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1. Introduction and Definitions

Thurston classified homeomorphisms on compact surfaces up to isotopy (see [3;
5]). He showed that any homeomorphism on a compact surface may be decom-
posed into simpler homeomorphisms on simpler compact surfaces. These simpler
homeomorphisms are either periodic or pseudo-Anosov. Here we study the dy-
namics of the pseudo-Anosov homeomorphisms, because they are much more
complicated and much richer than those of the periodic ones. In addition, pseudo-
Anosov homeomorphisms on compact surfaces can be thought of as a natural ex-
tension of the study of hyperbolic toral automorphisms on the 2-dimensional torus.
Using the Markov matrix, Markov partitions of these maps allow us to make a nat-
ural association with symbolic dynamics.

In the first section, we recall the basic definitions and background theorems. The
second section provides several examples of pseudo-Anosov homeomorphisms on
the two-dimensional sphere. In the final section, using tools from algebraic topol-
ogy, we prove the following theorem, which extends a theorem concerning hyper-
bolic toral automorphisms onT2 [14].

Theorem 3.3. Letf : M → M be a pseudo-Anosov homeomorphism on an ori-
entable surface of genusg with oriented unstable manifolds. LetP be a Markov
partition for f with Markov matrixA. If f preserves the orientation of unstable
manifolds, then the eigenvalues off∗1: H1(M;R)→ H1(M;R) are the same as
those ofA including multiplicity, with the possible exception of some zeros and
roots of unity.

Hence, the expanding factorλ is an eigenvalue off∗1: H1(M;R)→ H1(M;R).
Similarly, if f reverses the orientation of unstable manifolds, then the eigenvalues
of f∗1: H1(M;R)→ H1(M;R) are the same as those of−A including multiplic-
ity, with the possible exception of some zeros and roots of unity. Hence−λ is an
eigenvalue off∗1: H1(M;R) → H1(M;R). As a consequence of this theorem,
we have the following corollary.

Corollary 3.8. Let λ be the expanding factor of a pseudo-Anosov homeomor-
phismf. If λ is the root of an irreducible quadratic equation over the rationals,
thenλ satisfies a quadratic of the formx2 + nx ±1, wheren∈Z and |λ| 6= 1.
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This is the same sort of quadratic equation that must be satisfied by the expanding
factor of a two-dimensional hyperbolic automorphism.

Definition 1.1. LetM be a compact two-dimensional orientable manifold with
a flat Euclidean structure with a finite setS of isolated cone singularities [10]. A
pseudo-Anosov homeomorphismonM is a homeomorphismf : M → M such
that there exist two perpendicular foliationsWu(f ) andWs(f ) and a real number
λ > 1 with the property that the image underf of a leaf is a leaf and:

(1) d(f(x), f(y)) = λd(x, y) if x, y are in the same leaf ofWu(f );
(2) d(f(x), f(y)) = 1

λ
d(x, y) if x, y are in the same leaf ofWs(f ).

We callWu(f ) theunstable foliation,Ws(f ) thestable foliation,andλ theex-
panding factorof f.

A pseudo-Anosov homeomorphismf is hyperbolic and locally affine. That is,
in local coordinates (which are compatible with the flat Euclidean structure), the
mapf is affine except at points ofS. Furthermore,f(S) = S and a singularity of
anglekπ maps to a singularity of anglekπ.

Definition 1.2. A rectangleR in M is the image of a closed Euclidean rectan-
gleR̃ under a continuous mapπ such thatπ is a one-to-one Euclidean map on the
interior of R̃.

Definition 1.3. LetWu(x, f ) be the leaf of the unstable foliation that contains
x. LetWs(x, f ) be the leaf of the stable foliation that containsx. For x ∈ intR,
let Wu(x, f, R) be the component ofWu(x, f ) ∩ R that containsx and define
Ws(x, f, R) similarly. Let the width of a rectangleRi be given byri = length
of Ws(x, f, Ri), wherex ∈Ri. Let the length of a rectangleRi be given byli =
length ofWu(x, f, Ri), wherex ∈Ri.

