expanding factor whose branched double cover that orients the unstable
manifold is an orientable surface of genus 3.

ExampLE 4. Consider the homeomorphism with expanding facter /3 in
Example 2. By the Markov matrix, this homeomorphism has five or fewer fixed
points. There is a fixed point on the boundary that lies in two rectangles. Hence
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there are three fixed points that lie in the interiors of rectangles. One of these lies
in the interior ofRy; call it P. We can cut along the stable boundaryrofintil we

hit the unstable boundary @& (see Figure 6). If we do this with two copies of
the map, we can rotate one copy by 1&bd sew one copy to the other along the
cuts in the stable boundaries. We sew sid® sideB and sideB to sideA (see
Figure 7). This is the branched cover formed by the two-fold cover of the disk
punctured atP. The fundamental group of a punctured disiZisThe subgroup
associated to this cover iZ.2 Since isomorphisms df preserve this subgroup,

the map must lift to the covering space. We can replace the punctured point and,
when we sew up the boundary, we will obtain a pseudo-Anosov homeomorphism
with the same expanding factor.

Cut along stable of fixed point in R,

r” R,

tmage o %, [T
tmageof R, [ ]

Figure 6

The unstable boundary will sew together as follows. Peaind P, be the two
points on the boundary that become identified and form a fixed point when the un-
stable boundary is sewn together. l@tbe the point on the unstable boundary
of R; that lies on the stable manifold of the fixed pointRa. Let a be the dis-
tance along the unstable boundary fr@nrto P;, and letb be the distance along
the unstable boundary fro, to P,. Finally, letc be the distance fron®, to Q.

We have that: + ¢ = b. The two copies will fit together as shown in Figure 7.
This creates a pseudo-Anosov homeomorphism with the same expanding factor,
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Figure 7

2 + /3. There are, however, eight singularities of anglend two with angle

4. Hence, the Euler characteristic of branched double covering space must be
—4. Thus, the branched double covering space must be an orientable surface of
genus 3.

Thus, a pseudo-Anosov homeomorphism with a quadratic expanding factor must
satisfy the same type of polynomial as those given by hyperbolic toral automor-
phisms, even though the map does not have the 2-torus as its lift.
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