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1. Introduction

Let n∈N, n ≥ 2, andy ∈Rn. LetK(y) be a Calderón–Zygmund kernel, that is,

K(y) = �(y)

|y|n , (1.1)

where� is homogeneous of degree 0 and satisfies∫
Sn−1

�(y) dσ(y) = 0. (1.2)

Let B(0,1) denote the unit ball centered at the origin inRn, let d ∈ N, and let
8 : B(0,1)→ Rd be aC∞ mapping. Define the singular integral operatorT8 on
Rd by

(T8f )(x) = p.v.
∫
B(0,1)

f(x −8(y))K(y) dy. (1.3)

The followingLp boundedness theorem can be found in Stein [7].

Theorem A. LetT8 be given as above. Suppose that

(i) 8 is of finite type at0, and
(ii) �∈C1(Sn−1).

Then, for1< p <∞, there exists a constantCp > 0 such that

‖T8f ‖Lp(Rd ) ≤ Cp‖f ‖Lp(Rd ) (1.4)

for everyf ∈Lp(Rd).

It is well known thatT8 may fail to be bounded onLp for anyp if condition (i)
is removed (the precise definition of a finite type mapping will be reviewed in the
next section). The purpose of this paper is to establish theLp boundedness ofT8
when condition (ii) is replaced by the following weaker condition:

(ii ′ ) �∈Lq(Sn−1) for someq > 1.

This yields the following theorem.
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Theorem B. LetT8 be given as before. Suppose that

(i) 8 is of finite type at0, and
(ii ′ ) �∈Lq(Sn−1) for someq > 1.

ThenT8 is a bounded operator fromLp(Rd) to itself for1< p <∞.

We shall also establish theLp boundedness for the corresponding maximal trun-
cated singular integrals.

Theorem C. Let

(T ∗8f )(x) = sup
ε>0

∣∣∣∣∫
ε≤|y|<1

f(x −8(y))K(y) dy
∣∣∣∣. (1.5)

Suppose8 and� satisfy conditions(i) and (ii′), respectively. Then the operator
T ∗8 is bounded fromLp(Rd) to itself for1< p <∞.

We shall first establish an estimate for some oscillatory integrals.

2. Oscillatory Integrals

We shall begin with a definition.

Definition 2.1. LetU be an open set inRn andφ : U → Rd a smooth map-
ping. Forx0 ∈ U we say thatφ is of finite typeat x0 if, for each unit vectorη ∈
Rd , there is a multi-indexα with |α| ≥ 1 so that

∂αx [φ(x) · η]|x=x0 6= 0. (2.1)

The following lemma is a special case of Lemma 3.2 in [5].

Lemma 2.2. Let ψ ∈ C∞(R), ϕ ∈ C∞0 (R), a < b, and k ∈ N. Assume that
|ψ(k)(x)| ≤ r ≤ M for x ∈ [a, b] and |ψ(k+1)(x)| ≤ M for x ∈ [a − r, b + r].
Then there exists a positive constantC which depends only onk, M, andϕ such
that ∣∣∣∣∫ b

a

eiλψ(x)ϕ(x) dx

∣∣∣∣ ≤ C|λ|−ε/k ∫ b+r

a−r
|ψ(k)(x)|−ε(1+1/k) dx (2.2)

holds forλ∈R and ε ∈ [0,1].

Lemma 2.3. Let 8 : B(0,1) → Rd be a smooth mapping and let� be a ho-
mogeneous function of degree0. Suppose that8 is of finite type at zero and� ∈
Lq(Sn−1) for someq > 1. Then there areδ, C > 0, N ∈N, andj0 ∈Z− such that∣∣∣∣∫

2j−1≤|y|<2j
e−iξ ·8(y)

�(y)

|y|n dy

∣∣∣∣ ≤ C(2Nj|ξ|)−δ (2.3)

for all j ≤ j0 and ξ ∈Rd .
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Proof. For anyη0 ∈ Sd−1, there exists a nonzero multi-indexα0 = α(η0) such
that

∂α0
y [η0 ·8(y)] |y=0 6= 0. (2.4)

Let k = |α0| and defineGk : B(0,1)× Sd−1→ R by

Gk(y, η) =
∑
|α|=k

[η · ∂αy 8(y)]yα. (2.5)

Then, by (2.4) and (2.5) we have

∂α0Gk

∂yα0
(0, η0) 6= 0 and

∂βGk

∂yβ
(0, η0) = 0

for all β with |β| ≤ k − 1.
LetVk be the space of homogeneous polynomials of degreek in n variables and

let d(k) = dim(Vk). Then there ared(k) vectorse1, . . . , ed(k) ∈Sn−1 such that

B = {(e1 · y)k, (e2 · y)k, . . . , (ed(k) · y)k}
forms a basis ofVk. Thus there exists ane ∈ {e1, . . . , ed(k)} such that{

(e · ∇y)lGk(y, η)|(0,η0) = 0 for 0≤ l ≤ k − 1;
(e · ∇y)kGk(y, η)|(0,η0) 6= 0.

