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Let us denote by ¢; the sequence taking the value 1 in the ith place and O else-
where, i € N. It is known that the tensor product basis (¢; ® ¢;);, jen Of I, @ I
is not unconditional, for p, g € (1, 0c0) U {0} (see [12; 13]). In the case of Fréchet
spaces, the tensor product basis is unconditional in the projective tensor product
Ap(A) ® A4(B) of Kothe sequence spaces if one of the spaces is nuclear. Indeed,
if A, (A) is nuclear then the completion of A,(A) ®;, A4(B) coincides in a canon-
ical way with the vector-valued sequence space A,(A, A, (B)). It follows from [5,
4.1(4)] that (e; ® €;j);, jen is unconditional in Ao(A) ® Ao(A) if and only if 14(A)
is nuclear. In this note, given Kéthe matrices A = (a”) and B = (b"), we prove
that the tensor product basis of A,(A) ®x A,(B) (p,q € (1, 00) U {0}) is uncon-
ditional if and only if, for each n, there exists an m such that, for every bijection
o:N — N, the sequence (a]'b},/a;"b; ;) belongs to I;. This condition arose in
a recent paper by Bonet et al. ([4], see also [9]) characterizing the coincidence of
the w and ¢ topologies on A,(A) ® A,(B). In fact, this article is strongly influ-
enced by the results and techniques of [4]. We also prove that the condition just
described is equivalent to the unconditionality of the tensor basis in the injective
tensor product A, (A) ®. A4(B) with p, g € [1, 00).

As a further consequence we derive applications in infinite holomorphy; namely,
we prove that a Montel space A,(A), p € (1, 00) U{0}, is nuclear if the monomials
form an unconditional basis of (H(A,(A)), 7o), the space of holomorphic func-
tions endowed with the compact-open topology. Similar results were obtained in
[6] and [5]: if E is a Montel locally convex space with basis such that the mono-
mials form an absolute basis of (H(E), 79) then Eg is nuclear [6], and if E is a
Fréchet Montel or a (DF) Montel space such that E ;3 has an absolute basis and the
monomials are an unconditional basis of (H(E), tp) then E is nuclear [5].

We refer the reader to [1], [8], and [10] for notation and definitions not included
here concerning Kothe sequence spaces and projective or injective tensor prod-
ucts. The space ¢y will be also denoted by [y, and the Fréchet spaces are defined
over R or C. To obtain our main result we use Walsh matrices defined by

1 1 W, W
W1:=(1 _1) and Wiy :=(WI; ——Wkk)'
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An upper bound for the -norm of Wy, as an element of [, 5« ®; I, o+ was obtained
in [7]. From the bounds given there and the fact that

2% = (Wi, W) < [ Wielle | Well

we have the following estimates, where O stands for 1/00.

1. LEMMA. Consider Wy as an element of 1, 3x @y I, ok. Then
(1) Wl = 2K*V/D if1 < p <2 < g < oo,

(ii) Wil = min{2¥0+1/P) kAH/DY if | < p,q <2, and

(iii) | W]l = 2K/2+UPHD if 2 < p, g < oo0.

In Lemma 2 we shall consider W; as an element of
spie;; i = 1,...,2k}®sp{e,-; i=1,...,2% cl,®l,.

Thus, if W, = (y,-’}),-, j=1,...,2x, we define the following elementin /, ® /,:

2k
Wy = Z y,-’}e,— Rej.
i, j=1

Before stating our main result, we recall some basic facts about symmetric ten-

sors. We say that z € E ® E is symmetric if it has a representation
n
= a;®b;+b;®a;, a;,b;jecE, i=1,...,n.
i=1

Symmetric tensors form a vector subspace of E ® E denoted by E ®° E. We de-
note by E ®; E the space of symmetric tensors endowed with the topology in-
duced by £ ®, E, a = m or €. See [11] for more details. If E has a basis (¢;);cn
then (e; ® e; + ¢; ® €;);<; with a suitable order is a Schauder basis of E ®; E.

We denote by A the set of infinite matrices (§;;);, jen With finitely many nonvan-
ishing coordinates and such that |§;;] < 1, i, j € N; A, denotes the subset of the
symmetric elements of A. Given any § € A, we define a linear operator 73 on the
space of infinite matrices of scalars (x;;) as follows: T5(x;;) := (xi;6;;).

We now present our main technical result.

2. LEMMA. Let A:l, — 1, and B:l; — 1, be continuous diagonal operators
defined by A(x;) = (x;a;) and B(y;) := (y;b;), where a = (a;) and b = (b;)
are bounded and strictly positive sequences.

(a) Assume that the family of operators {Ts o (A ® B); § € A} is uniformly
bounded in L(l, ®q 1,1, ®q 1) fora =m and p,q € (1,00) U {0} or for a = ¢
and p, q € [1, 00). Then there exists v, | <r < 00, depending only on p and q,
such that (a;bsy) € I, for every permutation of the integers (o (i)).

(b) The same conclusion follows if p = q, a = b, and {Ts o (A ® B); é € As}
is uniformly bounded in L(l, ®} 1,1, ®; 1,;).

