Injectivity and the Pre-Schwarzian Derivative

Dennis Stowe

Many basic theorems about conformal mapping involve the pre-Schwarzian derivative $f^{\prime \prime} / f^{\prime}$. This paper studies the inner radius of injectivity $\tau(D)$ of a simply connected domain D in the complex plane, other than the plane itself, with respect to that operator. In answer to questions posed by Gehring [9], we show that $\tau(D)$ never exceeds $1 / 2$ and that it equals $1 / 2$ for some domains other than disks and half-planes. We also show that every such domain is convex.

Let $\rho_{D}|d z|$ be the hyperbolic metric of D. When D is the unit disk, for example, $\rho_{D}(z)$ equals $2 /\left(1-|z|^{2}\right)$, and when D is the right half-plane $\rho_{D}(x+i y)$ equals $1 / x$. The inner radius of injectivity $\tau(D)$ is defined as the supremum of all numbers $c \geq 0$ such that every analytic function f in D satisfying the bound $\left|f^{\prime \prime}\right| f^{\prime} \mid \leq$ $c \rho_{D}$ is injective.

In the case of a disk or half-plane, τ is known to equal $1 / 2$. One part of the argument is due to Becker [4], who proves that $\tau \geq 1 / 2$ for the unit disk B. In fact, he proves a stronger result: An analytic function f in B is injective if $f^{\prime}(0) \neq 0$ and

$$
\left|z \cdot \frac{f^{\prime \prime}}{f^{\prime}}(z)\right| \leq \frac{1}{1-|z|^{2}}, \quad z \in B .
$$

A second ingredient is due to Becker and Pommerenke [5], who show that $\tau \leq$ $1 / 2$ for the right half-plane H. Citing an observation by Gehring, those authors conclude that equality holds in both instances. Indeed, the general formula

$$
\frac{(f \circ h)^{\prime \prime}}{(f \circ h)^{\prime}}(z)=\frac{h^{\prime \prime}}{h^{\prime}}(z)+h^{\prime}(z) \cdot \frac{f^{\prime \prime}}{f^{\prime}}(h(z))
$$

implies that τ is invariant under affine transformations from one domain onto another. Since any two points in H are contained in a disk that is in turn contained in H, it follows from the Schwarz lemma that $\tau(B) \leq \tau(H)$. Both quantities therefore equal $1 / 2$, and the conclusion extends to any disk or half-plane.

Gehring points out many parallels between $\tau(D)$ and the inner radius of injectivity $\sigma(D)$ with respect to the Schwarzian derivative $S(f)=\left(f^{\prime \prime} / f^{\prime}\right)^{\prime}-\left(f^{\prime \prime} / f^{\prime}\right)^{2} / 2$. The latter is defined as the supremum of all numbers $c \geq 0$ such that every analytic function f in D satisfying $|S(f)| \leq c \rho_{D}^{2}$ is injective. Both quantities are positive for quasidisks and zero otherwise; Martio and Sarvas [14] and Astala and Gehring [3] prove that result for τ, and Ahlfors [1] and Gehring [8] prove it

Received August 18, 1997. Revision received March 19, 1998.
Michigan Math. J. 45 (1998).
for σ. Furthermore, both equal $1 / 2$ for a disk or half-plane, for σ is invariant under Möbius transformations and Nehari [15] and Hille [10] show that $\sigma(B)$ equals $1 / 2$. The present paper establishes yet another parallel-that τ, like σ, is bounded by $1 / 2$ (cf. Lehto [12, p. 127]). However, the extremal domains differ; whereas Lehtinen [11] proves that disks and half-planes are the only domains for which σ equals $1 / 2$, we demonstrate the following.

Theorem 1. If h is an analytic function in the unit disk B such that $h^{\prime}(0) \neq 0$ and $\left|z \cdot h^{\prime \prime}(z) / h^{\prime}(z)\right| \leq 1 / 2$ for all $z \in B$, then $\tau(h(B)) \geq 1 / 2$.

The hypotheses imply that h is injective and that the image $h(B)$ is convex (Theorem 2.11 in [7]). On the other hand, there exist convex domains for which τ is less than $1 / 2$. Consider the strip $S=\{x+i y:|y|<\pi / 2\}$, for example. The function $f_{t}: z \mapsto e^{i t z}$ is noninjective in S when $t>0$, and $\left|f_{t}^{\prime \prime}\right| f_{t}^{\prime} \mid=t$. Since $\rho_{S}(x+i y)=\sec y \geq 1$, it follows that $\tau(S) \leq t$ for all $t>0$ and hence that $\tau(S)$ vanishes. Using the same functions in a domain $D \subseteq S$, and using the inequality $\rho_{D} \geq \rho_{S}$ obtained from the Schwarz lemma, one sees that $\tau=0$ for a semi-infinite strip and that $\tau \leq 2 / \ell$ for a rectangle of size $(\ell \pi) \times \pi$.

