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1. Introduction

This paper is an extension of Conner and Raymond’s work [2]. A torusT k can
be viewed as a homogeneous spaceRk/Zk. LetG be a simply connected divisible
Lie group, and let0 be a co-compact discrete subgroup ofG such that(0,G) has
the unique automorphism extension property. Even ifG/0 is not a group, there
is a natural concept of an “action” of the homogeneous spaceG/0 in place of a
torus, which gives rise to useful facts generalizing known results of torus actions.

There have been many efforts trying to split a manifold as a product of two man-
ifolds. LetM be a flat Riemannian manifold whose fundamental group contains a
nontrivial center. Calabi has shown that such anM almost splits. More precisely,
there exists a compact flat manifoldN and a finite abelian group8 such thatM =
T k ×8 N, the quotient space ofT k ×N by a free diagonal action of8, where8
acts freely as translations on the first factor and as isometries on the second fac-
tor (see [17]). Lawson and Yau [9] and Eberlein [4] have shown the same fact for
closed manifoldsM of nonpositive sectional curvature: Ifπ1(M) has nontrivial
centerZk thenM splits asM = T k ×8 N, whereN is a closed manifold of non-
positive sectional curvature and8 is a finite abelian group acting diagonally and
freely onT k-factors as translations.

Prior to the work described in the previous paragraph, Conner and Raymond [2]
generalized Calabi’s results to homologically injective torus actions. Let(T k,M)

be a torus action on a topological space. For a base pointx0 ∈ M, consider the
evaluation map ev:(T k, e)→ (M, x0)sendingt 7→ tx0.The action is calledinjec-
tive if the evaluation map induces an injective homomorphism ev# : π1(T

k, e)→
π1(M, x0). It is homologically injectiveif the evaluation map induces an injec-
tive homomorphism ev∗ : H1(T

k,Z) → H1(M;Z). For a Riemannian manifold
of nonpositive sectional curvature, the existence of a nontrivial centerZk of π1(M)

guarantees that the manifold has an action of torusT k; and all such actions are
homologically injective.

Topological spaces are always assumed to be paracompact, path-connected,
locally path-connected, and either (i) locally compact and semi-1-connected or
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(ii) of the same homotopy type as the CW–complex. Therefore, our topological
spaces admit covering space theory.

Theorem [2]. If a topological spaceX admits a homologically injective(topo-
logical) torus action(T k,X), thenX splits asT k ×8 N for someN, where8 is
a finite abelian group acting diagonally and freely onT k-factors as translations.

The “splitting”X = T k ×8 N implies, as before, thatX has a Seifert fiber space
structure with typical fiberT k and base spaceN/8. All the singular fibers are
again tori, which are finitely covered byT k. The splitting also gives rise to an-
other genuine fiber structure—namely,X fibers over the torusT k/8 with the fiber
N and a finite structure group. The theorem just stated does not require that the
spaceX be aspherical. On the other hand, the only compact connected Lie group
that can act on aspherical manifolds are tori. Therefore, splitting a manifold using
a group action for an aspherical manifold forces the group to be a torus. In other
words, for aspherical manifolds, there can be no generalization of splitting using
compact Lie group actions other than tori.

We define an “action” of a homogeneous space, and obtain the following results:

(1) Corollary 2.18—splitting on covering space level;
(2) Theorem 3.2—equivalence of(Gmod0)-action and Seifert fiber structure;
(3) Theorem 3.4—existence and uniqueness of Seifert structure; and
(4) Theorem 4.3—the main splitting theorem for spaces with injective(Gmod0)-

actions.

The authors would like to express thanks to Frank Raymond for pointing out some
errors in an earlier version of this paper.

2. (G mod000)-Action

We fix some notation first. Let0 be a closed subgroup of a group5. We denote
the center of0 by Z(0), the centralizer of0 in 5 by C5(0), and the normal-
izer of0 in5 byN5(0). Forα ∈5, conjugation byα is denoted byµ(α); hence
µ(α)(z) = αzα−1 for all z ∈5. For a Lie groupG, Aut(G) denotes the group of
continuous automorphisms ofG, and Inn(G) is the group of inner automorphisms
of G.WhenG acts on a spaceX, thestabilizer(isotropy subgroup) of this action
atu∈X is denoted byGu. The orbit ofG containingu∈G is denoted byG(u).

Consider a torusT k = Rk/Zk. It acts on a spaceX if and only ifRk acts onX
in such a way that the stabilizer(Rk)x at everyx ∈X contains the latticeZk.

For a Lie groupG and its discrete subgroup0 which is not necessarily nor-
mal, there is a natural concept of an “action” of the homogeneous spaceG/0. For
example, let0 and� be discrete subgroups of a connected Lie groupG,

0 C � ⊂ G.
Let W be a nice space. Consider the action ofG on the productG/� ×W, on
the left co-set spaceG/� as left multiplications. Denote the points ofG/�×W
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by 〈x,w〉, . . . . Then(x,w) 7→ 〈x,w〉 by the projectionG ×W → G/� ×W.
Clearly,

G〈a,w〉 = a�a−1⊃ a0a−1

for every〈a,w〉; every isotropy groupG〈a,w〉 thus contains a conjugate of0.More-
over, the conjugatea0a−1 of 0 varies in a continuous fashion as the point〈a,w〉
varies.

Let 0 be a discrete subgroup of a Lie groupG. Sincea0a−1 = b0b−1 if and
only if a−1b ∈NG(0), the set of all conjugates of0 inG is in one–one correspon-
dence with the setG/NG(0). Therefore, we interpret an elementa ∈G/NG(0) as
the conjugacy classa0a−1. We use the symbolG to denote the spaceG/NG(0).
ThenG has the natural topology as the quotient space ofG:

G = G/NG(0)
= the space of all conjugacy classes of0 in G.

Thus, an element ofG can be thought as a subgroup ofG that is conjugate to0.
Here is a formal definition of(Gmod0)-action.

Definition. LetG be a connected and simply connected Lie group, and let0 be
a co-compact discrete subgroup ofG. An action ofG onX is called a(Gmod0)-
action if there exists a continuous map

000 : X→ G

such that000(u) ⊂ Gu and000(au) = a000(u)a−1 for everyu∈X anda ∈G.
With this notation, the(Gmod0)-action is:

(1) effective if and only if
⋂{Gu : 000(u) = 0 } = 0;

(2) free if and only ifGu = 0 whenever000(u) = 0; and
(3) proper if and only if the inducedG-action on the universal covering spaceX̃

(recall thatG is simply connected) is proper.

Remark 2.1. (1) Whenever we speak of a(Gmod0)-action, it should be un-
derstood thatG is a connected and simply connected Lie group and that0 is a
co-compact discrete subgroup ofG.

(2) The map000 : X→ G assigns a conjugate000(u) of 0 to each pointu of X in
a continuous fashion.

(3) SinceG is simply connected, theG-action onX lifts to an action ofG on
the universal covering spacẽX; see [1, Thm. 4.3]. (This fact is used in our Defi-
nition (3).) SinceG is connected, this implies thatG centralizesπ1(X, u). Thus
theG action and the covering transformation by5 = π1(X) on X̃ commute with
each other.

It is clear from the definition that a(Gmod0)-action onX is free if and only if
the lifted action ofG on the universal covering̃X is free in the ordinary sense.

(4) Notice that if0 is normal thenG is a singleton, so that000 is the constant
map; namely,000(u) = 0 for everyu. An action of the groupG/0 onX induces a
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(Gmod0)-action onX and vice versa. TheG/0 action is effective (resp. free) if
and only if the(Gmod0)-action is effective (resp. free).

