Besov Spaces and Outer Functions

KONSTANTIN M. DYAKONOV

1. Introduction

Let D denote the unit diskz € C : |z| < 1}, T its boundary, and: the normal-
ized Lebesgue measure @nFor a functionf € L? (:= L?(T, m)), we define its
L? modulus of continuity by

) /p
wp(t, f) = sup ( /T |f<e”';)—f(c>|f’dm(;>)
forO <t < m, and by

wp(t, f) i=w,(r, f) for m <t <oo.

Further, given O< s <1, 0 < p < o0, and O< g < oo, theBesov spac®,, =
B,,(T) is introduced as follows:

B, :={feL”:/oont<oo}.
0

tsq+1
We shall mainly be concerned with thealytic subspace
AB, =B, NH,

where H” is the classical Hardy space in the disk (see [9, Clhidp. Alterna-
tively, the classAB,,, can be described [15; 17] as the set of all analytic functions
f onD satisfying

1 q/p
/0 1- r)(l_s)‘f_l</jr|f/(r§)|pdm(;“)) dr < oo. (1.1)

We remark that there is also a natural way to define the spijgeand A B, with
s > 1, but these are not considered in the present paper.

The problem we treat here is to characterize (the boundary values of) the moduli
of functions inAB,,. Thus, we consider a nonnegative functipa L? with

/ logp dm > —o0 (1.2)
T
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(itis well known that (1.2) characterizes the moduli of nonzH¢dbfunctions) and
ask whether there exists ghe AB,, such that f| = ¢ almost everywhere of.
Equivalently, we have to ascertain when theer functionO,,, given by

0,(2) = exp(/ crz logg(¢) dm(§)>, zeD,
T¢—2

belongs taA B, . (The equivalence of the two settings is due to the fact|thgt =
¢ a.e. onT and to the fact that the outer factor of a functiondiB,,, must itself
belong toAB,,. The latter can be established along the lines of [10]; see also [11,
Chap.lll, Sec. 3.4].)

Yet another necessary condition, to be impose@ atong with (1.2), is

peB, (1.3)

(just note thatw, (¢, | f|) < w,(, f)). However, (1.2) and (1.3) together are far
from being sufficient to ensure th&, € AB,,,.

To make further discussion possible, we introduce some notation Lsttnd
for the harmonic measure representing a poiafD, so that
1—|z|?
¢ —z|?
and let¥ (z, ¢) be the function associated with a givere L', ¢ > 0, via the

formula
V(z, ¢) iszduz—eXp</ logwduz>, zeD
T T

(in case (1.2) fails, it is understood that €xo) = 0). Note that¥(z, ¢) > 0
by Jensen’s inequality. Finally, for a givene L?, ¢ > 0, we set

dp(¢) = dm(), ¢eT,

D (z, ) == V(z,9%), zeD.

In order to make the results of this paper look more natural, we now cite their
prototypes that were previously obtained by the author for the Lipschitz spaces
A* = B% . with 0 < o < 1. More precisely, the Lipschitz space is defined by

AN ={feC(D)wx, f)=00")}
where
woo(t, f) = SUPLIf(e"0) = f(OI: ¢ €T, |l <1}, O<t=<m.
The following Theorems A and B (see [6; 7] for the proofs) provide explicit char-
acterizations of the outer functions it¥ in terms of their moduli.
TueorREM A. Lety € L? be a nonnegative function satisfyi(t 2). Then, for
O<a< % the following are equivalent

(i.A) O, €A%
(iLA) ®(z, 0) = O((1 — |z])?*), z € D.
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THEOREM B. Let0 < « < 1, and letp € A* be a nonnegative function satisfying
(1.2). The following are equivalent

(i.B) O, € A®.
(i.B) W(z,9) = 01— |z])*), z€D.

When passing fromA” to general Besov spacés,, it would be natural to ex-
pect that the desired membership criteriady might be obtained by replacing
the uniform estimates (ii.A) and (ii.B) by suitable integral conditionsiga, ¢)
and/orW¥ (z, ¢). Following the strategy of [6], we show that this is indeed the
case and exhibit the appropriate integral conditions. However, the passage from
“uniform smoothness” to the “smoothness in the mean” is no routine matter and
requires a great deal of effort.

The rest of the paper is organized as follows. In Section 2, we provide a
certain “BMO-type” characterization ofB,, in terms of the mean oscillation
([1f = f@I° du.)Y?, whereo is a new parameter.