Proof of Theorem 1. Let f be an analytic function in the image $D=h(B)$ such that $\left|f^{\prime \prime}\right| f^{\prime} \mid \leq(1 / 2) \rho_{D}$, and let g be the composite $f \circ h$. Since $\left|h^{\prime}(z)\right| \rho_{D}(h z)=$ $2 /\left(1-|z|^{2}\right)$,
$\left|z \cdot \frac{g^{\prime \prime}}{g^{\prime}}(z)\right|=\left|z \cdot \frac{h^{\prime \prime}}{h^{\prime}}(z)+z h^{\prime}(z) \cdot \frac{f^{\prime \prime}}{f^{\prime}}(h z)\right| \leq \frac{1}{2}+\frac{|z|}{1-|z|^{2}}<\frac{1}{1-|z|^{2}}, \quad z \in B$.
By Becker's theorem, g is injective. Therefore f is injective, and Theorem 1 follows.

Becker proves his theorem by a Löwner argument, deforming f to the identity through a family of mappings in which injectivity of any member implies injectivity of its predecessors. Ahlfors [2] uses a direct method to show that a locally injective analytic function f in B is injective if there exist a complex number c and a real number k such that $|c| \leq k<1$ and

$$
\left|z \cdot \frac{f^{\prime \prime}}{f^{\prime}}(z)+\frac{c|z|^{2}}{1-|z|^{2}}\right| \leq \frac{k}{1-|z|^{2}}, \quad z \in B
$$

Moreover, he proves that f admits a $(1+k) /(1-k)$-quasiconformal extension to the Riemann sphere. One obtains Becker's result as a corollary by taking $c=0$ and considering the functions $z \mapsto f(r z)$ for $r<1$. Chuaqui [6] proves Becker's theorem in one step by applying a generalization of Nehari's univalence criterion, which involves the Schwarzian derivative, to the metric $\left|f^{\prime}\right| \rho_{B}|d z|$ in B. The same method also yields the sharp criterion $\left|\left(f^{\prime \prime} / f^{\prime}\right)(x+i y)\right| \leq(1 / 2) / x$ for univalence in the right half-plane. Indeed, it applies to any (round) disk D in the Riemann sphere and yields the following criterion: If f is meromorphic and locally injective in D, and if $f^{-1}\{\infty\}=\{\infty\} \cap D$, then f is injective if

$$
\left|\left(\rho_{z} / \rho\right) \cdot f^{\prime \prime} / f^{\prime}\right| \leq(1 / 4) \rho^{2}, \quad \rho=\rho_{D}
$$

The functions $w(z)$ appearing in the proofs that follow are extremal functions for this criterion. Becker and Pommerenke's function, used in the proof of Theorem 2, is extremal for the right half-plane, and the functions $w(z)$ in the proof of Theorem 3 are extremal for the domain $|z|>1$ in the sphere. Chuaqui's paper provided the motivation for considering such functions.

The remainder of this paper consists of proofs of the following theorems.
Theorem 2. If D is convex, then $\tau(D) \leq 1 / 2$.
Theorem 3. If D is not convex, then $\tau(D)<1 / 2$.
We begin with the proof of Theorem 2. Consider the function $w \mapsto w+\log (w-1)$ in $\mathbf{C}-(-\infty, 1]$, the branch of the logarithm being chosen so that $|\arg (w-1)|<$ π. This function, introduced by Becker and Pommerenke, maps its domain conformally onto the plane less $\{x \pm i \pi: x \leq 0\}$, taking the upper and lower halves of a disk about the origin onto slit neighborhoods of $i \pi$ and $-i \pi$, respectively. Let $z \mapsto w(z)$ be the inverse function, and for $h \in \mathbf{C}$ let $F_{h}(z)=1+(w(z)-1)^{1+h}$.