Example 2.2. Let0 be a co-compact discrete subgroup of a Lie groupG. The
natural action ofG on the co-set spaceG/0 as left multiplications is a(Gmod0)-
action. There is only one orbit; certainly, atē = e0 we haveGē = 0.
Lemma 2.3. SupposeX has a(Gmod0)-action. Then, for everyu ∈ X, 000(u)
is a normal subgroup ofGu.

Proof. On every orbit, there is au ∈ X such that000(u) = 0, because000(au) =
a000(u)a−1. So assumej(u) = 0. Then, for anyx ∈ Gu, u = xu so that0 =
000(u) = 000(xu) = x000(u)x−1 = x0x−1. Therefore,x ∈ NG(0) or, equivalently,
0 is normal inGu. Now, for arbitrarya ∈ G, 000(au) = a000(u)a−1 andGau =
aGua

−1. It is easy to see000(au) is normal inGau.

Example 2.4. Let0 and� be co-compact discrete subgroups of a connected
Lie groupG (0 C � ⊂ G). LetW be a nice space. Then the action ofG on the
productG/�×W on the left co-set spaceG/� as left multiplications gives rise to
a (Gmod0)-action onG/�×W. Denote the points ofG/�×W by 〈x,w〉, . . . .
Simply define000(〈a,w〉) = a0a−1 for every〈a,w〉. Since0 is normal in�, 000 is
well defined. Clearly, then000(〈a,w〉) ⊂ a�a−1= G〈a,w〉.
Suppose0 is a co-compact discrete subgroup ofG that is normal inG, and let
X be a completely regular space. Then any action of the compact Lie groupḠ =
G/0 onX is proper in the ordinary sense: For any compact subsetK ⊂ X,

{ ā ∈ Ḡ : ā ·K ∩K 6= ∅ }
is a closed subset of the compactḠ.

Question 2.5. Let0 be a co-compact discrete subgroup of a Lie groupG. Is
every(Gmod0)-action on a completely regular space proper?

Lemma 2.6 [5, (3.1)]. Let G be a Lie group, and let0 be a co-compact dis-
crete subgroup ofG. For any closed normal subgroupH ofG, the following are
equivalent:

(1) 0 ∩H is uniform inH (i.e.,H/(0 ∩H ) is compact);
(2) 0/0 ∩H is discrete inG/H ;
(3) 0/0 ∩H is uniform inG/H.

Lemma 2.7. Let 0 be a co-compact discrete subgroup of a connected, simply
connected Lie groupG. Then the quotientNG(0)/Z(G) is a discrete subgroup of
Inn(G).

Proof. Since0 is a co-compact discrete subgroup ofG, it is finitely generated(0
is the fundamental group of a closed manifold). Let{a1, a2, . . . , an}be a set of gen-
erators of0. There is a continuous mapψ : Inn(G)→ G×G×· · ·×G (n copies)
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defined byµ(x) 7→ (µ(x)(a1), µ(x)(a2), . . . , µ(x)(an)) for eachx ∈G.Fix x0 ∈
G. Since0 is discrete, for eachi there exists a neighborhoodVi of x0aix

−1
0 such

thatVi ∩ 0 is either empty or a singleton. LetV = V1× V2 × · · · × Vn ⊂ Gn.

Sinceψ is continuous,ψ−1(V ) is open in Inn(G). Moreover,ψ−1(V ) ∩ Aut(0)
is either empty or a singleton. SinceNG(0)/Z(G) = Inn(G) ∩ Aut(0), it is dis-
crete in Inn(G).

We now define an “evaluation homomorphism” for a(Gmod0)-action on a space
X. As mentioned at the end of Section 1, our spacesX will be paracompact,
path-connected, locally path-connected, and either (i) locally compact and semi-
1-connected or (ii) of the same homotopy type as the CW-complex.

Choose a base pointu∈X. The(Gmod0)-action onX induces a sequence of
continuous maps

(G/000(u), ē)→ (G(u), u) ↪→ (X, u),

where the first map is induced from the evaluation mapt 7→ t · u. These maps
induce group homomorphisms

ev# : π1(G/000(u), ē)→ π1(G(u), u)→ π1(X, u).

For anyz ∈ 000(u), pick a pathg : (I,0,1) → (G, e, z). Then the pathg forms a
loop inG/000(u) based at̄e, and ev#([g]) = [g(t) · u]. Of course, this homotopy
class is independent of the choice of the pathg, sinceG is simply connected.

Lemma 2.8. SupposeX has a(Gmod0)-action. Letσ be a path fromu0 to
u1, and letρσ : π1(X, u0)→ π1(X, u1) be an isomorphism defined byρσ([α]) =
[σ̄ ∗ α ∗ σ]. Then there exists aζ ∈ Inn(G) that makes the following diagram
commutative:

π1(G/000(u0), ē)
ev0−−→ π1(X, u0)

ζ

y yρσ
π1(G/000(u1), ē)

ev1−−→ π1(X, u1).

Proof. Define alift of 000 B σ : I → G to σ̂ : I → Inn(G) as follows. By Lemma
2.7, the projectionG/Z(G)→ G/NG(0) = G is a covering map. The path-lifting
property of a covering projection gives rise to a liftσ̂ of 000 B σ,

I
σ̂−−→ G/Z(G) = Inn(G)

σ

y ycovering projection

X
000−−→ G/NG(0)

as soon as we fix̂σ(0). Thenσ̂ satisfies

σ̂(s)(0) = 000(σ(s)) ⊂ Gσ(s)
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for all s ∈ I. In particular,σ̂(0)(0) = 000(u0) andσ̂(1)(0) = 000(u1). Pick z ∈ 0,
and choose any pathg : (I,0,1)→ (G, e, z). Then

[σ̂(0) B g] ∈π1(G/000(u0), ē), [σ̂(1) B g] ∈π1(G/000(u1), ē).

We want to study how the element [σ̂(0) B g] is mapped by different homomor-
phisms. Clearly,

ev0([σ̂(0) B g]) = [σ̂(0)(g(t)) · u0];
ev1([σ̂(1) B g]) = [σ̂(1)(g(t)) · u1].

Define a homotopyH : I × I → X by

H(s, t) = σ̂(s)(g(t)) · σ(s).
We now proceed to calculate four sides of the square.

Clearly,

H(s,0) = σ̂(s)(g(0)) · σ(s) = σ̂(s)(e) · σ(s) = e · σ(s) = σ(s).
Sinceσ̂(s) maps0 onto000(σ(s)) ⊂ Gσ(s), it follows thatσ̂(s)(z)∈Gσ(s). There-
fore, σ̂(s)(z) · σ(s) = σ(s) for everyz∈0. Thus,

H(s,1) = σ̂(s)(g(1)) · σ(s) = σ̂(s)(z) · σ(s) = σ(s).
Also, it is easy to see

H(0, t) = σ̂(0)(g(t)) · σ(0) = σ̂(0)(g(t)) · u0;
H(1, t) = σ̂(1)(g(t)) · σ(1) = σ̂(1)(g(t)) · u1.

This shows that̄σ(t) ∗ {σ̂(0)(g(t)) · u0} ∗ σ(t) ' σ̂(1)(g(t)) · u1. Since

ρσ(ev0([σ̂(0) B g])) = [σ̄(t) ∗ {σ̂(0)(g(t)) · u0} ∗ σ(t)],
we haveρσ(ev0([σ̂(0)(g(t)) · u0])) = ev1([σ̂(1)(g(t)) · u1]) for all z∈0 and so

ρσ B ev0 = ev1 B(σ̂(1) B σ̂(0)−1).