Definition1.4. Supposef is a pseudo-Anosov homeomorphism onM. A Mar-
kov partitionfor f onM is a finite covering ofM by rectangles,{R1, R2, . . . , Rn},
such that:

(1) for i 6= j, intRi ∩ intRj = ∅;
(2) if x ∈ intRi andf(x)∈ intRj, thenf(W u(x, f, Ri)) ⊃ Wu(f(x), f, Rj ) and

f(W s(x, f, Ri)) ⊂ Ws(f(x), f, Rj ).

For an example of a Markov partition for a hyperbolic toral automorphism onT2,

see [12, Sec. 8.5.1].

Definition 1.5. We define theMarkov matrixfor a Markov partitionP with n
rectangles to be then× n matrix given by

Mij = #[int f(W u(xj, f, Rj )) ∩ intWs(xi, f, Ri)],

wherexi ∈ intRi andxj ∈ intRj for 1≤ i, j ≤ n and where we have used “#” to
denote “the number of components of ”.
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The matrix does not depend on the choice ofxi or xj, andMi,j should be thought
of as the number of times that intf(Rj ) crosses intRi.

Theorem 1.6. Let f : M → M be a pseudo-Anosov homeomorphism. Thenf

has a Markov partition.

Proof. See the proof by Fathi and Shub [5].

LetM be the Markov matrix for a Markov partition of a pseudo-Anosov homeo-
morphism. SinceM ≥ 0 is mixing, by the Perron–Frobenius theorem (see [9])
we have thatM has a unique, real, and positive largest eigenvalue that exceeds the
moduli of all the other eigenvalues. To this maximal eigenvalue there corresponds
an eigenvector with positive coordinates. Moreover, no irreducible and nonneg-
ative matrix can have two linearly independent nonnegative eigenvectors. Thus,
if we can find an eigenvalue ofM with positive eigenvector, then it must be the
unique, real, and positive largest eigenvalue ofM. The following result is well
known and an easy computation.

Theorem 1.7. Let f be a pseudo-Anosov homeomorphism with expanding fac-
tor λ, and letP be a Markov partition forf withn rectangles with Markov matrix
M. Letr = {r1, r2, . . . , rn}, whereri is the width of the rectangleRi, and letl =
{l1, l2, . . . , ln}, whereli is the length of the rectangleRi. Thenr is a right eigen-
vector forMwith eigenvalueλ, andl is a left eigenvector forMwith eigenvalue
λ. Henceλ is the unique, real, and positive largest eigenvalue ofM.

We can consider theindex for singularities of a line field or foliation.For a foli-
ation, pick any line field along the foliation. Here we consider a disk around the
singularity and consider a vector in the direction of the line field. We then calculate
the winding number as the vector travels counterclockwise around the boundary
circle. If the line field has an even number of prongs at the singularity, then it is
orientable and the index is an integer. If there are an odd number of prongs at the
singularity, then the line field is not orientable and the index is a fraction. In gen-
eral, if there arek prongs, thenIp = (2− k)/2 (see Figure 1). This is analogous
to the fixed point index for a vector field.

Figure 1 Index for singularities of a line field or foliation.
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Theorem 1.8.

(1) (Poincare–Hopf)SupposeX is a smooth vector field with isolated zeros on a
compact manifoldM (if M has a boundary, then assumeX points outward at
all boundary points). Then

∑
Ip = χ(M).

(2) SupposeM is a compact2-dimensional manifold with a flat Euclidean struc-
ture having isolated cone singularities. Assume that there is an Euclidean
foliation onM. LetM̃ be the branched double cover ofM that orients the line
field. Thenχ(M̃ ) = 2χ(M)− n, wheren is the number of singularities with
an odd number of prongs.

(3) SupposeM is a compact2-dimensional manifold with a flat Euclidean struc-
ture having isolated cone singularities. Assume that there is an Euclidean
foliation onM. Then

∑
Ip = χ(M).

Proof.

(1) For a proof, see [11, pp. 35–41].
(2) See [4].
(3) The proof is straightforward and follows from the Poincare–Hopf theorem by

using the branched double cover of the manifold that orients the line field.