Lemma 4. If $x+i y \in H$, then $x\left|\left(F_{h}^{\prime \prime} / F_{h}^{\prime}\right)(x+i y)\right| \leq 1 / 2+4|h| / 3$.
Proof. One computes that

$$
\frac{F_{h}^{\prime \prime}}{F_{h}^{\prime}}=\frac{w^{\prime \prime}}{w^{\prime}}+w^{\prime} \cdot \frac{h}{w-1}=\frac{1}{w^{2}}+\frac{h}{w}, \quad w=w(z)
$$

If $z=x+i y$ and $w(z)=u+i v$, then

$$
x=u+\operatorname{Re}\{\log (w-1)\}=u+(1 / 2) \log \left(r^{2}-2 u+1\right), \quad u^{2}+v^{2}=r^{2}
$$

Consider x as a function of u, where r is fixed. When $r<2$, the maximum value is $r^{2} / 2$. It follows that if $|w(x+i y)|=r<2$ then

$$
x\left|\frac{F_{h}^{\prime \prime}}{F_{h}^{\prime}}(x+i y)\right| \leq \frac{r^{2}}{2}\left(\frac{1}{r^{2}}+\frac{|h|}{r}\right) \leq 1 / 2+|h| .
$$

When $r \geq 2$, the maximum value is $r+\log (r-1)$, which is less than $4 r / 3$. Hence, if $|w(x+i y)|=r \geq 2$, then

$$
x\left|\frac{F_{h}^{\prime \prime}}{F_{h}^{\prime}}(x+i y)\right| \leq \frac{r+\log (r-1)}{r^{2}}+\frac{(4 r / 3)|h|}{r} \leq 1 / 2+4|h| / 3 .
$$

The lemma follows.
For distinct points $z^{+}, z^{-} \in H$, let $h=h\left(z^{+}, z^{-}\right)$be the solution of

$$
(1+h)\left\{\log \left(w\left(z^{+}\right)-1\right)-\log \left(w\left(z^{-}\right)-1\right)\right\}=2 \pi i .
$$

Thus $F_{h}\left(z^{+}\right)=F_{h}\left(z^{-}\right)$, and h approaches zero as $z^{ \pm} \rightarrow \pm i \pi$. Consider a convex domain D in the plane other than the plane itself. By means of an affine transformation that maps a chosen point $z_{0} \in D$ to the positive real axis and maps a nearest point $z^{\prime} \in \partial D$ to the origin, one sees that D is affinely equivalent to a convex, open set D^{\prime} that omits the origin but includes a disk $\{z:|z-r|<r\}$. Since
the rays through the origin that emanate from points in that disk exhaust the left half-plane, D^{\prime} is contained in the right half-plane H. Inflating by a positive scalar multiplication if necessary, one can further assure that D^{\prime} contains distinct points z^{+}, z^{-}such that the modulus of $h=h\left(z^{+}, z^{-}\right)$is less than a prescribed number ε. But then

$$
\tau(D)=\tau\left(D^{\prime}\right) \leq \sup _{D^{\prime}} \frac{\left|F_{h}^{\prime \prime} / F_{h}^{\prime}\right|}{\rho_{D^{\prime}}} \leq \sup _{D^{\prime}} \frac{\left|F_{h}^{\prime \prime} / F_{h}^{\prime}\right|}{\rho_{H}} \leq 1 / 2+4 \varepsilon / 3 .
$$

Since ε was arbitrary, $\tau(D) \leq 1 / 2$. This argument proves Theorem 2.
The foregoing arguments apply to some nonconvex domains as well, but one can only conclude that $\tau \leq 1 / 2$. To obtain the stronger conclusion of Theorem 3, we use a family of mappings parameterized by a number $a \geq 1$, which will ultimately be chosen to match a given nonconvex domain. For now, let a be fixed, and consider the function

$$
w \mapsto z=a^{-a /(a+1)}(w+a)^{a /(a+1)}(w-1)^{1 /(a+1)}, \quad w \in \mathbf{C}-[-a, 1] .
$$

Here the arguments of $w+a$ and $w-1$ are to be chosen so as to differ by less than π; the result is then well-defined. By examining behavior on either side of the slit $[-a, 1]$, one sees that the mapping $w \mapsto z$ takes $\mathbf{C}-[-a, 1]$ conformally onto the plane less the radial segments $\left[0, e^{ \pm i \pi /(a+1)}\right]$, mapping the upper and lower halves of a disk about the origin to slit neighborhoods of $e^{i \pi /(a+1)}$ and $e^{-i \pi /(a+1)}$, respectively. The mappings z_{a} so defined are related to the one used to prove Theorem 2 in that

$$
\lim _{a \rightarrow \infty}(a+1)\left(z_{a}(w)-1\right)=w+\log (w-1), \quad w \in \mathbf{C}-(-\infty, 1]
$$

the convergence being uniform on compact sets.
Let $z \mapsto w(z)$ be the inverse function, and let E be the planar domain $|z|>1$. The following lemma is the key to Theorem 3.