Proof. (a) We treat the case @ = . Let us assume that ¢ and b are decreasing.
This hypothesis will be dropped at the end of the proof. Since a and b are de-
creasing it is enough to prove that (a;b;) € I, for suitable r (see [4, Observation]).
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Moreover in this case it suffices to show that the sequence (a,: byi2*) is bounded
for some s > 0. In fact, this implies that ((a,:b,:)%/°2?") is bounded, whence
((@2ib4:)?2%) € I; and thus (a;b;) € ly;.

Foreveryn € N, let ¢, := 212;1 e; and define
Xp 1 =2""Pc,, Y i=2"c,,  z, = ambyn2 /P D,
where 1/0 is taken as 0. For every pair (i, j) with 1 < i, j < 2", we have
zn, € ® ef)l = (agnbyn)27"/PHD < a,-bj2_”(l/p+1/q)
= {(A® B)(xx ® yn), €] ® €]);
for any other pair (i, j) we have (z,, ¢f ® e}‘) = 0. Thus
zns €} ® )] < (A ® B)(xa @ yu), €f @ €D) Vi, j € N.

This means that z,, = 75, o (A ® B)(x, ® y,) for some §, € A. By hypothesis

there exists M > 0, not depending on n, with ||z, || < M| x|l {|yall;, = M. Let

us now estimate ||z, || from Lemma 1; we consider three cases as follows.
MOHHfl1<p=<2<g<ooorqg =0, wehave

"Zn " = a2"b2"2—n(1/P+1/q)2n(1+l/q) = aznb2n2"(1/l”).

(Mutatis mutandi, the case 1 < g <2 < p < oo or p = 0 is included here.)
2)If1 < p,g <2then

znll = a2nb2n2"V%) Yn e N or |lzull = agnb2n2"3/PD ¥n e N.

B)If2 < p,q <ooor p=0orqg =0, we obtain

zall > aznbzn2—n(1/P+1/q)2(1/2+1/p+1/q) — agnb2n2"/2.

Thus, in any case the sequence (a;»b,:2") is bounded for some 0 < s < 1/2.
Note that s depends only on the indices p and g. This completes the proof when
a and b are decreasing.

Let us now drop the assumption that a and b are decreasing. If both a and b
belong to cg then we consider their decreasing rearrangements and proceed as be-
fore. If one of them, say a, belongs to co (thus we assume that it is decreasing)
and b does not converge to zero, then there is an infinite subset J C N such that
p < b; < K for some K, p > 0 and every i € J. We restrict our attention to
the subspace sp{e;; i € J} = [,(J) in the right-hand side of the tensor product to
conclude that

d®(1/B)): 1, @z I,(J) = 1, @7 1;(J)

is an isomorphism, where 1/B is the diagonal operator associated to (b; Yes-
Moreover A ® id can be written as (id ®(1/B)) o (A ® B). Thus, the family of
operators

{Ts 0 (A®id); 8§ € A}

is uniformly bounded. We can apply the case already considered to conclude that
a belongs to I, for some 1 < r < oo and consequently ab belongs to /. To finish
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the proof we show thata ¢ co and b ¢ ¢ yields a contradiction. In fact, proceed-
ing as before, there are infinite subsets 7, J C N such that a and b are bounded
and bounded away from zero when restricted to I and J, respectively. Hence the
mapping

((1/4) ® (1/B)): I,(I) @z 1g(J) = 1p(I) ®x I4(J)

is an isomorphism. Therefore {7Ts; é € A} is uniformly bounded in

L1, (1) ®x 1,(J), I,(I) ®x 1,(J))

and this implies that the basis (e; ® ¢;);, jen is unconditional in /, ® I;, a con-
tradiction.

The case o = ¢ follows by duality. If the family of operators {75 c (A ® B);
d € A} is uniformly bounded for the e-norm then we transpose and apply the pre-
ceding result. It is enough to observe that (T 0 (A® B)Y = (A® B) o T5 =
Ts o (A ® B). Moreover, (I, ®. 1) =1,y @, 1y when p, g € (1, 00); if either p or
g is unity then we use the duality (co ®, ;) =11 . ly, ¢’ € [1, 00). The proof
can also be obtained directly, defining

Zn = aonbync, ®c,, neN.

As in the previous case, there exists §, € A suchthatz, = T5, o (A ® B)(w,) and,
for some M not depending on n, we have

agnbyn2"PHD — |1z || < M| wp]le.

The upper bounds of ||, || in [7] can be applied to conclude the proof.
The proof of part (b) follows as before if we observe that, if p =g anda = b,
all the elements defined in part (a) are symmetric. O]

We can now state the announced characterization. The remarkable equivalence of
(b) and (c) was obtained in [4], and condition (d) has been observed by Peris.

3. THEOREM. Fora = 7 and p,q € (1,00) U {0} or for « = ¢ and p,q €
[1, 00), the following conditions are equivalent:

(a) the tensor product basis of A,(A) ®, Ay4(B) is unconditional;

(b) for eachn € N, there exists m > n such that (a;'b};,/a;"bj ;) € Ly for every
bijection 0: N — N;

(€©) Ap(A) ®x Ag(B) = Ap(A) ®¢ Ay(B) holds topologically;

(d) Ap(A) ®c Ay(B) is barreled.