Observe thatζ = σ̂(1) B σ̂(0)−1∈ Inn(G).

Definition 2.9. We say that a(Gmod0)-action onX is injectiveif

ev# : π1(G/000(u), ē)→ π1(G(u), u)→ π1(X, u)

is injective. Denote the image of ev# by00, and set5 = π1(X, u). Also letZ(0)
be the center of0,and letC5(00)be the centralizer of00 in5.A (Gmod0)-action
is homologically injectiveif it is injective and the induced homomorphism

ev∗ : H1(Z(0);Z)→ H1(C5(00);Z)
is injective. We abbreviate ev# or ev∗ simply by ev when no confusion is likely.

Clearly, by Lemma 2.8, the (homologically) injectiveness condition is independent
of our choice of the base pointu∈X.
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An extension 1→ 0 → 5 → Q → 1 is calledinner if the abstract kernel
Q→ Out(0) is trivial. Suppose0 is a subgroup ofG.The extension5 isG-inner
if, for everyσ ∈ π, µ(σ)∈Aut(0) is equal to conjugation by an element ofG. If
5 is inner, then it isG-inner.

Corollary 2.10. Suppose thatX has an injective(Gmod0)-action, and letu∈
X. Thenev#(000(u)) is normal inπ1(X, u). In fact, withQ = π1(X, u)/ev#(000(u)),

the exact sequence

1→ ev#(000(u))→ π1(X, u)→ Q→ 1

isG-inner.

Proof. Let u0 = u = u1, and letσ be any loop based atu so that [σ] ∈ π1(X, u).

Apply Lemma 2.8 (with ev0 = ev# = ev1, which is denoted simply by ev) to get

ρσ B ev= evB ζ.
Thus [σ]−1 ev(z)[σ] = ev(ζ(z)) for everyz ∈000(u), so that ev(000(u)) is normal in
π1(X, u). If we identify ev(000(u)) with 000(u), then the equality just displayed be-
comes [σ]−1z[σ] = ζ(z). But ζ ∈ Inn(G) is an inner automorphism ofG, so the
extension sequence isG-inner.

In the case where0 is normal inG (so thatG/0 is a group),000 is a constant
map and hencêσ(s) is the identity map, soρσ(ev(z)) = ev(z) or (equivalently)
σ−1 · ev(z) · σ = ev(z) for everyσ ∈ π1(X, u). This shows that the image of ev
is a central subgroup ofπ1(X, u), as opposed to just beingG-inner in our general
case.

Proposition 2.11. Suppose a spaceX has an injective(Gmod0)-action. Pick
u ∈ X so that000(u) = 0. LetH be a normal subgroup of5 = π1(X, u) con-
taining 0, and letXH be a covering space ofX with π1(XH ) = H. Then the
(Gmod0)-action onX naturally lifts to an injective(Gmod0)-action onXH .

Proof. SinceG acts onX andG is simply connected, there is a liftedG action on
XH (see [1, Thm. 4.3]). It only remains to show how the000-map is defined. Define
000 ′ : XH → G by the composite

XH
p−→ X

000−→ G,

wherep is the covering projection and000 is the000-map of the(Gmod0)-action
onX.

We claim that000 ′(û) ⊂ Gû and000 ′(aû) = a000 ′(û)a−1 for everyû ∈XH anda ∈
G. Let u = p(û) ∈ X. Then000 ′(û) = 000(u) ∈ G by the definition of000 ′. Since
p(aû) = ap(û), we have

000 ′(aû) = 000(p(aû)) = 000(au) = a000(u)a−1= a000 ′(û)a−1.

Suppose000(u) = 0, so that000 ′(û) = 0. Then the covering projectionpmapsG(û)
ontoG(u). The whole groupπ1(X, u) acts onXH in such a way that the subgroup
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H acts trivially. Since0 ⊂ H, 0 acts onXH trivially. Therefore,0 acts trivially
onG(û) = G/Gû so that0 ⊂ Gû. At pointsaû ∈XH other thanû, the equality
000 ′(aû) = a000 ′(û)a−1 ensures that000 ′(aû) ⊂ Gaû.

Proposition 2.12. Suppose a spaceX has an injective(Gmod0)-action. Pick
u ∈X so that000(u) = 0. LetX0 be a regular covering ofX with π1(X0) = 0 =
ev(000(u)). If G is torsion-free, then the lifted(Gmod0)-action onX0 and theG-
action onX̃ are free.

Proof. The image of the evaluation homomorphism ev:000(u)→ π1(X, u) lies in
0, so by Proposition 2.11 the(Gmod0)-action onX lifts to a (Gmod0)-action
onX0.

Suppose the(Gmod0)-action onX0 is not free. Then there existû∈X0 such
that000(û) = 0 and is a proper subgroup ofGû. Recall that ev# : 0 = 000(u) →
π1(X0, û) = 0 came from the continuous maps

(G/0, ē)
evû−−→ (G(û), û)

⊂−−→ (X0, û).

These continuous maps induce homomorphisms of fundamental groups,

0→ Gû→ 0,

where the composite is an isomorphism. LetF be the kernel of the second ho-
momorphism. Since theG-action on each orbit is proper andG/0 is compact,F
must be a finite group. ButGû ⊂ G does not contain any element of finite order.
ConsequentlyF must be trivial, so thatGû = 0. Thus the(Gmod0)-action on
X0 and theG-action onX̃ are free.

Corollary 2.13 [2, (3.1), p. 286]. Suppose a spaceX has an injectiveT k-action.
LetXZk be a regular covering ofX with π1(XZk ) = Zk = ev(π1(T

k)). Then the
lifted T k-action onXZk is free.

We need to understand the group ofG-equivariant maps on a product spaceG×W.
LetW be a space. On the productG×W, there areG actions by “left translations”
and by “right translations”,

l(g)(x,w) = (gx,w) and r(g)(x,w) = (xg−1, w),

for g ∈ G and (x,w) ∈ G × W. We denote the group of such left and right
translations byl(G) and r(G), respectively. A mapf : G ×W → G ×W is
G-equivariantif

f(ax,w) = l(a)f(x,w)
for all a ∈ G and (x,w) ∈ G × W. (So,G-equivariant meansl(G)-equivar-
iant.) The group of allG-equivariant homeomorphisms ofG ×W is denoted
by TOP0

G(G ×W). Note that the groupr(G) is G-equivariant, so thatr(G) ⊂
TOP0

G(G×W), but l(G) is not, unlessG is commutative.
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We now examineG-equivariant maps on the spaceG ×W more closely. Let
M(W,G) be the group of all continuous maps fromW intoG. A λ∈M(W,G) can
be interpreted as a mapG×W → G×W by

λ(x,w) = (x · λ(w)−1, w).

Thusλ becomesG-equivariant, so that M(W,G) ⊂ TOP0
G(G×W).More gener-

ally, letf ∈TOP0
G(G×W). Sincef(x,w) = f(x ·1, w) = l(x) · f(1, w), it fol-

lows thatf is completely determined by the image of the section{1} ×W. Also,
sincef is fiber-preserving, it induces a homeomorphismh on the base spaceW.

Thenf is of the formf(1, w) = (λ(h(w))−1, h(w)) for someλ ∈M(W,G). It
is easy to see that

TOP0
G(G×W) = M(W,G)o TOP(W ).

