Characterization of Convex Domains
with Noncompact Automorphism Group

HERVE GAUSSIER

Introduction

The conformal mapping theorem of Riemann asserts that a simply connected do-
main in C, different from C, is biholomorphically equivalent to the open unit disc
U = {z € C: |z] < 1}. Many authors have been interested in the generalization
of this result in several complex variables (cf. [2; 3; 4; 9; 14]). The situation is
quite different there: a small C? perturbation of the unit ball B"*! in C"*! can be
nonequivalent to B"*1, even if it is simply connected. This shows that a domain
in C™**1 is not completely described by its topological properties. Thus one must
study the automorphism group of a domain to find a polynomial representation of
it, that is, a rigid polynomial domain and a biholomorphic equivalence between
our original domain and this rigid polynomial domain.

From now on, we consider pseudoconvex domains with noncompact automor-
phism group. More precisely, we assume that there exists a family (4,), of auto-
morphisms of €2, a point p in €2, and a point p, in €2 such that

lim 2,(p) = po-
v—>00

We say that po, is an accumulating point for an orbit of Aut(€2).

A very useful tool for constructing a biholomorphism from €2 to a rigid poly-
nomial model domain is the scaling method introduced by Pinchuk [13]. We will
describe the scaling for our problem in Section 2. This method allowed Bedford
and Pinchuk [2] to prove that if a domain is bounded in C?, pseudoconvex, and
real analytic of finite type 2m in the sense of d’Angelo [6] with noncompact auto-
morphism group, then it is biholomorphic to the ellipsoid E,, = {(z1, z2) € C?:
|z1]? + [z2]*™ < 1}, where m > 1. The scaling gives moreover a nice short proof
of the Wong—Rosay theorem [14] when p is a point of strict pseudoconvexity.

Bedford and Pinchuk [3] used this method and an analysis of vector fields
to prove that if a domain €2 is bounded in Cr+1, smooth, convex, and of fi-
nite type, and if Aut(£2) is noncompact, then €2 is biholomorphically equivalent
to a weighted homogeneous convex rigid polynomial domain D = {(z¢,2’) €
C x C" : Rezg + P(z') < 0}. In the bounded case, the noncompactness of the
automorphism group is equivalent to the existence of an accumulating point, and
it seems relevant that the domain could be characterized by its geometry near this
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point. This remark has been the starting point for the work of Berteloot [4] and
for our generalization of the result of [3] without any assumption of global con-
vexity. This generalization is based on the construction of polydiscs on a convex
domain in C"*!, given by McNeal in [12].

The main result of this paper can be stated as follows.

THEOREM 1. Let Q be a domain in C"*, and let po, be a point of 3. Assume
that po is an accumulating point for a sequence of automorphisms of Q2. If 9$2
is smooth, convex, and of finite type 2m near po, then K2 is biholomorphically
equivalent to a rigid polynomial domain

D={(z0,2) eCxC":Rezo+ P(Z') <0},

where P is a real nondegenerate convex polynomial of degree less than or equal
to2m.

By “domain” we mean a connected open set, not necessarily bounded; the non-
degenerancy of P is given by the condition "{P = 0} without nontrivial analytic
set".

As a corollary of this result, we obtain a generalization of the Wong—Rosay
theorem for unbounded domains.

THEOREM 2. Let Q be a domain in C**!, and let po, be a point of 3. As-
sume that p«, is an accumulating point for a sequence of automorphisms of 2.
If 9%2 is smooth and strictly pseudoconvex near p, then 2 is biholomorphically
equivalent to the unit ball in C"*!,

This second theorem was obtained independently by Efimov by a different method.

The paper is organized as follows. In the first section, we describe the construc-
tion of the polydiscs around points near the boundary of a convex domain, and
give some of their properties. In Section 2 we are in the hypothesis of Theorem 1.
If g” is the point %, (p) where p belongs to 2 and (4,), is a noncompact sequence
of automorphisms of €2 accumulating to p.,, we localize the polydiscs centered
at the points g”. This allows us to rescale the domain €2 by a dilation we define
there. We show then that the scaled domains converge to a rigid polynomial do-
main. At the end of this section, we study more precisely the scaled domains when
the sequence (g"), converges normally to the point p,, = 0, that is, when g” =

(—&y,0,...,0) in a fixed coordinate system (zg, ..., Z,) centered at 0. We show
that the limit domain is the homogeneous representation of €2 near O in the coordi-
nates (Zop, ..., Z»)- In Section 3, we prove the biholomorphic equivalence between

€2 and the limit rigid polynomial domain given by the two theorems.
I am greatly indebted to Professor Bernard Coupet for his inspiration and
encouragement.