Lemma 5. If $z \in E$, then

$$
\left|z \cdot \frac{w^{\prime \prime}}{w^{\prime}}(z)\right| \leq \frac{1}{|z|^{2}-1}
$$

Proof. A computation shows that

$$
\begin{equation*}
z w^{\prime}=\frac{(w+a)(w-1)}{w}, \quad z \cdot \frac{w^{\prime \prime}}{w^{\prime}}=\frac{a}{w^{2}} \tag{1}
\end{equation*}
$$

Viewing z as a function of $u=\operatorname{Re}(w)$ on a circle $|w|=r$, one has

$$
\frac{1}{|z|^{2}} \cdot \frac{d|z|^{2}}{d u}=\frac{2(a-1) r^{2}-4 a u}{\left(r^{2}+2 a u+a^{2}\right)\left(r^{2}-2 u+1\right)}
$$

If $a=1$, or if $a>1$ and $r<2 a /(a-1)$, then $|z|^{2}$ attains a maximum at $u=$ $(a-1) r^{2} /(2 a)$, and the maximum value is $1+r^{2} / a$. If $r \geq 2 a /(a-1)$, then the maximum occurs at $u=r$ and the maximum value $z(r)^{2}$ is bounded by $1+r^{2} / a$,
for those two quantities are equal when $r=2 a /(a-1)$ and their ratio decreases thereafter. This analysis shows that

$$
\begin{equation*}
|z|^{2} \leq 1+|w(z)|^{2} / a, \quad z \in \mathbf{C}-\left[0, e^{ \pm i \pi /(a+1)}\right] \tag{2}
\end{equation*}
$$

The lemma then follows from the second equation in (1).
The presence of the factor z in Lemma 5 will allow us to establish our next result.
TheOrem 6. If $z^{+}, z^{-} \in E$ are sufficiently close to $e^{ \pm i \pi /(a+1)}$, respectively, then there is an analytic function F in E such that $F\left(z^{+}\right)=F\left(z^{-}\right)$and

$$
\sup _{z \in E}\left|\frac{F^{\prime \prime}}{F^{\prime}}(z)\right|\left(|z|^{2}-1\right)<1 .
$$

Before proving this result, we deduce Theorem 3. Let D be a nonconvex domain in the plane. If D is dense, then $\tau(D)=0$ by Astala and Gehring's theorem. Assume, then, that D is not dense. As noted by Martin and Osgood (Lemma 3.14 in [13]), the complement of D contains a disk whose boundary intersects ∂D in at least two points. It follows that D is affinely equivalent to a domain $D^{\prime} \subseteq E$ whose closure includes the points $e^{ \pm i \pi /(a+1)}$ for some $a \geq 1$. By the Schwarz lemma,

$$
\rho_{D^{\prime}}(z) \geq \rho_{E}(z)=\frac{1}{|z| \cdot \log |z|}>\frac{2}{|z|^{2}-1}, \quad z \in D^{\prime}
$$

Theorem 6 then provides a noninjective function F in D^{\prime} such that the supremum of $\left|F^{\prime \prime}\right| F^{\prime} \mid / \rho_{D^{\prime}}$ is less than $1 / 2$. Therefore $\tau(D)=\tau\left(D^{\prime}\right)<1 / 2$, and the proof of Theorem 3 is complete.

Let $\Omega=w(E)$; this is the exterior of a figure eight that crosses itself at the origin. We prove Theorem 6 by deforming the inclusion of Ω into the plane in two independent ways. The result is a family $\left\{f_{t, \beta}\right\}$ of analytic functions in Ω, parameterized by complex pairs (t, β) near $(0,1)$; the functions $F_{t, \beta}: z \mapsto f_{t, \beta}(w(z))$ in E constitute a two-parameter deformation of w. When t is small and positive, there is a value $\beta(t)$ such that $F_{t, \beta(t)}$ maps E onto the exterior of another figure eight; furthermore, this mapping, and all mappings obtained from nearby parameter values, satisfy better bounds than did w. One fulfills the conditions of Theorem 6 by choosing F from among those nearby functions.

Let $m>0$ be the infimum of $|(w+a)(w-1)|$ in Ω. For $t \in \mathbf{C}$ such that $(a+1)|t|<m / 2$, let

$$
f_{t}(w)=w+t \log \left(\frac{w+a}{w-1}\right), \quad w \in \Omega
$$

the branch of the logarithm being chosen so that the second term vanishes at infinity. One then has

$$
f_{t}^{\prime}(w)=1-\frac{t(a+1)}{(w+a)(w-1)}, \quad f_{t}^{\prime \prime}(w)=\frac{t(a+1)(2 w+a-1)}{(w+a)^{2}(w-1)^{2}}
$$

and the restriction on t implies that $\left|f_{t}^{\prime}-1\right|<1 / 2$.