(2.6)

By using a rotation if necessary, we may assume thate = (1,0, . . . ,0). Let
y ′ = (y2, . . . , yn). Then, by (2.6) and the Malgrange preparation theorem [4],
there existh > 0, an open neighborhoodW0 ⊂ Sd−1 of η0, smooth functions
a0(y

′, η), . . . , ak−1(y
′, η) on [−h, h] n−1 × W0, and a nonzero smooth function

c(y, η) on [−h, h] n ×W0 such that

Gk(y, η) = c(y, η)(yk1 + ak−1(y
′, η)yk−1

1 + · · · + a0(y
′, η)) (2.7)

for (y, η)∈ [−h, h] n×W0. Thus, for anyε < 1/k and any open neighborhoodW
of η0 satisfyingW̄ ⊂ W0, we have

sup
η∈W

∫
|y|≤h/2

|Gk(y, η)|−ε dy = C(h, ε,W) <∞. (2.8)

By the compactness ofSd−1, there existh0 ∈ (0,1/4), δ0, A > 0, andk0 ∈ N
such that, for anyη ∈Sd−1,∫

|y|≤h0

|Gk(y, η)|−δ0 dy ≤ A (2.9)

holds for somek ∈ {1,2, . . . , k0}.
Let

B = max
|y|≤1/2

∑
|β|≤k0

|∂βy 8(y)| and

j0 = max{ j ∈Z | 2j ≤ min[(4B)−1, h0/4] }.
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For ξ ∈ Rd\{0}, choosek ∈ {1, . . . , k0} so that (2.9) holds forη = ξ/|ξ|. By
letting ε = δ0/(2q ′ ) and applying Lemma 2.2, we obtain for allj ≤ j0∣∣∣∣∫

2j−1≤|y|<2j
e−iξ ·8(y)

�(y)

|y|n dy

∣∣∣∣
≤ C|ξ|−ε/k

∫
Sn−1
|�(y)|

[ ∫ 5/4

1/4
|Gk(2

jty, η)|−ε(1+1/k) dt

]
dσ(y)

≤ C2−j(1+(n−1)/q ′ )|ξ|−ε/k
∫
|y|≤h0

|�(y)||y|−(n−1)/q |Gk(y, η)|−2ε dy

≤ C‖�‖Lq(Sn−1)(2
Nj|ξ|)−ε/k,

whereN = [ε−1k(1+ (n − 1)/q ′ )] + 1. By letting δ = ε/k0 we see that (2.3)
holds when 2Nj|ξ| ≥ 1. Because (2.3) always holds when 2Nj|ξ| < 1, Lemma 2.3
is proved.

Lemma 2.4. Letm ∈ N and letR(·) be a real-valued polynomial onRn with
deg(R) ≤ m− 1. Suppose

P(y) =
∑
|α|=m

aαy
α + R(y), (2.10)

� is homogeneous of degree0, and� ∈ Lq(Sn−1) for someq > 1. Then there
exists aC = C(m, n) > 0 such that∣∣∣∣∫

2j−1≤|y|<2j
eiP (y)

�(y)

|y|n dy

∣∣∣∣ ≤ C‖�‖q[2mj
∑
|α|=m
|aα|

]−1/2q ′m
(2.11)

holds for anyj ∈Z and {aα} ⊂ R.

Proof. Let

I (y) =
∫ 1

1/2
exp

{
i

[
(2jt)m

∑
|α|=m

aαy
α + R(2jty)

]}
dt

t
.

Then|I (y)| ≤ 1. By van der Corput’s lemma [8] we also have

|I (y)| ≤ C2−j
∣∣∣∣ ∑
|α|=m

aαy
α

∣∣∣∣−1/m

,

which implies

|I (y)| ≤ C2−j/2q ′
∣∣∣∣ ∑
|α|=m

aαy
α

∣∣∣∣−1/2q ′m
.