1. Polydiscs of McNeal

The coordinates in C**! are denoted z = (zo, 2’), where zp is an element in C
and z’ an element in C”.
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Let  be a domain in C**!. Assume that 9 is convex of finite type 2m near a
point p., of 3. There exists a neighborhood V of ps, in C**! such that NV
is convex and is defined by a convex function r of the form

r(zo,z') = Rezp + ¢(Imzp, 2'),

where ¢ is a function of class C*°.
We may also assume that there exists a real positive number gy such that, for
every —go < € < €y, the level sets {r(z) = &} are convex.

REMARK 1.1. The fact that the type of <2 at p, is even is given by the convexity
of € near this point.

The construction in [12] is local and so it is locally valid for unbounded domains.
To every point g in 2 NV and every sufficiently small positive constant ¢ we
associate

(1) a holomorphic coordinate system (z3°, ..., z2'®) centered at g and preserv-
ing orthogonality,

(2) points pg*°, ..., pF’® on the hypersurface S, = {r(z) = r(q) + ¢}, and

(3) real positive numbers 7°°, ..., 7.

The construction proceeds as follows. We first compute the distance from g to
Se. Working with sufficiently small &, there is a unique point pg’® in S; where
this distance is achieved. The corresponding complex line is called z&'®, and pd*°
lies on the real positive axis x§'%; we set t{*° = d(g, pg’®). Then we consider the
orthogonal complement of the complex line zg'® in C"*!. We compute the dis-
tance from g to S, on each complex line in this complement. Because of the as-
sumption of finite type, the largest such distance is finite and is achieved at a point
p?* onthereal positive axis x7'° of the complex line 2. We set t/"* = d(q, p}°).
Repeating this process, we obtain the construction.

One must be aware of the dependence of all the coordinates, points, and numbers
on g and ¢.

We can now define the polydiscs P.(g) in the new coordinates (z8*°, . .., z2'%)
centered at g:

Ps(q) — {Z e Cn+l . Izg.sl < rg,s’ . IZZ,EI < .L.’;I.s }

Using the convexity of the level sets {r(z) = ¢}, we obtain a complete localization
of the polydiscs, given by the following two lemmas.

LEMMA 1.1. There exists a positive constant C such that, for all q in Q NV and
sufficiently small g,
CPy. C{r(z) <r(q) +¢}.

Proof. This inclusion is given in [12]. O

LEMMA 1.2. Forall g in Q NV and sufficiently small e, we obtain the inclusion

CPye C{r(z) >r(g) — ¢}
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This localization is not studied by McNeal. However, it is of crucial importance
in our problem; indeed, we will use this argument to control the defining functions
after our scaling.

Proof. The defining function r has the form r (z) = Re z¢ + ¢(Im(zo), z’), where
@ is a function of class C*. The hypersurface S, (resp. S_;) is the image of the
hypersurface So = {z € NV : r(z) = r(q) } under the translation of the vector
(&, 0') (resp. (—&, 0’)). The lemma is proved by contradiction. Assume that there
exists a point g_, on S_; N CP;(q). We denote by L, the real line from g to g_,
by g, the intersection point between S, and L, and by ¢° and g the points ¢° =
g + (¢,0") and g! = q — (&, 0) on the hypersurfaces S, and S_,. We define the
real tangent space T]R (respectively TqR and TR) to So (respectively S, and S_;)
at g (respectively q° and q'). The spaces TR and TS % are the images of T.} under

the translations of the vectors (¢, 0’) and ( g, 0). The convexity hypothe51s im-
plies that S,, Sp, and S_, are on the same side of these spaces. As the distance
from ¢ to Tq]% and Tq][f on L, are equal, it follows that d(q, g—;) > d(g, g¢). Then
g is a point of the polydisc P.(g). This contradicts Lemma 1.1. O

The hypothesis on 92 near p, implies uniform estimates on the numbers rfq’s.

LEMMA 1.3. There exists a positive constant c such that

(i) rd° < ceand

(ii) forevery j > 1, qu,s < cel/?m,

These estimates are obtained by McNeal but we give a complete proof of them
here.