Recall thatχ(S2) = 2 and that, ifM is an orientable surface of genusg, then
χ(M) = 2− 2g. The equality

∑
Ip = χ(M) places restrictions on the combi-

nations of singularities that can exist on a given manifold. For example, if the
manifold isS2 then there must be at least four singularities with angleπ.

2. Examples of Pseudo-Anosov Homeomorphisms

We will consider examples of orientation-preserving pseudo-Anosov homeomor-
phisms that lie onS2. Since orientation-preserving homeomorphisms ofS2 are
homotopic to the identity, they have at least one fixed point. The group of isotopy
classes of homeomorphisms ofS2 with one distinguished fixed point that permutes
a specified set ofn other points is isomorphic to the braid group onn symbols [1].
The braid group onn symbols is generated by permutations that permute two ele-
ments at a time. Consider a tree withn vertices andn − 1 edges embedded in a
disk. The isotopy class of a map on this disk that permutes the vertices and point-
wise fixes the boundary can be thought of as an element of the braid group. If the
image of the tree lies in a small neighborhood of the tree, then we can also think
of the map as a map of the tree. We will call this a map on athick tree structure.
A paper by Franks and Misiurewicz [8] explains how to generate pseudo-Anosov
homeomorphisms by considering certain irreducible maps on thick tree structures.

To generate examples, given two vertices on the tree that are joined by an edge,
we define the following map. Consider a disk containing the two vertices that lies
in a small neighborhood of the tree. Consider a slightly larger disk which contains
the first disk but which also lies in a small neighborhood of the tree. On the inner
disk, rotate by 180◦ in either the clockwise or counterclockwise direction. Fix the
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outer disk and, on the annulus between them, interpolate in a continuous way. We
will call this a flip (in either a clockwise or counterclockwise direction). LetσAB
denote a clockwise flip on verticesA andB, and letσ−1

AB denote the counterclock-
wise flip.

Example1. Consider a tree, with two edges (1and 2) and three vertices(A,B,C),

embedded in a disk; see Figure 2. We will generate a map on this disk byσAC σ
−1
AB,

that is, by first flipping verticesA andB in a counterclockwise direction and then
flipping verticesA andC in a clockwise direction. This gives us the picture shown
in Figure 2 of a map on a tree embedded in a disk.

Figure 2 Map on tree for Example 1.

Because the image of the tree lies in a small neighborhood of the tree, we think
of this map as a map of the tree. We have a Markov partition of this map on the
tree, with each edge being a rectangle. The resulting Markov matrix for this par-
tition is

M =
[

1 1
1 2

]
.

In general, given such a map on a tree and its corresponding Markov matrix, we
will use the following procedure to obtain a pseudo-Anosov homeomorphism on
S2. Consider the left eigenvector(l1, . . . , ln) and the right eigenvector(r1, . . . , rn)

for the Perron–Frobenius eigenvalueλ of the Markov matrix. Constructn rectan-
gles,{Ri}ni=1,with Ri having dimensionsli × ri; then replace the edges in our tree
with the rectangles. With identifications on the boundaries of the rectangles, this
will form a disk.

If |λ| > 1, the map on the disk will stretch a rectangle in the horizontal or un-
stable direction by a factor ofλ and shrink the rectangle in the vertical or stable
direction by a factor of 1/λ. Thusλ is called theexpanding factor.In this exam-
ple, the expanding factor isλ = (3+√5)/2.

The image rectangle is placed in the disk according to the map on the thick tree
structure. Notice that since(l1, l2) is a left eigenvector, we haveλl1= l1+ l2 and
λl2 = l1+ 2l2. But these are exactly what is needed for the image ofR1 to cross
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R1 andR2 each exactly once and for the image ofR2 to crossR1 exactly once
andR2 exactly twice. Since(r1, r2) is a right eigenvector, we haver1+ r2 = λr1

andr1+ 2r2 = λr2. Again, this is exactly what is needed for the images of the
rectangles to fit in the horizontal direction.

We identify the edges of the rectangles that correspond to theri either with parts
of themselves or with edges of other rectangles. For example, if a vertex is at the
end of the tree then there is a single edge incident to it. Hence, there is a single rec-
tangle incident to that vertex, and we give identification to the side of the rectangle
incident to it with lengthri by folding it at its center. We make all identifications
in such a fashion that the images of the rectangles will cross the rectangles in the
same order as the images of the edges wrap around the edges on the thick tree.
This procedure may not always work.