In Section 3, we use this characterization, with= 2, to derive an integral ver-
sion of Theorem A. It states that, in the case® < % andp > 2, the inclu-
sionO, € AB,, is equivalent to the convergence of a certain integral involving
d(z, ¢). Further, we briefly discuss the inner—outer factorization of analytic func-
tions in the Besov space. Also, combining our results with a lemma due to Ale-
man [1], we obtain, as a byproduct, the following fact: Giyver 2, 0 < s < %
andg > 0, every function inAB,, is the ratio of two bounded functions in the
same class. (The cage= ¢ = 2 was treated in [1].)

In Section 4, we cite (a special case of) a recent result of Shirokov [14] which
gives an alternative description of outer functionstiB,,, provided that

l<p<oo, 1l<g<oo, and Yp<s<l (1.4)

Shirokov’s result enables us to prove the following auxiliary assertion, §,
ands satisfy (1.4), and iff is an outer function imBZfzq such that f|? € B,,,
then f2 € AB,,. This last fact is in turn used, in conjunction with preceding re-
sults from Sections 2 and 3, to derive an integral analog of Theorem B. Namely,
oncep, g, ands are related by (1.4), the inclusidf, € AB,, is shown to be
equivalent to an appropriate integrability conditionbiy, ¢).

Finally, Section 5 contains a few concluding remarks and open questions.

2. BMO-Type Characterizations of Besov Spaces

THEOREM 2.1. Letl <o < p <00,0<¢q < o00,and0 < s < 1/0. Given a
function f € H?, the following are equivalent

s .
f€AB,,;

()
B 1 . plo qa/p dr
(i) /; {A(/TUC(?) — f(rm)| dw,(f)) dm(n)} Ayt =
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Proof. (i) = (i). Forz e D, Cauchy’s formula yields

IZI2

If/(z)l—ﬁ /(f(é“) fz )) 4‘

<1 f 1) = £ die (@)
1—|Z| T

1 1/o
< </|f(§)—f(Z)|asz(§)) .
1-1zI\Jr

<

Consequently,

rlo
/Tlf/(rn)l”dm(n)< /( L) — farmI° d;m,(;“)) dm(n).

1-

Raising both sides to the povv¢;‘p, multiplying by (1 — r)®=99-1 and integrat-
ing overr shows that condition (ii) implies (1.1) and hence also (i).
(i) = (ii). ForO<r < 1, set

plo 1/p
Q(r) = {[T< TIf(;“)—f(rn)l"dum(é)) dm(n)} .

Minkowski’s inequality, applied twice, gives

plo 1/p
Q) < { /T ( 10— foor dum(;“)) dm(n)}

1/p
+ {fTIf(n) - f(rn)l”dm(n)}

It is known [16] that
b= O0(w,(L—r, f)), (2.2)

so we proceed by estimating the first term, #
Oncer € (0, 1) andn € T are fixed, we have

/T Q) = FDI° iy (©) = fT FEn) — FODI° diar (®)

N+1

=Y [ 1fGEm — foI° dur®),  (2.3)
k=0 Yk
whereN = N(r) is the integer such that
N T N+1
2" < 11— <27,
while the subset$, C T are defined by
Io:={e":|h <1—r},
Loo={e":25Y 1 —r) < |h| <2*A=r)} (=1,...,N),

Ivyai={e":2YA—r) < |h| <7}
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Raising (2.3) to the power/& and using the inequality- ||;,o < | - ||;2, we obtain

/o N+41 1/o
(/Tlf(;)—f(n)l”durn@)> 52( llf(gn)—f(n)l”dur(é)> - (2.4)

k=0
Hoélder’s inequality, together with the fact that

wr(Iy) < const 27K, (2.5)

where the constant is independent @ndk, yields

1/o
< 1 |fGEm — fmI° dlh(é))

1/p
< const: 2"(1/“1/’”( If(En)—f(n)l”er(E)> . (2.6)
Ik

Substituting (2.6) into (2.4) gives

1/o
</T|f(§) - fml” dl%(())

N+1

1/p
< const Y 2—"“/"‘1/”)(/ |f(&n) — f(n)l”dur(é)) -
k=0 I

Passing td.?-norms with respect tdm(n), we get

N+1

1/p
# < const: ZZ‘“”"‘”’”{/ dm(n)/lf(%'n) - f(n)l"dur(é)} . (27
k=0 T Iy
We now look at the double integrél . . } on the right:

{...1= flk dur(E)lef(En) — fmI” dm(n)
< weI) - wp(2' (L= 1), f)P <const: 27 - w, (2" (L—r), )P
(we have once again used (2.5)). Thus
{... YY" <const 2747 . w,(2"(1 - 1), £),
and so (2.7) implies

#<const Y 277w, (21— r), f). (2.8)
k=0

Comparing (2.1), (2.2), and (2.8) yields a similar estimatecfor):

Q(r) < const Yy " 27M°w,(25(1—r). f). (2.9)
k=0

Further, we must distinguish two cases.



148 KONSTANTIN M. DYAKONOV

Case 1 0 < g < 1. Using (2.9) and the elementary inequality

(Z llj)q =< Zajq (aj = 0),

J J
we obtain
oo
Q(r)? < const: Y " 274/, (25(1 - r), f)1.
k=0
Hence
L) > Yw, (2%, )1
[ 20 i< cona S [ 20,
o (L—rysatt = o it
o0
<const » 27kl g, (2.10)
k=0
where .
o0
o w,(2°1, )1
Ji ._/0 Tdt. (2.11)
A change of variables gives
Jp = 285 ), (2.12)

whereas the integral converges by virtue of (i). In view of (2.12), (2.10) yields
1 Q q o
/ L dr < const- Jp - szkq(l/oﬂ) < 0.
0

(1 _ r)qurl —

Case 2 1 < g < oco. Applying Minkowski's inequality, we deduce from (2.9)

that . Y
Q(r)? ! o o k/o L/
(ﬁ md}") < const: ;2 k/ ‘Ik q, (213)

whereJ; is again defined by (2.11). Now (2.12) shows that the right-hand side of
(2.13) equals

o0
const. J,/? > ke
k=0

and is, therefore, finite (as long as (i) holds true).
Thus, in both cases we have

L) J
/o A= 5
which proves (ii). O

Having in mind some further applications, we point out two special cases of The-
orem 2.1.

ProrosITION 2.2. (a)Letl < p <o00,0< g <o0,and0 < s < 1. Givenf e
H?, one hasf € AB,, if and only if
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! p q/p dr
/O {A(/TV@) - f(rﬂ)ldum(é)) dm(n)} Ay <o 219)

(b)Let2 < p <o00,0< g <o0,and0 < s < 3. Givenf € H”, one hasf €
AB,, if and only if

1 ) ) p/2 q/p dr
/O {/T</T|f(§)l dprm(§) — 1 f(rn)] ) dm(n)} A=yt < 00.
(2.15)

Proof. To prove (a), apply Theorem 2.1 with= 1. To prove (b), set = 2 and
note that

/Tlf—f(Z)IZduz=/T|f|2d/wz—|f(z)|2, zeD. O

REMARKS. (1) Inthe case = g = 2, Proposition 2.2(b) is implied by Proposi-
tion 2.4 in Aleman’s paper [1]. However, the techniques of [1] are quite different
from ours and do not appear suitable when dealing with the non-Hilbert case.

(2) Of course, Theorem 2.1 and Proposition 2.2 provide equivalent norms (or
quasinorms, if O< ¢ < 1) on AB,,, which are obtained by raising the left-hand
sides of (ii), (2.14), and (2.15) to the powefgl

3. On the Multiplicative Properties of Functions in ABg,

In this section, we restrict ourselves to the case where
2<p<o0, O<g<oo, and O<s<1/2 (3.1)

and derive several corollaries of Proposition 2.2(b). The first of these can be
viewed as an integral version of Theorem A (see Section 1).