The group law is

(λ, h) · (η, k) = (λ · (η B h−1), h B k),
and the action onG×W is given by

(λ, h) · (x,w) = (x · λ(h(w))−1, h(w))

for all (x,w)∈G×W.
Lemma 2.14. The group of allG-equivariant maps on the spaceG×W is

TOP0
G(G×W) = M(W,G)o TOP(W ).

It contains the right translationsr(G) ⊂ M(W,G) as constant maps.

Now we specialize to particular types of Lie groups. They will be somewhat sim-
ilar to the abelian Lie groupRk. A Lie groupG is said to have the unique lat-
tice isomorphism extension property (ULIEP) if every isomorphism between lat-
tices ofG extends uniquely to a continuous automorphism ofG. For example, the
following classes of groups have the ULIEP:Rk, nilpotent Lie groups, solvable
Lie groups of type (R) (i.e., the adjoint representationdµ(a) : g→ g has all real
eigenvalues), and noncompact semisimple Lie groups having neitherP̃SL(2,R)
factors nor normal compact factors.

A Lie groupG isdivisibleif the equationxn = a has a unique solution for every
a ∈G andn ∈ Z. If the exponential map exp:g→ G is a diffeomorphism, then
G is contractible and divisible, andZ(G) is isomorphic toRk for somek ≥ 0.

Our model space to replace the group torus isG/0,which satisfies the following.

Standing Hypothesis on (G, 0). Throughout the rest of this paper, we assume
thatG is a connected Lie group with the ULIEP whose exponential map exp:g→
G is a diffeomorphism; we also assume that0 is a co-compact discrete subgroup
of G.

Lemma 2.15. If an extension1 → 0 → 5 → Q → 1 is G-inner, then the
abstract kernelQ→ Out(0) has finite image.
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Proof. Consider the commutative diagram

1 −−→ Inn(0) −−→ Aut(0) −−→ Out(0) −−→ 1y y yp
1 −−→ Inn(G) −−→ Aut(G) −−→ Out(G) −−→ 1,

where Aut(0)→ Aut(G) is induced from the ULIEP ofG.We need to prove that
ker(p) is finite. Supposeα ∈ Aut(0) is µ(a), conjugation by an elementa ∈G.
Thena ∈NG(0). By Lemma 2.7,NG(0)/Z(G) is a discrete subgroup of Inn(G).
Since Inn(0) = 0/Z(0) is discrete and co-compact in Inn(G), Inn(0)must have
finite index inNG(0)/Z(G). Therefore, some power ofα is in Inn(0). Thus the
image ofp is finitely generated, and every element has finite order. Therefore, it
is a finite group.

The following cohomology vanishing fact will be crucial for Theorems 2.17 and
3.4.

Lemma 2.16 [1, (8.4)]. Let ρ : Q → TOP(W ) be a properly discontinuous ac-
tion on a connected spaceW.With the action ofTOP(W ) onM(W,Rk) byh ·λ =
λ B h−1, H i

ρ(Q;M(W,Rk)) = 0 for i > 0.

SupposeX andX ′ have(Gmod0)-action with000 : X → G and000 ′ : X ′ → G,
respectively. A mapf : X → X ′ is said to be(Gmod0)-equivariant if it is
G-equivariant and000 ′(f(u)) = 000(u) for all u ∈ X. The productG/0 ×W has a
(Gmod0)-action—namely, the left translation byG on the first factor together
with the obvious000 : G/0 ×W → G/0→ G/NG(0) = G.

Theorem 2.17. SupposeX has a proper, injective(Gmod0)-action. Picku ∈
X so that000(u) = 0. Denote the imageev(000(u)) by0000. If π1(X, u) is a product
0000×K, thenX splits(Gmod0)-equivariantly asG/0 ×N, whereπ1(N ) = K.
Proof. Let X̂ be a regular covering space ofX with π1(X̂) = 0000. Recall that, by
Proposition 2.11, the(Gmod0)-action onX lifts to an injective(Gmod0)-action
on X̂. By Proposition 2.12, the(Gmod0)-action onX̂ and theG-action onX̃ are
free. SinceG acts onX̃ properly, we obtain a principalG-bundleG→ X̃→ W,

whereW = G\X̃. SinceG is contractible, this bundle is trivial and so

X̃ = G×W.
We now study how the group0000 acts onG×W. Denote the points of

X̂ = 0000\(G×W)
by 〈x,w〉, . . . . Hence, by the projection,

X̃ = G×W 3 (x,w) 7→ 〈x,w〉 ∈0000\(G×W) = X̂.
Recall how the evaluation homomorphism

ev# : π1(G/000(u), ē)→ π1(G(u), u)→ π1(X̂, u)
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was defined: For anyz∈000(u), pick a pathg : (I,0,1)→ (G, e, z). Then the path
g forms a loop inG/000(u) based at̄e, and ev#([g]) = [g(t) · u]. This shows that
the0000-action moves only along the fibers of the principalG-fibrationG×W →
W ; that is,G× w maps to itself for everyw ∈W.

Furthermore, this action is properly discontinuous. LetW = 0000\({e} ×W).
Then, the assignment

w 7→ 〈e,w〉
is a continuous cross-section to0000\(G×W)→ W. By Lemma 2.7,G/Z(G)→
G/NG(0) is a covering map. SinceW is simply connected, the mapW →
G/NG(0) lifts to a continuous mapW → G/Z(G). Furthermore, the projec-
tion G → G/Z(G) has a smooth cross-section becauseZ(G) is contractible.
Consequently, there is a continuous mapξ : W → G, making the diagram

W ξ−−→ G

=
y y
W 000−−→ G/NG(0)

commutative. Then,
G〈e,w〉 = ξ(w)0ξ(w)−1

for all w ∈W. Therefore,

G〈ξ(w)−1,w〉 = Gξ(w)−1〈e,w〉 = ξ(w)−1G〈e,w〉ξ(w) = 0.
This shows that, if we use the new cross-section

W ′ = { (ξ(w)−1, w) : w ∈W }
for G×W → W, then, with respect to this new cross-section,

G〈e,x〉 = 0
for all w ∈W. From now on, we assume this equality holds.

We claim that the action of0000 onG×W is via right translations on theG-factor.
We denote the action of0000 ⊂ 5 by�.

SinceG〈e,x〉 = 0, theG-action (left translations) onG × {w} = G · (e, w)
moves this fiber onto itself, sending the point(e, w) to a point in0 · (e, w). On
the other hand, the action of5 commutes with thel(G)-action (see Remark 2.1).
Moreover, as we have noted,0000 mapsG · (e, w) onto itself. SinceG · 〈e,w〉 ≈
G/G〈e,w〉 = G/0 ⊂ 0000\(G×W), we have

G/0 = G/G〈e,w〉 = 0000\G.
In fact, forγ ∈0 ⊂ G, there exists a uniqueγγγ 0 ∈0000 such that

γ · (e, w) = γγγ 0� (e, w)
for all w ∈W. Now,
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γγγ 0� (x,w) = γγγ 0� (x · (e, w))
= x · (γγγ 0� (e, w)) (sincel(G) and0000 commute)

= x · (γ · (e, w)) (by the previous equality)

= (xγ,w).
Thus,γγγ 0 : (x,w) 7→ (xγ,w). In other words,γγγ 0 acts on the fiberG · (e, w) =
G× {w} as right multiplication by0 ⊂ G.