Finally, we identify points on the boundary by “sewing” it up, preserving arc-
lengths starting at the cusps. This will produce a map onS2. In general, if there
arek cusps then there will be a fixed point on the boundary with anglekπ. In this
case there is only one cusp, so there will be a fixed point on the boundary that
occurs at a singularity with angleπ. In this example, there are exactly four singu-
larities with angleπ and none with angle more than 2π.

Figure 3 Map on tree for Example 2.

Example 2. Consider a tree with three edges and four vertices(A,B,C,D) em-
bedded in a disk (see Figure 3). The tree is such that all three edges have vertex
D in common. Pairwise, they have no other vertices in common. We will gener-
ate a map on this disk byσCBσAC σ

−1
AD. This gives us the picture shown in Figure 3.

The Markov matrix is

M =
[ 1 1 1

2 2 3
1 0 2

]
.

The largest eigenvalue isλ = 2+√3. Constructing three rectangles, we have the
picture shown in Figure 4. There are four singularities with angleπ. As there are
two cusps, the fixed point on the boundary will have angle 2π.
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Figure 4 Pseudo-Anosov homeomorphism of Example 2.

Figure 5 Tree for Example 3.

Example 3. Consider the tree shown in Figure 5, with four edges and five ver-
tices(A,B,C,D,E), embedded in a disk. We will generate a map on this disk
by σBCσCDσADσ

−1
AE. In this case the Markov matrix is

M =


1 1 1 1
4 2 3 6
2 0 2 3
1 0 0 2

.
The largest eigenvalue is
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In this example, there are five singularities with angleπ and the singularity on the
boundary has angle 3π.

3. Lifts of Pseudo-Anosov Homeomorphisms
and the Expanding Factor

Supposef is a pseudo-Anosov homeomorphism onM. Let M ′ = M \ {singu-
larities with an odd number of prongs}. ThenM ′ has a two-fold covering space
M̃ ′, which orients the line field. From algebraic topology, we have the following
theorem.

Theorem 3.1. Let Y be connected and locally path connected, and letg:
(Y, y0)→ (X, x0) be continuous. If(X̃, p) is a covering space ofX, then there
exists a uniquẽg : (Y, y0)→ (X̃, x̃0) (wherex̃0 ∈p−1(x0)) lifting g if and only if
g∗π1(Y, y0) ⊆ p∗π1(X̃, x̃0).

Proof. See [13, pp. 284–286].

Sincef permutes the singularities with an odd number of prongs,f : M ′ → M ′

is also a homeomorphism. If we letY = M̃ ′ andg = f Bp then, by Theorem 3.1,
we have thatf : M ′ → M ′ will lift to f̃ : M̃ ′ → M̃ ′; that is, the diagram

M̃ ′
f̃−−→ M̃ ′yp yp

M ′
f̃−−→ M ′

will commute if and only iff∗(p∗π1(M̃
′)) ⊆ p∗π1(M̃

′). But p∗π1(M̃
′) is the

subgroup ofπ1(M
′) of homotopy classes of loops that respect orientation of the

line field, andf∗ will preserve this subgroup. Hence,f∗(p∗π1(M̃
′)) ⊆ p∗π1(M̃

′)
and f lifts. Sincef is a homeomorphism, we can considerf −1. We can also
lift f −1 to a continuous map(f̃ −1) that satisfiesf −1 B p = p B (f̃ −1). Hence,
p B (f̃ −1) B f̃ = f −1 B p B f̃ = f −1 B f B p = p. Thus(f̃ −1) B f̃ is a lift of the
identity map onM ′. This implies that(f̃ −1) B f̃ is a covering translationα. Since
covering translations are homeomorphisms, we will have(α−1 B (f̃ −1)) B f̃ = id
and f̃ is a homeomorphism. If we replace then deleted points and extend̃f , we
will have a homeomorphism̃f : M̃ → M̃ such thatf Bp = p B f̃ . Thus we have
the following theorem.