THeoreM 3.1. Let(3.1)hold, andlety € L? be a nonnegative function satisfying
(1.2). The following are equivalent

(i 0, < AB: :

prq’
1 /2 q/p dr
. »
(i) /O(Ad)(rn,(p) dm(n)) —(1_r)sq+l <00
Proof. Apply Proposition 2.2(b) wittf = O, and note that
/T|Ow|2duz —10,)? = @(z,¢), zeD. O

Before stating our next result, we recall thatianer functionis, by definition, an
H* function whose modulus equals 1 almost everywher&.on
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THEOREM 3.2. Assume thap, ¢, ands are asin(3.1), f € H?, andé is an inner
function. In order thatf6 € AB,,, it is necessary and sufficient thate AB,,
and

1 q/p dr
/0 {/Tlf(rn)l”(l— |9(rn)|)”/2dm(n)} — <o (B2

(1 _ r)qurl
Proof. Forg € H?, set

Ag(2) :=/T|g|2duz—|g<z>|2, zeD. (3.3)

Further, IetX;,q denote the set of all functiorise C(DD), A > 0, for which

1 /2 q/p dr

By Proposition 2.2(b), one hg® € AB,,, if and only if
Af(; € X;q (34)
Writing
MA@ = Ar@) + 1 fQPA =10, (3.5)
we see that (3.4) is equivalent to saying that both functiopand| £ [2(1 — 6?)
belong toX;, . The first of these inclusions means, by Proposition 2.2(b), that
AB,,. while the second one amounts to (3.2). O

Our next result generalizes a theorem of Aleman [1]. The method of proof is
also borrowed from [1], except that the underlying Proposition 2.2(b) was proved
differently from its counterpart in [1].

Given a nonzerg € H?, set

gr(z) = eXp{—/ Sk log| £ ()| dm(c)}, zeD,
=186 —2

so thatgy is the outer function with modulus mih, 1/] f1).

Tueorem 3.3. Suppos€3.1) holds. If £ is a nonzero function of clas$B,,,
then so are the functiong, 1/g, and fg;. Moreover, their norms are bounded
by a constant times the norm fif(Here “the norm” means any reasonable norm,
or quasinorm, o B,,.)

We require the following fact (see Lemma 2.7 in [1]).

Lemma A. Let (X, 1) be a probability space, and let € L1(X, ) be a non-
negative function wittoge e L(X, u). Set

E(p) = / pdu —exp(f Iog<pdu>.
X X

E(min(1, ¢)) < E(p) (3.6)

Then
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and
E(max(1, ¢)) < E(p). (3.7)

Proof of Theorem 3.3Setg = gr and letf = F6 be the canonical factorization
of f (hereF is outer and is inner). Using the notation of (3.3), we have

A1e(z) = Pz, max(d, [ f1) < P(z, | f]) = Ar(2) < Af(2).
(We have used (3.7) with = | f|? and (X, u) = (T, ), and then (3.5) withf
replaced byF.) The resulting inequality
N1y(z) < Ap(z), z€D, (3.8)
shows, in view of Proposition 2.2(b), that the hypothesis AB;,, yields 1/g €
AB,,.
This last inclusion implies, in turn, thate AB,,,. To see why, use the identity
g =—g%(1/g), (3.9)

the fact thatg| < 1 onD, and the characterization (1.1) 8,
Finally, in order to check thatg € AB;,,, we write

Age(2) = Ar(2) + [F@PP18@IAA ~ 10@I). (3.10)
Since|g(z)| < 1and
Apg(z) = ®(z, min(L, | f)) < P(z, [ f]) = Ar(2)
(this time we have employed (3.6)), the relation (3.10) yields
Ap(2) = Ar@ + IFQPA—10@)) = Are(2) = A(2).
Eventually, we obtain
Ap(2) < Ap(2), z€D, (3.11)
anolv so, by Proposition 2.2(b), the hypothesis AB,, is seen to imply thafg €
A%ﬁé required inclusions are now verified, and the corresponding norm inequal-

ities are, in fact, established as well. Actually, in light of Remark (2) at the end of
Section 2, these inequalities are immediate from (3.8), (3.9), and (3.11). O

CoroLLARY 3.4. Under the assumptiof8.1),every function i B, is the ratio
of two bounded functions iAB,,,.

Proof. Given a nonzerqf € AB,,, write f = fg;/gs; observe thatfg;| < 1
and|gs| < 1. O

ReEMARKs. (1) Forp > 2, Corollary 3.4 gives a nontrivial resultonly if @ s <
1/p; otherwise we havé,, C C(T).

(2) In the casep = ¢ = 2, Theorem 3.3 and Corollary 3.4 are due to Ale-
man; see Theorem 2.6 and Corollary 2.8 in[1]. In fact, Aleman’s results pertain to
a somewhat more general situation (not encompassing, however, the non-Hilbert
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spacesAB,,). The Dirichlet spaceﬁlB;’/z2 was considered earlier by Richter and
Shields [12].