We conclude that
0000\(G×W) = (G/0)×W.

Remember that we are using a specific splittingX̃ = G×W, so thatG〈e,w〉 = 0
for all w ∈W.

Now we study howK acts onX̃. SinceK is G-equivariant, theK-action is
given by an injective homomorphism

(ζ, ρ) : K −→ M(W,G)o TOP(W ) = TOP0
G(G×W).

It is easy to see thatζ : K → M(W,G) satisfies the co-cycle condition

ζ(kk ′) = ζ(k) · (ζ(k ′) B ρ(k)−1).

Because0000×K is a direct product,K commutes with0000 ⊂ r(G). This implies
thatK commutes with the wholer(G), by the ULIEP. The centralizer ofr(G)
in M(W,G)o TOP(W ) is M(W,Z(G))o TOP(W ). This meansζ has values in
M(W,Z(G)). Consequently, we obtained a co-cycle

ζ : K → M(W,Z(G)).
Since the induced actionρ of K on W is properly discontinuous, one can ap-
ply Lemma 2.16 and concludeH 1(K;M(W,Z(G))) = 0. This implies that there
exists aλ∈M(W,Z(G)) such that

ζ = λ−1 ·k λ = λ−1 · (λ B ρ(k)−1)

for all k ∈K. Letµ(λ,1) denote the conjugation by(λ,1) in TOP0
G(G×W). We

claim that:The new embedding

0 ×K (ζ,ρ)−−−−→ M(W,G)o TOP(W )
µ(λ,1)−−−−→ M(W,G)o TOP(W )

mapsK into {e}o TOP(W ).
Fork ∈K,

(ζ, ρ)(k) = (ζ(k), ρ(k))
= (λ−1 · (λ B ρ(k)−1), ρ(k))

= (λ−1,1)(e, ρ(k))(λ,1).

Therefore,µ(λ,1) B (ζ, ρ)(k) = (e, ρ(k)). We have shown that

µ(λ,1) B (ζ, ρ)(K) ⊂ {e}o TOP(W ).

Note thatµ(λ,1) does not change the0000-factor of5 = 0000 ×K. More precisely,
γ0 ∈0000 ∈5 acts onG×W as a right translation on theG-factor and, sinceλ(w)∈
Z(G) for all w ∈W, µ(λ, 1)(γ0) = γ0.
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Clearly,5\(G×W) is homeomorphic toµ(λ,1)(5)\(G×W) by the homeo-
morphism(λ,1) induced from the homeomorphism(λ,1) onG×W. That is,

G×W (λ,1)−−−→ G×Wy y
5\(G×W) (λ,1)−−−→ µ(λ,1)(5)\(G×W)

is commutative.
Thus, if we alter the cross-section ofG×W by

(e, w) 7→ (λ(w),w)

and useµ(λ,1)(5) instead of5, thenζ becomes the constant map with respect to
this new coordinate system. In other words,K is mapped into M(W,G)oTOP(W )
in such a way that(ζ(k), ρ(k)) = (e, ρ(k)), only into the TOP(W )-factor.

Recall that, for0000\X̃ = G/0 ×W, we neededG〈e,w〉 = 0 for all w ∈W. The
change of cross-section by(e, w) 7→ (λ(w)−1, w) does not change the foregoing
necessary condition, because

G〈λ(w)−1,w〉 = Gλ(w)−1〈e,w〉 = λ(w)−1G〈e,w〉λ(w) = G〈e,w〉
sinceλ(w)∈Z(G).Consequently, our5 = 0000×K maps intor(G)×TOP(W ) ⊂
M(W,G) o TOP(W ) in such a way that0000 ↪→ r(G) andK ↪→ TOP(W ). Note
thatr(G)×TOP(W ) is a direct product, not a semidirect product, since TOP(W )

acts trivially onr(G). Thus,X = 5\X̃ = (G/0)× (K\W) = (G/0)×N.
Corollary 2.18 (cf. [2, (3.1), p. 286]). SupposeX has a proper, injective
(Gmod0)-action. Let0 be the image of the evaluation map of the(Gmod0)-
action, and letK be a normal subgroup of5 such thatH = 0 ×K ⊂ 5. Then
MH, the covering space ofX with π1(MH) = H, (Gmod0)-equivariantly splits
asMH = (G/0) × N, whereN = G\MH hasπ1(N ) = K so that the lifted
G-action onMH is via left multiplication on theG/0-factor.

3. Seifert Fiber Structures

In this section we show that the concept of(Gmod0)-action is the same as a cer-
tain Seifert fiber structure. Also, given a set of data, we shall construct a model
space with such a structure that turns out to be unique. This uniqueness is used in
the proof of the main splitting theorem (Theorem 4.3).

Recall from Lemma 2.14 that the group of allG-equivariant maps on the space
G ×W is TOP0

G(G ×W) = M(W,G) o TOP(W ). Consider a homomorphism
θ : 5→ TOP0

G(G ×W) that fits the following commutative diagram with exact
rows:

1 −−→ 0 −−→ 5 −−→ Q −−→ 1yr yθ yρ
1 −−→ M(W,G) −−→ TOP0

G(G×W) −−→ TOP(W ) −−→ 1,
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where0→ M(W,G) is throughr(G) and whereρ : Q→ TOP(W ) is a properly
discontinuous action withW/Q compact.

We call suchX = θ(5)\(G×W) aG-equivariant injective Seifert fiber space
withG/0-fiber. The spaceX has a “fibering structure” with singularities

G/0→ X→ Q\W.
The typical fiber is the homogeneous spaceG/0, and singular fibers are again ho-
mogeneous spaces that are finite quotients of the typical fiber. In general, there
may not be any typical fibers. In other words, all the fibers may be singular. If the
Q action onW is effective (i.e., ifρ is injective) then we say that the Seifert fiber
space iseffective.In this case, there are typical fibers.

In general, the action of5 may or may not be free. As an example, consider
the group

Q = Z2 o Z2 ⊂ R2 o SO(2)

generated by([
1
0

][
1 0
0 1

])
,

([
0
1

][
1 0
0 1

])
,

([
0
0

][−1 0
0 −1

])
.

Let 51 and52 be extensions ofZ by Q, both embedded in the isometry group
E(3) of R3 as

51 =
〈([ 1

0
0

][ 1 0 0
0 1 0
0 0 1

])
,

([0
1
0

][ 1 0 0
0 1 0
0 0 1

])
,

([0
0
1

][ 1 0 0
0 1 0
0 0 1

])
,

([ 1
2
0
0

][ 1 0 0
0 −1 0
0 0 −1

])〉
,

52 =
〈([ 1

0
0

][ 1 0 0
0 1 0
0 0 1

])
,

([0
1
0

][ 1 0 0
0 1 0
0 0 1

])
,

([0
0
1

][ 1 0 0
0 1 0
0 0 1

])
,

([0
0
0

][ 1 0 0
0 −1 0
0 0 −1

])〉
.

Clearly, both51 and52 fit the extension

1→ Z→ 5→ Q→ 1

and sit inside
R1o Isom(R2) ⊂ M(R2,R)o TOP(R2).

The group51 is torsion free and acts onR3 freely, giving rise to a flat Riemannian
manifold. The second group,52, has a torsion of order 2. Therefore, it does not
act freely. The orbit spaceR3/52 is topologicallyS1× S2, whereS2 = R2/Q =
(R2/Z2)/Z2 is an orbifold obtained from the 2-torus by an involution.