For $\beta \in \mathbf{C}$ such that $|\beta-1|<1$, define $f_{t, \beta}: \Omega \rightarrow \mathbf{C}$ and $F_{t, \beta}: E \rightarrow \mathbf{C}$ by

$$
\begin{gathered}
f_{t, \beta}(w)=w+\int_{\infty}^{w}\left(f_{t}^{\prime}(\zeta)^{\beta} \cdot(1+a / \zeta)^{(\beta-1) /(a+1)}(1-1 / \zeta)^{a(\beta-1) /(a+1)}-1\right) d \zeta \\
F_{t, \beta}(z)=f_{t, \beta}(w(z))
\end{gathered}
$$

Here the path of integration is to lie in Ω, and in each exponential expression the logarithm of the base is that which vanishes at infinity. Because the integrand is $O\left(|\zeta|^{-2}\right)$ as $\zeta \rightarrow \infty$, the integral is well defined, and $f_{t, 1}$ equals f_{t}. As in the proof of Lemma 9 to follow, one also sees that $f_{t, \beta}(w)$ depends holomorphically upon its three arguments. Note that

$$
\begin{aligned}
f_{t, \beta}^{\prime}(w) & =f_{t}^{\prime}(w)^{\beta}\left(\frac{(w+a)^{1 /(a+1)}(w-1)^{a /(a+1)}}{w}\right)^{\beta-1} \\
& =f_{t}^{\prime}(w)^{\beta}\left(\frac{(w+a)(w-1)}{a^{a /(a+1)} z w}\right)^{\beta-1}
\end{aligned}
$$

Therefore, by equation (1),

$$
F_{t, \beta}^{\prime}(z)=f_{t, \beta}^{\prime}(w) \cdot w^{\prime}=a^{-a(\beta-1) /(a+1)} f_{t}^{\prime}(w)^{\beta}\left(w^{\prime}\right)^{\beta}=a^{-a(\beta-1) /(a+1)} \cdot F_{t, 1}^{\prime}(z)^{\beta}
$$

It follows that the pre-Schwarzian derivative of $F_{t, \beta}$ is β times that of $F_{t, 1}$.
The conditions $(a+1)|t|<m / 2$ and $|\beta-1|<1$ are implicit in all that follows.
Lemma 7. (a) There is a number M, independent of t and β, such that

$$
\left|z \cdot \frac{F_{t, \beta}^{\prime \prime}}{F_{t, \beta}^{\prime}}(z)\right| \leq|\beta| \cdot \frac{a}{|w|^{2}}(1+M|t|), \quad z \in E, \quad w=w(z)
$$

(b) If $(a+1)|t|<\min \{m / 2, a / 6\}$, then

$$
\left|z \cdot \frac{F_{t, \beta}^{\prime \prime}}{F_{t, \beta}^{\prime}}(z)\right| \leq|\beta| \cdot \frac{a}{|w|^{2}}\left(1+\frac{a+1}{4 a}|t|\right), \quad z \in E,|w|=|w(z)|<1 / 6
$$

Proof. Consider the equation

$$
\begin{align*}
z \cdot \frac{F_{t, \beta}^{\prime \prime}}{F_{t, \beta}^{\prime}}(z) & =z \cdot \beta \frac{F_{t, 1}^{\prime \prime}}{F_{t, 1}^{\prime}}(z)=\beta\left(z \frac{w^{\prime \prime}}{w^{\prime}}+z w^{\prime} \cdot \frac{f_{t}^{\prime \prime}}{f_{t}^{\prime}}(w)\right) \\
& =\frac{\beta}{w^{2}}\left(a+\frac{t(a+1)(2 w+a-1) w}{(w+a)(w-1)-t(a+1)}\right) \tag{3}
\end{align*}
$$

In view of the definition of m, the second term in the final expression is bounded by a constant times $|t|$, and assertion (a) follows.

Suppose that $(a+1)|t|<a / 6$. If w is any complex number of modulus less than $1 / 6$, then straightforward estimates show that

$$
|(2 w+a-1) w|<a / 6, \quad|(w+a)(w-1)-t(a+1)|>2 a / 3
$$

Assertion (b) follows directly from equation (3) and these bounds.