Moreover if p = q and A = B then (a)—(d) are equivalent to
(e) the basis (e; @ ej + ¢j ® e;)i<j is unconditional in A,(A) ®; Ap(A).
Proof. (a) = (b) Let us denote z;; = e; ® e; for all i and j. By hypothesis,

(z:j):,; is an unconditional basis of A,(A) ®, A4(B) for @ = 7 or &. Hence, for
every n € N there exist m > n and M > 0 such that
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E Sija,-jz,-j E a;jZij
i,j ij

for all § = (§;;) € A and every a = Zi,j aijzij € Ap(A) ®q Ag(B) [14,
Thm. 1.19(2)]. Equivalently, the family {73; é € A;} is uniformly bounded from
I,(@™) ®q l;(b™) into [, (a") ®, 1;(b™). We consider the following diagonal op-
erators (if p = 0 or ¢ = O then 1/p and respectively 1/g should be replaced
by 1):

<
n

m

Ap: L, = L(@™), (x;) = (xi@™™VP), Bi:l, = 1L,(™), (x;) = (x:(b™)7119),
Ax: (@) = 1, (xi) —> (xi(a?)l/p), By: ,(B") — Iy, (x;) = (xi(bin)IIQ),
Aoz by = by, (xi) > (xi(@f/a)'P),  Bo: lg > lg, (xi) = (aB]/BHYY).

It is readily checked that T5 o (A9 ® Bp) = (A2 ® B3) o Ts0 (A1 ® By), § € A;
hence {T5 0 (Ao ® Byp); 6 € A} isuniformly bounded. From Lemma 2 we have 1 <
r < oo such that ((a;’/ag”)m’(bﬁ(i)/b;”(i))lfq),- and therefore (a'b};,/a;* bl
belongs to [, for every permutation of the integers (o (i)). If we repeat the process
several times we obtain (a?bg(i) /a,f"b;"(i)) € l; for some m > n and all (o (i)).

(¢) = (@) In the vector-valued space A,(A, A4(B)), denote by A(i, j) the ele-
ment taking the value e; in the ith place and O elsewhere. Then (k(i, j)); ; is
an unconditional basis. Our hypothesis implies that the completion of the space
Ap(A) ®x Ag(B) coincides with A, (A, A4(B)) [4, Prop. 8]; moreover, ¢; ® ¢ can
be identified with h(i, j) for i, j € N. The assertion is proved.

The equivalence of (c) and (d) follows from [8, 15.6.6] and [10, 11.5.8]; see
also [3].

(@ = (e) The basis (¢; ® ¢; + ¢; @ ei)i<; is a block basic sequence of
(ei ® €j)i, jen, and every block basic sequence of an unconditional basis is un-
conditional (see [14, 1.22]). Finally (¢) = (b) is proved in the same way as

(@) = (b). O

We complete this note with a consequence in infinite holomorphy. Let E be a
complex Fréchet space with a basis (e,),en, and let (e),en C E’ denote the asso-
ciated sequence of biorthogonal functionals. For every finitely nonzero sequence
m = (my) of nonnegative integers, the function

e":ze€e E— H(eZ(z))"”‘ eC
k

is said to be amonomial on E withrespect to (e;;),eN. Fromresults in [2], if E is nu-
clear then the monomials form an absolute basis of (H(E), t¢). Certain converses
of this theorem were obtained in [6] and [5]. Let us denote by P(%E) the space of
2-homogeneous continuous polynomials P on E. A 2-homogeneous polynomial
P is the restriction of a symmetric 2-homogeneous linear form on E X E to the
diagonal. If i, j € N then we define the element ef O e} € PCE)byer©® €; (z) =
ef (2)€}(z), z € E. If E is a Montel Kdthe echelon space 1, (A) then (¢} © €});<;
is a Schauder basis of (P (*A p(A)), 7). In our next result we show that this basis
is not unconditional unless A, (A) is nuclear.
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4. THEOREM. Let A,(A) be Montel and let p € (1, 00) U{0}. Then the following
are equivalent.

(a) The monomials form an unconditional basis of (H()p), to).

(b) The family of 2-homogeneous polynomials (e} © e}‘),-s j Jorms an uncondi-
tional basis of the space (P (*1,(A)), To).

(©) Ap(A) is nuclear.

Proof. The proof of (a) = (b) can be found in [5]; (c) = (a) is a particular case
of [2]. To show (b) = (c), observe that (P(Z)»p (A)), 1o) is the strong dual of
Ap(A) ®; Ap(A), with the duality given by

€0e) xRy +y®x)=c¢e,(x+y)e,(x+y)—e,(x)e)(x) — e (y)e), ().

Moreover, (ef © e}f‘) i<j is biorthogonal to (¢; ® ¢; + ¢; ® €;); <. Thus the hypoth-
esis (b) implies part (e) of Theorem 3 with & = 7. According to Theorem 3, for
every n there exists m such that (a; /al") € I,. This readily implies that A,(A) is
nuclear. O
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