(3) In connection with Theorem 3.2, we remark that “multiplication criteria”
similar to (3.2) were obtained, by a different method, in [2, Sec. 3.3]. The topic
involved (i.e., preservation of smoothness when multiplying or dividing by inner
factors) is treated, among other places, in [3; 4; 5; 7]. See also the monograph
[13] and the references therein.

4. Shirokov's Result and a Passage to
Smaller p and Larger s

Let p > 0 andg > 0. In accordance with [14], we denote K}, the set of all
functionsg (¢, h) > 0, defined oril" x (0, 1), that have the following properties:

(a) Foreveryi € (0, 1), one hasgy(-, h) € L? and, moreover,

sup{ / g, P dm():he(e) } < 00
T

whenever O< ¢ < 1;

1 ar gn
(b) / (/ g(¢, h)”dm(§)> " < 00.
o\Jr

Further, given a functiop € C(T), ¢ > 0, and a point € D, we set

My(2) :=maXe):¢eT, [¢ —z| =21 -z }.

The next result is due to Shirokov (in fact, a more general version is contained
in Theorems 1, 2, and 3 of [14]).

THEOREM C. Let
l<p<oo, 1<g<oo, and 1/p<s<l 4.1

Given a nonnegative functiane B,, satisfying(1.2), the following are equiva-
lent:

(i.C) O, € AB,,.
(ii.C) There exist a functiorr € Q) and a constan€ > 0 such that
@(0)
lo du (g) <C 4.2
1o 37 5| ansce (4.2)

whenevet is a point inlD \ {0} for which

My(z) = (1— |Z|)SF<i 1- Izl).

lz|’

From Theorem C we derive the following auxiliary proposition, to be employed
later on.
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CoroLLARY 4.1. Let p, g ands be as in(4.1). If f is an outer function in

ABZfzq such that f|? € B,,, then f? € AB,,.
Proof. Sety := | f|, sothatf = O,. By Theorem C, the hypothesjse ABZfzq

can be restated by saying that (4.2) holds true for the peiat® \ {0} satisfying

My(z) > (1— |z|>f/2F(%, 1- |z|),

whereF is a suitable function i@gz. The latter condition is obviously equivalent
to the requirement that
/ |
T

for thosez e D \ {0} for which

92(0)

du, 2
M) n.(¢) < 2C

09

M,2(2) > (1— IZI)SF2<i 1- Izl).

2|’

Sincey? € B, (by assumption) and? € Q) (becauser e (@Z’), another appli-
cation of Theorem C yieldg? = O,z € AB;,. O

We now combine Corollary 4.1 with preceding results from Sections 2 and 3 to
obtain an integral version of Theorem B (see Section 1), stated in terms of the

guantity
V(z, ¢) :=/<pduz—eXp</ |09¢duz), zeD.
T T

THEOREM 4.2. Assume thaf4.1) holds and thaty € B,, is a nonnegative func-
tion satisfying(1.2). Then the following are equivalent

(i) O, € ABS,;

prq’

. L a/p dr
(ii) /()(AW(rn,(p)”dm(n)) A=yt <00

Proof. (i) = (ii). Apply Proposition 2.2(a) witlf = O, and observe that, for
zeD,

/TIC%(C) — 0y (D) du-(¢) = /Tﬂap(m =10, () dpz(5) = W(z, 9).

(it) = (i). Setp; := /9 and rewrite (ii) in the form

1 2q/2p
/ (/ ®(rn, <pl)2P/2dm(n)> (1—r)" /22014y < 0. (4.3)
0 T

Since % > 2ands/2 < % Theorem 3.1 tells us that condition (4.3) is equivalent

to the inclusion0,, € ABZfzq. Recalling also that
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|0y, =9 €B;,
and applying Corollary 4.1 witlf = O,,, we obtain
2 _ s
Qﬂl =0, € ABM,
as desired. 0

As before, the characterization we have just obtained enables us to derive certain
information on the truncations of the functions in question.

CoroLLARY 4.3. If p, g, ands satisfy(4.1),and if f is an outer function of class
AB,,, then the three outer functions with modoiax(1, | f]), min(1, | f]), and
min(1, 1/| f|) are also elements ofB,,,.

The proof again relies on Lemma A and is completely similar to that of Theo-
rem 3.3.