Lemma 8. If $|t|$ is sufficiently small and $|\beta|<1-(a+1)|t| /(2 a)$, then

$$
\sup _{z \in E}\left|\frac{F_{t, \beta}^{\prime \prime}}{F_{t, \beta}^{\prime}}(z)\right|\left(|z|^{2}-1\right) \leq 1-\frac{a+1}{4 a}|t| .
$$

Proof. Let $\varphi(z)$ be the ratio of $|z|^{2}-1$ to $|z| \cdot|w(z)|^{2} / a$ for $z \in E$. By equation (2), that ratio is less than unity, and it approaches zero as $z \rightarrow \infty$. It also approaches zero as z approaches any point in the unit circle other than $e^{ \pm i \pi /(a+1)}$. Since neither of the latter points is in the closure of the set $S=\{z \in E:|w(z)| \geq 1 / 6\}$, the supremum of φ in S is a number $s<1$.

Suppose that $(a+1)|t|<\min \{m / 2, a / 6\}$ and $|\beta|<1-(a+1)|t| /(2 a)$. By part (a) of Lemma 7,

$$
\sup _{z \in S}\left|\frac{F_{t, \beta}^{\prime \prime}}{F_{t, \beta}^{\prime}}(z)\right|\left(|z|^{2}-1\right)=\sup _{z \in S} \varphi(z)\left|z \cdot \frac{F_{t, \beta}^{\prime \prime}}{F_{t, \beta}^{\prime}}(z)\right| \cdot \frac{|w(z)|^{2}}{a} \leq s(1+M|t|) .
$$

The latter, in turn, is less than $1-(a+1)|t| /(4 a)$ when $|t|$ is small. If $S^{\prime}=E-S$, then equation (2) and part (b) of Lemma 7 imply that

$$
\begin{aligned}
\sup _{z \in S^{\prime}}\left|\frac{F_{t, \beta}^{\prime \prime}}{F_{t, \beta}^{\prime}}(z)\right|\left(|z|^{2}-1\right) & \leq \sup _{z \in S^{\prime}}\left|\frac{F_{t, \beta}^{\prime \prime}}{F_{t, \beta}^{\prime}}(z)\right| \cdot \frac{|w(z)|^{2}}{a} \leq \sup _{z \in S^{\prime}}\left|z \cdot \frac{F_{t, \beta}^{\prime \prime}}{F_{t, \beta}^{\prime}}(z)\right| \cdot \frac{|w(z)|^{2}}{a} \\
& \leq|\beta|\left(1+\frac{a+1}{4 a}|t|\right) \leq 1-\frac{a+1}{4 a}|t| .
\end{aligned}
$$

The lemma follows.
Lemma 9. Suppose that $(a+1)\left|t_{0}\right|<m / 2$ and $\left|\beta_{0}-1\right|<1$. As $t \rightarrow t_{0}$ and $\beta \rightarrow \beta_{0}$, and as $w \in \Omega$ approaches the origin through either the upper or lower half-plane, $f_{t, \beta}(w)$ approaches limits $g^{ \pm}\left(t_{0}, \beta_{0}\right)$, respectively. The functions $g^{ \pm}$ are holomorphic, and

$$
\frac{\partial g^{ \pm}}{\partial t}(0,1)=\log a \mp i \pi, \quad \frac{\partial g^{ \pm}}{\partial \beta}(0,1)=\frac{a}{a+1}(\log a \mp i \pi) .
$$

Proof. Because $f_{t, \beta}(\bar{w})=\overline{f_{\bar{t}, \bar{\beta}}(w)}$, it is enough to prove the assertions about g^{+}.
The main step in the proof is to bound the integrand $I_{t, \beta}$ in the definition of $f_{t, \beta}$. We show that there are positive numbers C and C^{\prime} such that, whenever $(a+1)|t|<$ $m / 2,|\beta-1|<1$, and $w \in \Omega$,

$$
\begin{array}{rlrl}
\left|I_{t, \beta}(w)\right| & \leq C|w|^{-2} & & \text { if }|w| \geq 2 a \\
\left|I_{t, \beta}(w)+1\right| \leq C^{\prime}|w|^{1-\operatorname{Re}(\beta)} & & \text { if }|w| \leq 2 a . \tag{5}
\end{array}
$$

In the derivation that follows, any assertion about bounds means that the bounds are uniform: they hold for all such t, β, and w as long as w satisfies certain explicit restrictions.