Whenθ : π1(X)→ TOP0
G(G×W) gives a free action, the action is a covering

transformation since it is properly discontinuous. In this case,5 = π1(X).
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Even ifW is a manifold, the spaceQ\W is an orbifold in general and is called
thebase space.The exact sequence 1→ 0 → 5→ Q→ 1 is called thehomo-
topy exact sequenceassociated to theG-equivariant injective Seifert fiber space
with G/0-fiber.

Remark 3.1. Suppose such a homomorphismθ exists. Then the imageθ(5)
necessarily lies in the subgroup M(W,NG(0)) o TOP(W ). This can be seen as
follows. Let (λ, h) ∈ M(W,G) o TOP(W ) be an element ofθ(5). Since0 is
normal in5,

(λzλ−1,1) = (λ, h)(z,1)(λ, h)−1∈0
for all w ∈W andz∈0. This shows thatλ(w)∈NG(0) for all w ∈W. In general,
a Seifert fiber space with fiber a double co-set space1\G/K is obtained by an ac-
tion of a group TOPG,K(G ×W), the group of weaklyl(G)-equivariant homeo-
morphisms ofG ×W that mapK-co-sets toK-co-sets. WithK = 0 and1 =
1, our group M(W,NG(0)) o TOP(W ) certainly lies in TOPG,K(G×W). Thus
aG-equivariant injective Seifert fiber space withG/0-fiber is a special kind of
Seifert fiber space. See [14] for details.

Theorem 3.2. A spaceX has a proper(resp. effective) injective (Gmod0)-
action if and only if it has aG-equivariant(resp. effective) injective Seifert fiber
structure withG/0-fiber given by a free actionθ : π1(X)→ TOP0

G(G×W).

Proof. SupposeX has a proper injective(Gmod0)-action. Then0 is normal in
5 = π1(X), by Corollary 2.10. Form a regular covering spaceM0 of X with
π1(M0) = 0. By Corollary 2.18,M0 (Gmod0)-equivariantly splits asM0 =
(G/0) ×W, whereW = G\M0 is a simply connected space so that the lifted
G-action onM0 is via left multiplication on theG/0-factor. Thus the covering
action of5 commutes withl(G) so that

5 ⊂ TOP0
G(G×W)

with 0 ⊂ r(G).
Now letQ = 5/0. SinceQ acts on(G/0)×W as a covering transformation

and sinceG/0 is compact, the induced action ofQ onW is properly discontin-
uous. Consequently,X has an injectiveG-equivariant Seifert fiber structure with
G/0-fiber. Since5 = π1(X) is a covering action, it is free.

Suppose the(Gmod0)-action is effective. Let0 ′ ⊂ 5 be the kernel of the
composite5 ↪→ TOP0

G(G×W)→ TOP(W ); that is,

0 ′ = 5 ∩M(W,G).

We claim that0 ′ = 0. Because5 acts onX̃ properly discontinuously,0 has fi-
nite index in0 ′. Supposeλ∈ 0 ′ lies in M(W,G). Thenλp ∈ 0 for somep ∈ Z,
sayλp = z ∈ 0. This means(λ(w))p = z for everyw ∈W. SinceG is divisible,
there exists a uniquea ∈G with ap = z. Thus,

λ(w) = a



434 Eun Sook Kang & Kyung Bai L ee

for all w ∈W. This shows thatλ is a constant map and that0 ′ = 5 ∩ r(G) and
hence0 ′ is a lattice ofG containing0. If 0 6= 0 ′ then theG-action onX would
have stabilizers larger than0. Therefore,0 = 0 ′ = 5 ∩M(W,G). This implies
that theQ-action onW is effective.

Conversely, supposeX has an injectiveG-equivariant Seifert fiber structure
withG/0-fiber. This meansX = (G×W)/5with5 ⊂ TOP0

G(G×W) and0 ⊂
r(G). Further assume that5 acts freely so that5 = π1(X).

Denote the point corresponding to(a,w) ∈ G ×W by 〈a,w〉 ∈ X. Suppose
〈a,w〉 = 〈a′, w ′ 〉. Then there exists(λ, h)∈5 such that

(a′, w ′) = (λ, h) · (a,w)
= (a · λ(hw)−1, hw).

By Remark 3.1,λ(hw) ∈ NG(0) so thata = a′modNG(0). Thus a0a−1 =
a′0a′−1

. Defining000 by
000(〈a,w〉) = a0a−1,

we obtain an injective(Gmod0)-action onX.
Suppose the Seifert fiber space is effective,5 ∩ M(W,G) = 5 ∩ r(G) = 0.

Thus,
G〈a,w〉 = a0a−1.

In particular,G〈1,w〉 = 0. Hence the induced(Gmod0)-action is effective.

Lemma 3.3. LetX be aG-equivariant injective Seifert fiber space withG/0-
fiber. Let1→ 0 → 5 = π1(X) → Q → 1 be the associated homotopy exact
sequence. Then the extension5 isG-inner.

Proof. If the Seifert fiber space is effective then the result follows from Corollary
2.10 and Theorem 3.2.

Letθ : 5→ TOP0
G(G×W)be a homomorphism yielding the Seifert fiber space

structure. By Remark 3.1,θ(5) must have values in M(W,NG(0)) o TOP(W ).
SinceW is connected,λ(W ) lies in one connected component. Letα ∈ 5 and
θ(α) = (λ, h) ∈M(W,NG(0)) o TOP(W ). Thenλ ∈M(W, a · Z(G)) for some
a ∈NG(0), since(NG(0)))0 = Z(G). Therefore, forz∈0,

(λ, h)(z,1)(λ, h)−1= (λ · z · λ−1,1) = (aza−1,1).

Thus, conjugation ofz∈0 by an elementθ(α)= (λ, h)∈M(W,NG(0))oTOP(W )
is the same as conjugation bya ∈NG(0).Consequently,5→ Aut(0)→ Aut(G)
has image in Inn(G).

Theorem 3.4 (Existence and Uniqueness forG with ULIEP). LetW be a con-
nected space, and letρ : Q→ TOP(W ) be a properly discontinuous effective ac-
tion. For everyG-inner extension1 → 0 → 5 → Q → 1, there exists an
effectiveG-equivariant injective Seifert fiber space withG/0-fiber, θ : 5 →
TOP0

G(G × W)—namely,5\(G × W), a space with a proper and injective
(Gmod0)-action. Furthermore, with fixedr : 0 ↪→ r(G) andρ, suchθ is unique
up to conjugation by elements ofM(W,G).
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Proof. SinceG has the ULIEP, one can form an extensionP so that

1 −−→ 0 −−→ 5 −−→ Q −−→ 1y y y=
1 −−→ r(G) −−→ P −−→ Q −−→ 1

is commutative. SinceQ→ Out(G) is trivial, we have the trivial extensionG×Q.
Furthermore, the inclusionZ(G) ↪→ M(W,Z(G)) induces a homomorphism
H 2(Q;Z(G))→ H 2

ρ (Q;M(W,Z(G))) sending [r(G)×Q] to [M (W,G)oQ].
However, sinceH 2

ρ (Q;M(W,Z(G))) is trivial by Lemma 2.16, every other exten-
sion (element ofH 2(Q;Z(G))) must be mapped into M(W,G)oQ. In particular,
there is a homomorphismP → M(W,G)oQ, making the diagram

1 −−→ r(G) −−→ P −−→ Q −−→ 1yr y yρ
1 −−→ M(W,G) −−→ TOP0

G(G×W) −−→ TOP(W ) −−→ 1

commutative. Combining these two diagrams, we obtian the desired homomor-
phism5→ TOP0