Thus
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2j−1≤|y|<2j

eiP (y)
�(y)

|y|n dy

∣∣∣∣
≤
∫

Sn−1
|�(y)I (y)| dσ(y)

≤ C2−j/2q ′‖�‖q
[ ∫

Sn−1

∣∣∣∣ ∑
|α|=m

aαy
α

∣∣∣∣−1/2m

dσ(y)

]1/q ′

≤ C‖�‖q
[
2mj

∑
|α|=m
|aα|

]−1/2mq ′

,

where the last inequality follows from a result of Ricci and Stein [6, p.183, Cor. 2].

3. Maximal functions and Singular Integrals

We shall need the following result from [2] (see also [1] and [3]).

Lemma 3.1. Let l, m ∈ N and let { σs,k : 0 ≤ s ≤ l and k ∈ Z } be a family of
measures onRm with σ0,k = 0 for everyk ∈Z. Let {αsj : 1≤ s ≤ l and1≤ j ≤
2 } ⊂ R+, { ηs : 1 ≤ s ≤ l } ⊂ R+\{1}, {Ns : 1 ≤ s ≤ l } ⊂ N, andLs : Rm →
RNs be linear transformations for1≤ s ≤ l. Suppose:

(i) ‖σs,k‖ ≤ 1 for k ∈Z and1≤ s ≤ l;
(ii) |σ̂s,k(ξ)| ≤ C(ηks |Lsξ|)−αs2 for ξ ∈Rm, k ∈Z, and1≤ s ≤ l;

(iii) |σ̂s,k(ξ) − σ̂s−1,k(ξ)| ≤ C(ηks |Lsξ|)αs1 for ξ ∈ Rm, k ∈ Z, and 1 ≤ s ≤ l;
and

(iv) for someq > 1 there existsAq > 0 such that∥∥∥∥sup
k∈Z

∣∣|σs,k| ∗ f ∣∣∥∥∥∥
Lq(Rm)

≤ Aq‖f ‖Lq(Rm)

for all f ∈Lq(Rm) and1≤ s ≤ l.
Then, for everyp ∈

(
2q
q+1,

2q
q−1

)
, there exists a positive constantCp such that∥∥∥∥∑

k∈Z

σl,k ∗ f
∥∥∥∥
Lp(Rm)

≤ Cp‖f ‖Lp(Rm) (3.1)

and ∥∥∥∥(∑
k∈Z

|σl,k ∗ f |2
)1/2∥∥∥∥

Lp(Rm)
≤ Cp‖f ‖Lp(Rm) (3.2)

hold for all f ∈ Lp(Rm). The constantCp is independent of the linear transfor-
mations{Ls}ls=1.

For given8 and� we define the maximal operatorM�,8 by

(M�,8f )(x) = sup
k∈Z−

∣∣∣∣∫
2k−1≤|y|<2k

f(x −8(y))�(y)|y|n dy

∣∣∣∣. (3.3)
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The next lemma follows immediately from [9, p. 477, Prop. 1] (see also [10]).

Lemma 3.2. LetP = (P1, . . . , Pd),wherePj is a real-valued polynomial onRn

and deg(P) = max1≤j≤d deg(Pj ). Suppose that� ∈ L1(Sn−1). Then the opera-
tor M�,P is bounded onLp(Rd) for 1 < p ≤ ∞. The bound for‖M�,P‖p,p
may depend onn, d, ‖�‖1, and deg(P), but it is independent of the coefficients
of the polynomialsPj(·).
In what follows we shall establish theLp boundedness for the maximal operator
M�,8 when�∈Lq (q > 1) and8 is a smooth mapping of finite type. This can
be viewed as an extension of [9, p. 476, Thm. 1] (which corresponds to the case
�∈L∞).
Theorem 3.3. Suppose that8 : B(0,1)→ Rd is smooth and of finite type at0
and that� is homogeneous of degree0 with�∈Lq(Sn−1) for someq > 1. Then
the operatorM�,8 is bounded onLp(Rd) for all p satisfying1< p ≤ ∞.
Proof. Without loss of generality we may assume that� ≥ 0. For k ∈ Z−, we
define the measuresσ8,k onRd by∫

Rd
F dσ8,k =

∫
2k−1≤|y|<2k

f(8(y))
�(y)

|y|n dy. (3.4)

By Lemma 2.3, there existδ, C > 0, N ∈N, andk0 ∈Z− such that

|σ̂8,k(ξ)| ≤ C(2Nk|ξ|)−δ (3.5)

for all ξ ∈ Rd andk ≤ k0. For8 = (81, . . . , 8d) we letP = (P1, . . . , Pd),

where

Pj(y) =
∑
|β|≤N−1

1

β!