Theorem 3.2. If f : M → M is a pseudo-Anosov homeomorphism, thenf lifts
to a pseudo-Anosov homeomorphismf̃ : M̃ → M̃, whereM̃ is the branched dou-
ble cover that orients the unstable line field ofM.
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Proof. From the foregoing discussion we have thatf lifts to a homeomorphism
f̃ : M̃ → M̃. The branched double cover̃M has a pseudo-Euclidean structure.
The foliationsWu(f ) andWs(f ) will lift to two perpendicular foliations onM̃.
Furthermore, the expanding factor forf̃ will be the same as the one forf. Hence
f̃ is a pseudo-Anosov homeomorphism.

From Theorem 1.8 we have thatχ(M̃ ) = 2χ(M) − n, wheren is the number of
singularities with an odd number of prongs. Thus, in Examples 1 and 2,χ(M̃ ) =
0; in these examples,̃M is the 2-dimensional torus. In Example 3,χ(M̃ ) = −2;
hereM̃ is the orientable surface of genus 2. In general, ifk is odd then singulari-
ties with anglekπ contribute(2− k)/2 to the Euler characteristic ofM, but their
lifts contribute 1− k to the Euler characteristic of̃M. If k is even then they con-
tribute(2− k)/2 to the Euler characteristic ofM, but their lifts contribute 2− k
to the Euler characteristic of̃M. This implies that, ifM has only singularities of
angleπ or 2π, thenM̃ is the 2-dimensional torus. IfM has singularities of angle
3π or more, we no longer lift to the torus but instead to an orientable surface of
genusg with g ≥ 2.

If the covering space is the torus then, since singularities of angleπ and 2π both
lift to points of angle 2π, f̃ will be a hyperbolic toral automorphism. The only
expanding factors for hyperbolic toral automorphisms ofT2 are roots of quadrat-
ics of the formx2+nx±1,wheren∈Z and|λ| 6= 1. Thus our original expanding
factor must be a root of a quadratic of this form.

The covering space will always be an orientable surface of genusg with ori-
ented unstable manifolds. In general, we have the following result.

Theorem 3.3. Letf : M → M be a pseudo-Anosov homeomorphism on an ori-
entable surface of genusg with oriented unstable manifolds. LetP be a Markov
partition for f, with Markov matrixA. If f preservesthe orientation of unstable
manifolds then the eigenvalues off∗1: H1(M;R) → H1(M;R) are the same as
those ofA including multiplicity, with the possible exception of some zeros and
roots of unity. Hence, the expanding factorλ is an eigenvalue off∗1: H1(M;R)→
H1(M;R). If f reversesthe orientation of unstable manifolds then the eigenvalues
of f∗1: H1(M;R)→ H1(M;R) are the same as those of−A including multiplic-
ity, with the possible exception of some zeros and roots of unity. Hence−λ is an
eigenvalue off∗1: H1(M;R)→ H1(M;R).
In order to prove this theorem, we will need the following two lemmas.

Lemma 3.4. Suppose we have the commutative diagram

0 −−→ A
f−−→ B

g−−→ C −−→ 0yα yβ yγ
0 −−→ A

f−−→ B
g−−→ C −−→ 0,

where the rows are exact and whereA, B, andC are vector spaces. Then there
exists a choice of basis such that
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β =
[
α ∗
0 γ

]
,

and hence the set of eigenvalues ofβ is the union of those ofα andγ.

The proof is straightforward.

Lemma 3.5. Suppose we have the commutative diagram

A
f−−→ B

g−−→ C
h−−→ Dyα yβ yγ yδ

A
f−−→ B

g−−→ C
h−−→ D,

where the rows are exact and whereA, B, C, andD are vector spaces. Then the
eigenvalues ofγ are a subset of those ofβ and δ.

Proof. Consider the short exact sequence

0 −−→ B/Im f
ḡ−−→ C

h−−→ Imh −−→ 0.