G(G×W).
We now prove the uniqueness statement. Letθ, θ ′ : 5 → TOP0

G(G ×W) be
two suchG-equivariant Seifert fiber spaces withG/0-fiber. They are related by

θ ′(α) = λ(α) · θ(α)
for someλ : 5→ M(W,G). It is easy to see thatλ satisfies

λ(αβ) = λ(α) · θ(α)λ(β)θ(α)−1

for all α, β ∈ 5. But, sinceθ = θ ′ on 0, λ(z) = 1 for all z ∈ 0. This implies
λ(zα) = λ(αz) = λ(α). Consequently,λ factors throughQ. Furthermore,θ(α)
andθ ′(α) induce the same automorphisms on0. Therefore, the differenceλ lies
in the centralizer of0 in M(W,G), which is M(W,Z(G)). Thus,

λ : Q→ M(W,Z(G)) satisfyingλ(αβ) = λ(α) · θ(α)λ(β)θ(α)−1,

so thatλ∈Z1
ρ(Q;M(W,Z(G))).Notice thatQ acts on M(W,Z(G)) viaρ : Q→

TOP(W ), namely,α · λ = λ B ρ(α)−1. Now H 1
ρ (Q;M(W,Z(G))) = 0 (Lem-

ma 2.16) ensures that there exists anm0 ∈ M(W,Z(G)) such thatλ(α) =
m0θ(α)m0θ(α)

−1. This implies thatθ ′ = (m0,1) · θ · (m0,1)−1.

Corollary 3.5. Let G be a connected, simply connected, and commutative,
nilpotent, or(more generally) solvable Lie group of type(R); letρ : Q→ TOP(W )
be a properly discontinuous action. Then for anyG-inner extension1→ 0 →
5→ Q→ 1, there exists aG-equivariant injective Seifert fiber space withG/0-
fiber θ : 5 → TOP0

G(G ×W) that is unique up to conjugation by elements of
M(W,G).

Proof. It is known (see [6]) that such a Lie groupG has the ULIEP. Since the ex-
ponential map is a diffeomorphism, we can apply Theorem 3.4.
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4. Splitting via (Gmod000)-Actions

Let X = 5\(G ×W) beG-equivariant injective Seifert fiber space withG/0-
fiber. The homotopy exact sequence 1→ 0 → 5 → Q → 1 associated with
theG-equivariant injective Seifert fiber space withG/0-fiber isG-inner. For an
injective torus action(T k,X), the exact sequence

1→ π1(T
k)→ π1(X)→ π1(X)/π1(T

k)→ 1,

induced from the evaluation map, is automatically central and so is inner.
The condition for a torus action(T k,X) to be homologically injective is equiv-

alent to the element [π1(X)] in H 2(Q;Zk) having finite order [1]. Keep in mind
that the cohomology class [π1(X)] is represented by the extension sequence 1→
Zk → π1(X) → Q → 1. A normal subgroupA of C is said to behomolog-
ically injective in C if the inclusion induces an injective homomorphism on the
first homology,H1(A;Z)→ H1(C;Z) or (equivalently) ifA ∩ [C,C] = {1}.

A (Gmod0)-action onX is homologically injectiveif the (Gmod0)-action
is injective and the exact sequence associated with the action is homologically
injective. See Definition 2.9.

Some part of the following is essentially proved in [2]; see also [13].

Lemma 4.1 [13]. Let1→ Z→ C → Q→ 1be a central extension, whereZ is
a free abelian group of finite rank. Then the following are equivalent:

(i) [C] has finite order inH 2(Q;Z);
(ii) C contains a normal subgroupQ′ such thatZ∩Q′ =1and8= C/(Z×Q′)

is a finite abelian group;
(iii) Z homologically injects intoC.

Lemma 4.2. Let 0 be a group whose centerZ(0) is a free abelian group of fi-
nite rank. Let1→ 0→ 5→ Q→ 1be an extension whose abstract kernel has
finite image. Then the following are equivalent:

(1) [5] has finite order inH 2(Q;Z(0));
(2) 5 contains a normal subgroup0×Q′ such that8 = 5/(0×Q′) is a finite

group(if the extension is inner then8 is abelian);
(3) Z(0) homologically injects intoC5(0).

Proof. (1)⇔ (3). Let P ⊂ Q be the kernel ofQ→ Out(0), and let5′ ⊂ 5 be
the preimage ofP. SinceQ/P is finite, the homomorphismi∗ : H 2(Q,Z(0))→
H 2(P,Z(0)), induced by the inclusioni : P ↪→ Q, has finite kernel. Therefore,
[5] ∈H 2(Q,Z(0)) has finite order if and only if [5′ ] ∈H 2(P,Z(0)) has finite
order. Also, for statement (3), note thatC5(0) = C5′(0). Therefore, in proving
(1)⇔ (3), it is enough to work with5′ instead of5. Hence, we assume that the
extension 1→ 0→ 5→ Q→ 1 is inner. Then

1→ Z(0)→ C5(0)→ Q→ 1
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is a central extension. The extensions [5] and [C5(0)] are both classified by the
same cohomology groupH 2(Q,Z(0)). Furthermore, since the abstract kernels
are trivial, there exist direct products that correspond to each other naturally. This
proves the equivalence of (1) and (3), using Lemma 4.1.
(1)⇒ (2). The condition (1) implies that [C5(0)] has finite order. By Lemma

4.1,C5(0) contains a normal subgroupZ(0)×Q′ such thatC5(0)/(Z(0)×Q′)
is a finite group. However,Z(0)×Q′ may not be normal in5. LetC ′ be the in-
tersection of all conjugates ofZ(0)×Q′ by elements of5. SinceC5(0) is nor-
mal in5 and sinceZ(0)×Q′ has finite index inC5(0), there are only finitely
many conjugacy (by elements of5) classes ofZ(0) ×Q′. ThereforeC ′ is nor-
mal in5 and has finite index inC5(0).MoreoverC ′ splits also, which we denote
by Z(0) ×Q′ again. Let5′ = 0 ·Q′ so that 1→ 0 → 5′ → Q′ → 1 is ex-
act. Clearly, this splits as5′ = 0×Q′ and is normal in5, and we have that [5 :
5′ ] = [5 : 0 · C5(0)][0 · C5(0) : 5′ ] is finite. If the extension is inner, then
5 = 0 · C5(0) and0 · C5(0)/5′GC5(0)/Z(0)×Q′ is abelian.
(2)⇒ (3). Since5/(0×Q′) is finite,C5(0)/(Z(0)×Q′) is finite. Now ap-

ply Lemma 4.1.

Theorem 4.3. The following are equivalent:

(1) X admits a proper and homologically injective(Gmod0)-action;
(2) X is aG-equivariant injective Seifert fiber space withG/0-fiber such that the

centerZ(0) homologically injects into the centralizer of0 in π1(X);
(3) X = (G/0) ×8 N, where8 is a finite group that acts diagonally and freely

on the first factor as right translations ofG.

If one of these conditions holds, thenX fibers over the homogeneous space
(G/0)/8 with fiberN.

Proof. For (1) ⇔ (2), we apply Theorem 3.2 and Lemma 4.2. In order to apply
Lemma 4.2, we need only verify that the extension 1→ 0→ 5→ Q→ 1, com-
ing from the(Gmod0)-action on the injective Seifert fiber space, satisfies the con-
dition that the abstract kernelQ → Out(0) have finite image. However, Corol-
lary 2.10 and Lemma 3.3 ensure that the extension isG-inner. By Lemma 2.15,
the abstract kernel has finite image in both cases.