In order to state our final result, we introduce some more notation. Given
ands asin (4.1) (so thaB,, C C(T)), we define the spad®;, (D) to be the set of
functions f € C(closD) having boundary values i,, = B,,(T) and satisfying

1 qa/p dr
L( Lm0 = remranm) s <o

Proceeding as in Section 2, it is not hard to show that the Poisson integral of a
B,, function always belongs t8,,(D). In other words, harmonic functions in
B,,(D) are precisely the harmonic extensions of functions;jp, and that makes
the notation reasonable.

This said, we are able to restate Theorem 4.2 in a very natural way.

THEOREM 4.4. Supposep, ¢, ands are related by(4.1), and letyp > 0 be a
function inL? satisfying(1.2). Consider the extension @f into D given by

0(z) = exp(/ Iog<deZ>, zeD.
T
In order thatO, € AB,,, itis necessary and sufficient thate B;, (D).

Proof. Set f = O,; observe thap = |f| everywhere o and almost every-
where onT. Now if f € AB,,, then f is the Poisson integral of | € B,, and
hencef € B,, (D). The latter clearly implies that € B,, (D).

Conversely, ifp € By, (D) then we write

W(rn, ) = /deum —o@rn)

IA

‘/deum - w(n)‘ +lo(m — @)l

=: hy(r,n) + ha(r, ), (4.4)

whereh o(r, n) are just meant to denote the two terms, respectively. It remains
to notice that
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1 q/p dr .

Indeed, forj = 1, (4.5) actually means that the Poisson integral of the function
@l € By, lies in By, (D). For j = 2, (4.5) is due to the assumption thate

By (D).
Combining (4.4) and (4.5), we arrive at condition (ii) of Theorem 4.2, and the
theorem tells us thaf € AB,,. O

5. Concluding Remarks and Open Questions

(1) Throughout, we did not consider the endpoipts co andg = co. However,
most of the above results remain true in these cases also, provided that we make
some natural adjustments in the formulas involved.

Let us consider the cage= oo and describe the arising modifications, always
assuming thap ands live in the same range as before (depending on the context).
First of all, the space?__ is defined by

poo

B ={fel’ wy [)=0(")},
while (1.1) should be changed to

1/p
( /T If/(r;“)l”dm(é)) = 0((1—r)h.

In Theorem 2.1, one replaces condition (ii) by

rlo
A(/Tlf@) = frm!” d;m,(é)) dm(n) = O((L—r)") (5.1)

(wheno = 1 oro = 2, (5.1) gives the required version of condition (2.14) or
(2.15), respectively, in Proposition 2.2). In Theorem 3.1, condition (ii) should be
written in the form

| ownprama = o=,
T
while Theorem 3.2 becomes valid fgr= oo if one replaces (3.2) by
/ | £GP (L= 0 DP/Zdm(n) = O((L—r)™).
T

Further, Theorem 3.3 and Corollary 3.4 hold truedot oo, no special changes
being required, and so do Theorem C (with the appropriate interpretatiQf, pf
and Corollary 4.1. Finally, the = oo version of condition (ii) in Theorem 4.2
reads

/T W(rn, 9)? dm(n) = O((L— r)*P),

while Corollary 4.3 and Theorem 4.4 remain intact.

In the casep = oo, the results of Sections 2 and 3 become true if one simi-
larly replaces th& ?-norm by the sup-norm. The Lipschitz cgse= ¢ = oo was
studied in [6] and [7].
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(2) Although Theorems 3.1 and 4.2 look quite similar, we note the following
point of distinction between them: In Theorem 4.2 we assumedg¢thatB,,
(which is obviously necessary to ensure ttigte AB,,), whereas in Theorem
3.1 there were no a priori hypotheses on the smoothnegs of

(3) The author suspects that Theorems 4.2 and 4.4 would remain valid if (4.1)
were replaced by the wider range of indices

l1<p<oo, 1<g=<oo, and O<s <1l (5.2)

The question would be settled if we could verify, under the assumptions (5.2),
the statement of Corollary 4.1. This last task might probably be accomplished by
means of thé-techniques of Dyn’kin [8] (and without recourse to Shirokov’s re-
sults). However, the author knows how to do it only in the Lipschitz case, where
p =g = oo (see [6] and [7]).

(4) Assuming that (4.1) holds, it would be interesting to find a direct proof
of the equivalence between condition (ii.C) in Theorem C and condition (ii) in
Theorem 4.2.
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