Sinceδh = hγ, we haveδ( Imh) ⊆ Imh. Furthermore, sinceβf = fα, we have
β(Im f ) ⊆ Im f. Henceβ̄ : B/Im f → B/Im f is well-defined. Thus we have
the commutative diagram

0 −−→ B/Im f
ḡ−−→ C

h−−→ Im h −−→ 0yβ̄ yγ yδ|Im h

0 −−→ B/Im f
ḡ−−→ C

h−−→ Im h −−→ 0.

By Lemma 3.4, the set of eigenvalues ofγ is the union of those of̄β andδ|Im h.

However, the eigenvalues ofδ|Im h are a subset of those ofδ. And since we have
the commutative diagram

0 −−→ Im f
i−−→ B

π−−→ B/Im f −−→ 0yβ|Im f

yβ yβ̄
0 −−→ Im f

i−−→ B
π−−→ B/Im f −−→ 0,

it follows that the eigenvalues of̄β are a subset of those ofβ.

Proof of Theorem 3.3.Let S be the union of the stable boundaries of the rectan-
gles in our partition. This is a finite set of contractible intervals or prongs. Let
U be the union of the interiors of the unstable boundaries of the rectangles in our
partition. The setU is a finite set of contractible intervals. LetX = M \U. Then
S ⊆ X ⊆ M. Now f(S) ⊆ S andf(X) ⊆ X, which gives us the following com-
mutative diagram of pairs of spaces:
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(X, S) −−→ (M, S) −−→ (M,X)yf |X yf yf
(X, S) −−→ (M, S) −−→ (M,X).

By the theorem of exact sequences of triples in algebraic topology, we have the
following commutative diagram with exact rows:

−−→ H2(M,X) −−→ H1(X, S) −−→ H1(M, S) −−→ H1(M,X) −−→yf∗2 y(f |X)∗1 yf∗1 yf∗1
−−→ H2(M,X) −−→ H1(X, S) −−→ H1(M, S) −−→ H1(M,X) −−→ .

ConsiderH1(M,X). Every line segment inM with endpoints inX can be de-
formed within its homotopy class to a line segmentX. Hence,H1(M,X) = 0.

Next consider(f |X)∗1: H1(X, S)→ H1(X, S). For each rectangle in our par-
tition, consider a line segment across the rectangle in the unstable direction with
endpoints in the stable boundaries, oriented compatibly with the orientation of
the unstable manifolds. This set of line segments forms a set of generators for
H1(X, S). Supposef is orientation-preserving on unstable manifolds. With re-
spect to this basis,f∗1 is the matrix whoseij th entry is given by the number of
times the image underf of thej th generator crossesith rectangle. Sincef pre-
serves the orientation of unstable manifolds, the image will always cross with
an orientation that is compatible with the orientation of the unstable manifolds.
Hence theij th entry will be the same as the geometric intersection number of
Ri ∩ f(Rj ) and hencef∗1 will be the same asA, the Markov matrix. Similarly, if
f is orientation-reversing on unstable manifolds, thenf∗1 will be the same as−A.

Finally, considerf∗2 : H2(M,X) → H2(M,X). For each component ofU,
consider a small disk with boundary inX that contains this component ofU and
no others. This set of disks forms a set of generators forH2(M,X). Given a com-
ponentu ⊆ U, either the closure ofu contains a periodic point or not. A compo-
nent cannot contain more than one periodic point. Consider an iterate off, f m,

such that (a) the periodic points inU are fixed and (b) if the closure ofU con-
tains prongs then the prongs are also fixed. LetF be the set of these fixed points.
Since underf −1 the set of intervals ofU would have to map to themselves, each
component ofU must lie in the unstable manifold of one of the points ofF. If
the closure ofu contains a fixed pointp thenf m(u) will intersect itself and per-
haps other generators on the unstable manifold ofp. If the closure ofu does not
contain a fixed point, thenf mn(u) for some largen will not intersect any of the
generators. Hence we can order the generators—with those having fixed points
first—such thatf m∗2 : H2(M,X)→ H2(M,X) is given by the matrix