We now prove the equivalence of (2) and (3). SupposeX satisfies the state-
ment (3). For brevity, let5 = π1(X), Q = 5/0, andQ′ = π1(N ). Then
π1((G/0) × N) = 0 ×Q′ and5/(0 ×Q′) = 8, a finite group. LetW be the
universal covering ofN. Then5 acts onG×W in such a way that0 acts only on
theG-factor as right translations andQ′ acts only on theW-factor. Furthermore,
since the quotient group8 acts on(G/0)×N diagonally, its lift toG×W will act
diagonally as well. This means that5 lies inr(G)×TOP(W ) ⊂ TOP0

G(G×W),
yielding a structure ofG-equivariant injective Seifert fiber space withG/0-fiber
onX. Now consider the associated homotopy exact sequence 1→ 0 → 5 →
Q→ 1. SinceQ′ commutes with0, Q→ Out(0) factors through8 and hence
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has finite image in Out(0). By the proof of(2) ⇒ (3) in Lemma 4.2, the center
Z(0) homologically injects intoC5(0).

Conversely, supposeX is aG-equivariant injective Seifert fiber space withG/0-
fiber satisfying (2). ThenX = 5\(G ×W), where5 ⊂ TOP0

G(G ×W), 0 ⊂
5 ∩ r(G), and0 is normal in5. Furthermore the abstract kernel for the associ-
ated short exact sequence 1→ 0→ 5→ Q→ 1 has finite image, as mentioned
before.

We can now apply the proof of(3) ⇒ (2) from Lemma 4.2. There is a nor-
mal subgroupQ′ of 5 such that8 = 5/(0 ×Q′) is a finite group. Then0 ′ =
5/Q′ is a finite extension of the lattice0. Sinceµ : 0 ′ → Out(G) is trivial, the
extension 1→ 0→ 0 ′ → 8→ 1 isG-inner.

The embedding5 ⊂ TOP0
G(G×W) from the Seifert fiber structure ofX may

not have image inr(G) × TOP(W ). We construct a new homomorphism5 →
r(G) × TOP(W ) ⊂ TOP0

G(G ×W) as follows. By the ULIEP, there exists aP
fitting the commutative diagram

1 −−→ 0 −−→ 0 ′ −−→ 8 −−→ 1y y y=
1 −−→ G −−→ P −−→ 8 −−→ 1.

Because8→ Out(G) is trivial, there exists [G×8] ∈H 2(8;Z(G)). However,
H 2(8;Z(G)) = 0, since8 is a finite group. HenceP = G×8. The composite
0 ′ → G × 8 → G is a homomorphism5/Q′ → r(G) extending0 ↪→ r(G).

Thus, we have a homomorphism5→ r(G)× TOP(W ) such that0 ⊂ r(G) and
Q′ ⊂ TOP(W ).

We compare the original homomorphism5 ⊂ TOP0
G(G ×W) to the newly

constructed one5→ r(G)×TOP(W ) ⊂ TOP0
G(G×W). Both homomorphisms

induce the same homomorphismsr : 0 ↪→ r(G) andρ : Q→ TOP(W ). Since0
is normal in5, the difference of these two homomorphisms lies in the centralizer
of r(0) inside M(W,G); that is, in M(W,Z(G)). On the other hand, sinceZ(G)
is connected,H 1(Q;M(W,Z(G))) is trivial by Lemma 2.16. By Theorem 3.4,
these two homomorphisms are conjugate to each other by an element of M(W,G).

Note that this conjugation is nothing but picking a new trivialization ofG ×W.
Thus, we may assume our original homomorphism5 → M(W,G) o TOP(W )
satisfies
(a) 5 ⊂ r(G)× TOP(W ),
(b) 0 ⊂ r(G), and
(c) Q′ ⊂ TOP(W ).
Therefore,0 acts only on the first factorG, Q′ acts only on the second factorW,
and the finite group8 acts on the quotient(G/0) × (W/Q′) diagonally, as right
translations on the first factor. This proves(2)⇒ (3) for Theorem 4.3.

Since the8-action on the first factor of(G/0)×W is via right translations, it is
free. Consequently,X = (G/0)×8 N fibers (without singularities) over the ho-
mogeneous space(G/0)/8 with fiberN. This completes the proof.
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In case the natural homomorphism5 → Out(0) is trivial, 0 ′ ⊂ Z(G) · 0 and
so the right translations of the8 action occur only through the center. Therefore,
the action of8 on the first factor lies in the torus actionZ(G)/Z(0) of the homo-
geneous spaceG/0. Notice that we generalized the theorem in [13, p. 411] from
nilpotent Lie groups to Lie groups with ULIEP and bijective exponential mapwith-
out the (redundant) condition thatQ→ Out(0) have finite image. However, the
reader should realize the different settings: our0 acts on the right, whereas in [13]
it acts on the left.

Example 4.4. LetG be a 3-dimensional Heisenberg group—that is, the group
of all upper triangular matrices with diagonal entries 1. Consider

x = I + E1,2, y = I + E2,3, z = I + E1,3 ∈G,
whereI is the identity matrix andEi,j is a 3× 3 matrix whose(i, j)-entry is 1,
with 0 elsewhere. Let0 be the lattice generated byx2, y, andz. LetN = Q′\H
be a hyperbolic surface of genus 2, soQ′ ⊂ PSL(2,R) is a Fuchsian group. Let
8 = Z2 act onG/0 and onN as follows. Let the nontrivial generatorτ ∈8 act
on the universal covering group level as (right) translation byx. It also acts on
the surfaceN by a rotation by 180◦ with two fixed points. The quotient8\N is a
torus with two singular points. Now the manifoldM = (G/0)×Z2 N has associ-
ated homotopy exact sequence 1→ 0 → 5 → Q → 1, whereQ = Q′ o Z2.

Clearly,0×Q′ is normal in5 and has index 2. The only torus action onM is the
circle action ofZ(G)/Z(0). It is also clear that

Z(0) = Z.
Even thoughH1(Z(0);Z)→ H1(C5(0);Z) is injective (and hence condition (2)
of Theorem 4.3 is satisfied),H1(Z(0);Z) → H1(5;Z) is not injective. There-
fore, the circle action onM is not homologically injective. This is obvious be-
cause the centerZ cannot be separated even in0. In other words, 1→ Z(0)→
0→ Z2→ 1 represents an element of infinite order inH 2(Z2;Z).

Consequently, [5] ∈ H 2(Q;Z(0)) has infinite order. This shows that there
is no way of splitting off this circle using the action ofZ(G)/Z(0). From the
construction of the manifoldM, there is a splitting ofM as(G/0) ×Z2 N. The
G-equivariant injective Seifert fiber space withG/0-fiber

G/0→ M → 8\N
has two singular points, which are the fixed points of the action of8 onN.The sin-
gular fibers are nilmanifolds(G/0)/8. Note that the extension 1→ 0 → 5→
Q→ 1 is not inner, but justG-inner, and hence theZ2 action onG/0 is not in the
torus action. Also, the action ofZ2 onG/0 lifts to a new lattice0 ′ = 〈x, y, z〉,
andM has a genuine fibration structure

N → M → G/0 ′,

whereG/0 ′ is a nilmanifold doubly covered byG/0.
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