∂β8j

∂yβ
(0)yβ (3.6)

for 1≤ j ≤ d. Then we have

|σ̂8,k(ξ)− σ̂P,k(ξ)| ≤ C(2Nk|ξ|), (3.7)

whereσP,k is given by (3.4) with8 replaced byP.
We now choose aψ ∈ S(Rd) such thatψ̂(ξ) ≡ 1 for |ξ| ≤ 1/2 andψ̂(ξ) ≡ 0

for |ξ| ≥ 1. Letψt(x) = t−dψ(x/t) for t > 0 and define the measures{νk} by

νk = σ8,k − σP,k ∗ ψ2Nk . (3.8)

Then, by (3.5) and (3.7), we obtain

|ν̂k(ξ)| ≤ Cmin{(2Nk|ξ|)−δ,2Nk|ξ|} (3.9)

for ξ ∈Rd andk ≤ k0. If we let Sf denote the square function

(Sf )(x) =
(∑
k≤k0

|νk ∗ f(x)|2
)1/2

, (3.10)

then we have
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sup
k≤k0

|(σ8,k ∗ f )(x)| ≤ (Sf )(x)+ C(M�,PMHL f )(x) (3.11)

and
sup
k≤k0

∣∣(|νk| ∗ f )(x)∣∣ ≤ (Sf )(x)+ 2C(M�,PMHL f )(x) (3.12)

whereMHL denotes the Hardy–Littlewood maximal operator onRd . By (3.9),
(3.10), and Plancherel’s theorem,

‖Sf ‖2 ≤ C‖f ‖2; (3.13)

when combined with Lemma 3.2 and (3.12), this implies that∥∥∥∥ sup
k≤k0

∣∣|νk| ∗ f ∣∣∥∥∥∥
2

≤ C‖f ‖2. (3.14)

By (3.9), (3.14), and Lemma 3.1, we get

‖Sf ‖p ≤ Cp‖f ‖p (3.15)

for all p satisfying 4/3 < p < 4. By repeating the arguments in (3.13)→
(3.14)→ (3.15) withp = 2 replaced byp = 4/3+ ε (ε→ 0+), we obtain that

‖Sf ‖p ≤ Cp‖f ‖p (3.16)

for 8/7 < p < 8. By such arguments we eventually obtain thatS is bounded on
Lp for 1< p <∞, which implies that∥∥∥∥ sup

k≤k0

|σ8,k ∗ f |
∥∥∥∥
p

≤ Cp‖f ‖p (3.17)

for 1< p <∞. This shows thatM�,8 is bounded onLp for 1< p <∞. Since
‖M�,8f ‖∞ ≤ C‖f ‖∞ holds trivially, the proof of Theorem 3.3 is complete.

We shall now give a proof of our main result.

Proof of Theorem B.Let δ, N, andP be given as in the proof of Theorem 3.3.
For 1≤ j ≤ d we letajβ = (1/β!)∂β8j/∂yβ(0). For 0≤ s ≤ N we defineQs =
(Qs

j , . . . ,Q
s
d) by

Qs
j (y) =

∑
|β|≤s

ajβy
β, j = 1, . . . , d (3.18)

when 0≤ s ≤ N−1 andQN = 8. Letσs,k = σQs ,k. Then, by (3.18) and Lemma
2.4, we have

|σ̂s,k(ξ)− σ̂s−1,k(ξ)| ≤ C
(

2sk
∑
|β|=s

∣∣∣∣ d∑
j=1

ajβξj

∣∣∣∣) (3.19)

and

|σ̂s,k(ξ)| ≤ C
[
2sk

∑
|β|=s

∣∣∣∣ d∑
j=1

ajβξj

∣∣∣∣]−1/2q ′s
(3.20)
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for k ≤ k0 and 1≤ s ≤ N − 1. By (1.2), (3.5), (3.7), (3.19)–(3.20), Lemmas
3.1–3.2, and Theorem 3.3, we obtain that∥∥∥∥∑

k≤k0

σ8,k ∗ f
∥∥∥∥
p

≤ Cp‖f ‖p

for 1< p <∞. ThereforeT8 is a bounded operator onLp(Rd) for 1< p <∞.

Finally, we point out that Theorem C can be proved by combining the estimates
obtained here and the techniques in [1] and [3]. We omit the details.
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