f m∗2 =


1 0 0

0
. . . 0 0

0 0 1
∗ ∗ ∗ N

 ,
whereN is nilpotent. Hence the eigenvalues off∗2 are zeros and roots of unity.
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By Lemma 3.5, the eigenvalues off∗1: H1(M, S)→ H1(M, S) are a subset of
those of(f |X)∗1: H1(X, S)→ H1(X, S), that is, a subset of those ofA or−A.
Furthermore, the eigenvalues of(f |X)∗1: H1(X, S) → H1(X, S) are a subset of
those off∗1: H1(M, S)→ H1(M, S) andf∗2 : H2(M,X)→ H2(M,X). Hence,
if f is orientation-preservingon unstable manifolds then any eigenvalue ofA that
is not zero or a root of unity must also be an eigenvalue off∗1: H1(M, S) →
H1(M, S). Thus the eigenvalues off∗1: H1(M, S) → H1(M, S) are those ofA,
with the possible exception of some zeros and roots of unity. Likewise, iff is
orientation-reversingon unstable manifolds then any eigenvalue of−A that is not
zero or a root of unity must also be an eigenvalue off∗1: H1(M, S)→ H1(M, S).

Thus the eigenvalues off∗1: H1(M, S) → H1(M, S) are those of−A, with the
possible exception of some zeros and roots of unity.

Sincef(S) ⊆ S, we may apply the theorem of exact sequences of pairs in al-
gebraic topology to the pair(M, S). Thus we have the following commutative
diagram with exact rows:

−−→ H1(S) −−→ H1(M) −−→ H1(M, S) −−→ H0(S) −−→y(f |S)∗1 yf∗1 yf∗1 y(f |S)∗0
−−→ H1(S) −−→ H1(M) −−→ H1(M, S) −−→ H0(S) −−→ .

SinceS is the union of a finite number of contractible intervals or prongs, we know
thatH1(S) = 0.

Next consider(f |S)∗0 : H0(S)→ H0(S). We can consider each component of
S as a basis element forH0(S). Each basis element is either periodic or eventually
periodic underf |S. Hence, with the proper ordering,f |S is given by the matrix

0 0 0 0

∗ . . . 0 0
∗ ∗ 0 0
∗ ∗ ∗ P

 ,
whereP is a permutation matrix. Since(f |S)∗0 is also given by this matrix, the
eigenvalues of(f |S)∗0 : H0(S)→ H0(S) are zeros and roots of unity.

By Lemma 3.5, the eigenvalues off∗1: H1(M) → H1(M) are a subset of
those off∗1: H1(M, S) → H1(M, S). Furthermore, the eigenvalues off∗1:
H1(M, S) → H1(M, S) are a subset of those off∗1: H1(M) → H1(M) and
(f |S)∗0 : H0(S)→ H0(S). Hence, any eigenvalue off∗1: H1(M, S)→ H1(M, S)

that is not zero or a root of unity must be an eigenvalue off∗1: H1(M)→ H1(M).

Thus the eigenvalues off∗1: H1(M) → H1(M) are those off∗1: H1(M, S) →
H1(M, S), with the possible exception of some zeros and roots of unity. Iff

is orientation-preserving on unstable manifolds, this implies that the eigenvalues
of f∗1: H1(M) → H1(M) are those ofA including multiplicity, with the pos-
sible exception of some zeros and roots of unity. Henceλ is an eigenvalue of
f∗1: H1(M)→ H1(M). If f is orientation-reversing on unstable manifolds, this
implies that the eigenvalues off∗1: H1(M)→ H1(M) are those of−A including
multiplicity, with the possible exception of some zeros and roots of unity. Hence
−λ is an eigenvalue off∗1: H1(M)→ H1(M).
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NowH1(M) has a basis such thatf∗1: H1(M)→ H1(M) is given by a 2g × 2g
matrix with integer entries, whereg is the genus ofM. Since characteristic poly-
nomials are monic, eitherλ or−λ satisfies a monic polynomial with integer coef-
ficients of degree 2g.

We also have the following results.

Proposition 3.6. If f : M → M is an orientation-reversing homeomorphism of
a closed oriented surface and ifµ is an eigenvalue off∗ : H1(M;R)→ H1(M;R),
then−1/µ is also an eigenvalue and has the same multiplicity.

Proof. See [2].

Using the ideas of this proof, we can also show that the next proposition holds.