Recall that $I_{t, \beta}(w)$ equals $f_{t}^{\prime}(w)^{\beta} b(w)^{\beta-1}-1$, where

$$
b(w)=(1+a / w)^{1 /(a+1)}(1-1 / w)^{a /(a+1)}
$$

From the formula for f_{t}^{\prime}, one sees that $\left|f_{t}^{\prime}(w)-1\right|$ is bounded by a constant times $|w|^{-2}$ when $|w| \geq 2 a$. Since $\left|f_{t}^{\prime}(w)-1\right|$ is always less than $1 / 2$, Taylor's theorem then implies that the logarithm of $f_{t}^{\prime}(w)$ is also bounded by a constant times $|w|^{-2}$ in that domain. In turn, since

$$
\left|\beta \log \left(f_{t}^{\prime}(w)\right)\right| \leq 2|\log (1 / 2)|=\log 4, \quad w \in \Omega
$$

another application of Taylor's theorem yields a bound

$$
\begin{equation*}
\left|f_{t}^{\prime}(w)^{\beta}-1\right|=\left|e^{\beta \log \left(f_{t}^{\prime}(w)\right)}-1\right| \leq C_{1}|w|^{-2}, \quad|w| \geq 2 a \tag{6}
\end{equation*}
$$

For the same values of w, Taylor's theorem provides bounds

$$
|\log (1+a / w)-a / w| \leq C_{2}|w|^{-2}, \quad|\log (1-1 / w)+1 / w| \leq C_{3}|w|^{-2}
$$

It follows that $|\log b(w)|$ is no greater than a constant times $|w|^{-2}$, and hence that

$$
\left|b(w)^{\beta-1}-1\right| \leq C_{4}|w|^{-2}, \quad|w| \geq 2 a
$$

Inequality (4) is a consequence of this bound and (6).
To obtain (5), one need only bound $b(w)^{\beta-1}$ by a constant times $|w|^{1-\operatorname{Re}(\beta)}$ when $|w| \leq 2 a$, for $\left|f_{t}^{\prime}(w)^{\beta}\right| \leq 4$. In that domain, $|w \cdot b(w)|$ is bounded above and below by positive constants. Since the arguments of $1+a / w$ and $1-1 / w$ are between $\pm \pi$, so too is the argument of $b(w)$. Therefore

$$
\left|b(w)^{\beta-1}\right|<e^{\pi|\operatorname{Im}(\beta)|} \cdot|b(w)|^{\operatorname{Re}(\beta)-1} \leq C_{5}|w|^{1-\operatorname{Re}(\beta)}, \quad|w| \leq 2 a,
$$

and (5) follows.
The positive imaginary axis is contained in Ω. Integrating along that axis, let

$$
g(t, \beta)=\int_{\infty}^{0}\left(f_{t}^{\prime}(\zeta)^{\beta}(1+a / \zeta)^{(\beta-1) /(a+1)}(1-1 / \zeta)^{a(\beta-1) /(a+1)}-1\right) d \zeta
$$

Inequalities (4) and (5) imply that the integral exists. In fact, for each positive number ε, they provide an integrable function $M(\zeta)$ that bounds the integrand of $g(t, \beta)$ whenever $\operatorname{Re}(\beta)<2-\varepsilon$. By the dominated convergence theorem, it follows that g is holomorphic and that differentiation under the integral sign is valid, for Cauchy's integral formula shows that a bound $|\varphi| \leq M$ on an analytic function in a disk $\left|z-z_{0}\right| \leq r$ implies a bound

$$
\left|\frac{\varphi(z)-\varphi\left(z_{0}\right)}{z-z_{0}}-\varphi^{\prime}\left(z_{0}\right)\right| \leq 2 M\left|z-z_{0}\right| / r^{2}, \quad\left|z-z_{0}\right|<r / 2
$$

Differentiating under the integral sign yields the values

$$
\frac{\partial g}{\partial t}(0,1)=\log a-i \pi, \quad \frac{\partial g}{\partial \beta}(0,1)=\frac{a}{a+1}(\log a-i \pi)
$$

It remains to show that $f_{t, \beta}(w)$ converges to $g\left(t_{0}, \beta_{0}\right)$ as $t \rightarrow t_{0}, \beta \rightarrow \beta_{0}$, and $w \rightarrow 0$ through the upper half-plane. For $\delta \in(0,1]$, the intersection of Ω with the upper half of the circle $|w|=\delta$ is a single arc. By integrating $f_{t, \beta}^{\prime}$ along a subarc and applying the bound (5), one finds that

$$
\left|f_{t, \beta}(w)-f_{t, \beta}(i \delta)\right|<(\pi / 2) C^{\prime} \delta^{2-\operatorname{Re}(\beta)}, \quad w \in \Omega, \quad \operatorname{Im}(w)>0,|w|=\delta \in(0,1] .
$$

One also has

$$
\left|f_{t, \beta}(i \delta)-g(t, \beta)\right|=\left|\int_{0}^{i \delta} f_{t, \beta}^{\prime}(\zeta) d \zeta\right| \leq \int_{0}^{\delta} C^{\prime} t^{1-\operatorname{Re}(\beta)} d t=\frac{C^{\prime} \delta^{2-\operatorname{Re}(\beta)}}{2-\operatorname{Re}(\beta)}
$$

Let ε be a positive number less than $2-\operatorname{Re}\left(\beta_{0}\right)$. If β is near enough to β_{0} that $\varepsilon<2-\operatorname{Re}(\beta)$, then the previous estimates imply that

$$
\left|f_{t, \beta}(w)-g(t, \beta)\right| \leq\left(\frac{\pi}{2}+\frac{1}{\varepsilon}\right) C^{\prime} \delta^{\varepsilon}, \quad w \in \Omega, \quad \operatorname{Im}(w)>0, \quad|w|=\delta \in(0,1]
$$

By the continuity of g, it follows that $f_{t, \beta}(w)$ approaches $g\left(t_{0}, \beta_{0}\right)$ as $(t, \beta, w) \rightarrow$ ($t_{0}, \beta_{0}, 0$). This completes the proof of Lemma 9 .

Since $g^{+}-g^{-}$vanishes at $(0,1)$ and its partial derivative with respect to β does not, the implicit function theorem provides an analytic function $t \mapsto \beta(t)$, defined for t near zero, such that $\beta(0)=1$ and $\left(g^{+}-g^{-}\right)(t, \beta(t))=0$. Using the formulas from Lemma 9 , one sees that $\beta^{\prime}(0)=-(a+1) / a$. It follows that $|\beta(t)|<1-(a+1) t /(2 a)$ when t is small and positive. Fix such a value t, first reducing it if necessary so that Lemma 8 applies and so that the function $h: \beta \mapsto$ $g^{+}(t, \beta)-g^{-}(t, \beta)$ is not constant. By Lemma $9, h$ is a locally uniform limit of the functions

$$
\beta \mapsto F_{t, \beta}\left(z^{+}\right)-F_{t, \beta}\left(z^{-}\right)
$$

as $z^{+}, z^{-} \in E$ approach $e^{ \pm i \pi /(a+1)}$, respectively. It follows that the displayed function has a zero $\beta\left(z^{+}, z^{-}\right) \approx \beta(t)$ when $z^{ \pm}$are near $e^{ \pm i \pi /(a+1)}$; thus the function $F=F_{t, \beta\left(z^{+}, z^{-}\right)}$maps z^{+}and z^{-}to the same image. When those points are sufficiently near $e^{ \pm i \pi /(a+1)}$, Lemma 8 implies that

$$
\sup _{z \in E}\left|\frac{F^{\prime \prime}}{F^{\prime}}(z)\right|\left(|z|^{2}-1\right) \leq 1-\frac{a+1}{4 a} t<1 .
$$

This argument proves Theorem 6.

References

[1] L. V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963), 291-301.
[2] -, Sufficient conditions for quasi-conformal extension, Discontinuous groups and Riemann surfaces (Leon Greenberg, ed.), Ann. of Math. Stud., 79, Princeton Univ. Press, Princeton, NJ, 1974.
[3] K. Astala and F. W. Gehring, Injectivity, the BMO norm and the universal Teichmüller space, J. Analyse Math. 46 (1986), 16-57.
[4] J. Becker, Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math. 255 (1972), 23-43.
[5] J. Becker and C. Pommerenke, Schlichtheitskriterien und Jordangebiete, J. Reine Angew. Math. 354 (1984), 74-94.
[6] M. Chuaqui, A unified approach to univalence criteria in the unit disc and simplyconnected domains, Proc. Amer. Math. Soc. 123 (1995), 441-453.
[7] P. Duren, Univalent functions, Springer, New York, 1983.
[8] F. W. Gehring, Univalent functions and the Schwarzian derivative, Comment. Math. Helv. 52 (1977), 561-572.
[9] -, Characterizations of quasidisks, Lublin summer school 1996, Banach Center Publications (to appear).
[10] E. Hille, Remarks on a paper of Zeev Nehari, Bull. Amer. Math. Soc. 55 (1949), 552-553.
[11] M. Lehtinen, On the inner radius of univalency for non-circular domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), 45-47.
[12] O. Lehto, Univalent functions and Teichmüller spaces, Springer, New York, 1987.
[13] G. Martin and B. Osgood, The quasihyperbolic metric and associated estimates on the hyperbolic metric, J. Analyse Math. 47 (1986), 37-53.
[14] O. Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1978-79), 383-401.
[15] Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551.

Department of Mathematics
Idaho State University
Pocatello, ID 83209-8085
stowdenn@FS.isu.edu