Proposition 3.7. If f : M → M is an orientation-preserving homeomorphism
of a closed oriented surface and ifµ is an eigenvalue off∗ : H1(M;R) →
H1(M;R), then1/µ is also an eigenvalue and has the same multiplicity.

Even if the branched double cover that orients the unstable line field is notT2,

we can still ask what sort of a quadratic equation is satisfied by a quadratic ex-
panding factor of a pseudo-Anosov homeomorphism. Becauseλ or−λ satisfies a
monic polynomial with integer coefficients, ifλ satisfies an irreducible quadratic
then it must be a monic one with integer coefficients. Henceλ is integral overZ.
Theorem 3.3 and Propositions 3.6 and 3.7 give us the following result.

Corollary 3.8. Let λ be the expanding factor of a pseudo-Anosov homeomor-
phismf, and supposeλ is the root of an irreducible quadratic equation over the
rationals. Thenλ satisfies a quadratic of the formx2 + nx ± 1, wheren ∈Z and
|λ| 6= 1.

Proof. If µ is an element of the quadratic fieldQ[
√
d ] (whered is a square-free

integer), thenµ is of the forma + b√d with a, b ∈ Q. We define the conjugate
of µ asσ(µ) = a − b√d, and we define the norm ofµ asN(µ) = µσ(µ). If
µ is integral overZ, then bothµ + σ(µ) andN(µ) are integers. Henceµ will
satisfy the equationx2 − (µ + σ(µ))x + N(µ) and soλ satisfies the equation
x2 − (λ + σ(λ))x + N(λ). We will show one of four possible cases. Supposef

preserves the orientation of both stable and unstable manifolds. By Theorem 3.3,
λ is a root off∗1: H1(M)→ H1(M); by Proposition 3.7, 1/λ is also a root off∗1.
NowN(λ)N(1/λ) = N(1) = 1. Since bothλ and 1/λ are integral, we must have
N(λ) = ±1. The other three cases are similar.

The following is an example of a pseudo-Anosov homeomorphism with a qua-
dratic expanding factor whose branched double cover that orients the unstable
manifold is an orientable surface of genus 3.

Example 4. Consider the homeomorphism with expanding factor 2+ √3 in
Example 2. By the Markov matrix, this homeomorphism has five or fewer fixed
points. There is a fixed point on the boundary that lies in two rectangles. Hence
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there are three fixed points that lie in the interiors of rectangles. One of these lies
in the interior ofR1; call it P. We can cut along the stable boundary ofP until we
hit the unstable boundary ofR1 (see Figure 6). If we do this with two copies of
the map, we can rotate one copy by 180◦ and sew one copy to the other along the
cuts in the stable boundaries. We sew sideA to sideB and sideB to sideA (see
Figure 7). This is the branched cover formed by the two-fold cover of the disk
punctured atP. The fundamental group of a punctured disk isZ. The subgroup
associated to this cover is 2Z. Since isomorphisms ofZ preserve this subgroup,
the map must lift to the covering space. We can replace the punctured point and,
when we sew up the boundary, we will obtain a pseudo-Anosov homeomorphism
with the same expanding factor.

Figure 6

The unstable boundary will sew together as follows. LetP1 andP2 be the two
points on the boundary that become identified and form a fixed point when the un-
stable boundary is sewn together. LetQ be the point on the unstable boundary
of R1 that lies on the stable manifold of the fixed point inR1. Let a be the dis-
tance along the unstable boundary fromQ to P1, and letb be the distance along
the unstable boundary fromP1 toP2. Finally, letc be the distance fromP2 toQ.
We have thata + c = b. The two copies will fit together as shown in Figure 7.
This creates a pseudo-Anosov homeomorphism with the same expanding factor,
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Figure 7

2+ √3. There are, however, eight singularities of angleπ and two with angle
4π. Hence, the Euler characteristic of branched double covering space must be
−4. Thus, the branched double covering space must be an orientable surface of
genus 3.

Thus, a pseudo-Anosov homeomorphism with a quadratic expanding factor must
satisfy the same type of polynomial as those given by hyperbolic toral automor-
phisms, even though the map does not have the 2-torus as its lift.
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