Proof. Let 8x(z, S;) be the distance from the point z to the hypersurface S, along
the complex line generated by the vector X. We need to show that there exists a
positive constant ¢ and a neighborhood U of p, such that for every zin Q N U,
every sufficiently small &, and every X in C**1,

8x(z, Se) < cd(z, Se)'/*".

Because of the definition of the hypersurface S;, it is sufficient to show the result
for the hypersurface 9€2.

Since €2 is pseudoconvex of finite type 2m near po,, Lemma 3.5 of [15] implies
that there exists a neighborhood U of p in C*tlanda positive constant Cy such
that, for every zin 2N U and X in C"+1 we have

| X
d(z, Q) 1/2m’
where Kqony(z, X) is the infinitesimal Kobayashi pseudometric at the point z and
at the vector X.
If U is chosen relatively compact in V and such that the domain 2 N U is con-

vex, then we have the following estimate on the Kobayashi pseudometric for z in
QNU and X in C**! (see e.g. [3]):

Konu(z, X) = Cy

(1)
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IX]
)< ——.
éx(z, 952)
Setting ¢ = 1/Cy, conditions (1) and (2) give the following inequality for z in
QNU and X in C**1;

2)

Konu(z,

8x(z, Q) < cd(z, 9Q)V/*™. O

The change of coordinates from the canonical system to the system (z veees 28°)
is the composition of a translation 7; . and of a unitary transform A, .. Besides
the change of coordinates, (A, o Ty, )1 is defined in a fixed neighborhood of
the origin. The corresponding defining function r, . is defined by

rae=ro(AgeoT, ).

McNeal gives the following uniform estimates on the derivatives of the functions

rq’gc

LEMMA 1.4.

or,
(i) Forevery j <n, azz"i (p}’*) is real.

(ii) There exists a positive constant ¢’ such that, for every j < n,

9 r®
Ta.c (P M= ?1 £*
sz T or,
(ii) Ifj <n — 1 then, forallk > j, —2= " (p‘”)—
zy
Proof. In the coordinates (zg'%, ..., z2'%), x¢'°, which is the real normal axis to

Se at pg’®, is a small perturbation of the normal axis xo to dS2 at p. Restricting U
if necessary and using the form of the function r, we may assume that for all ¢ in
U and all sufficiently small ¢,

1 0rge . q.¢
- < ) <2.
2~ |oxd = (Po”)| =
This proves parts (i) and (ii) for j = 0.
Let 8(z) = ) j_olz]"*I* and, for every j > 1, 8;(z) = Z 2, By con-

struction, for every j > 1 the point p:,-”s satisfies

8(p{"*) = max 8(z),
Z€8¢ j
where H; = {z € C"*!' : z{* = ... =z} = 0}. Using Lagrange multipliers,
we obtain that there exist two real numbers Ao ; and A1, ; such that
d8(p?'®) = Ao ;d8;(pP'®) + A1, jdrg,. (PT).
This gives directly parts (i) and (iii) of the lemma since all the terms are real. For
part (ii) see [12]. Ol

REMARK 1.2. It is important to note that ¢’ does not depend on the variables g
and ¢.
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2. Scalingof QNU

From now on we assume that p, is an accumulating point for a sequence of auto-
morphisms of €2. Then there exists a family (%,),>0 of automorphisms of €2 and
a point p in €2 such that

Jim 1(p) = e

For convenience we use the following notation:

q" = hy(p),
&y = —1(q"),
AyoT, =Ap e 0Ty,
Ty =Tgve,.
The positive numbers 7,9, . . ., 7y, and the points py, .. ., p, are those associated

with ¢” and ¢,,.
The function r, is given in a fixed neighborhood of 0 by

n
r(z) = —& -I-Re(Za}’zj) + Z Cgﬂzazﬁ 4 0(|Z|2m+1),
Jj=0

2<|al+|Bl<2m

where o = (a1, ..., &), || =1+ - - -+ ay, and z% = 2] - - - 2. We note that
O(|z[*"*1) is independent of v.

Let r o A be the limit of r, when v goes to infinity. A is a unitary transform, and
the convergence is a C*° convergence on a fixed compact neighborhood of p.
Then, for every j less than or equal to n and for every multi-index « and f sat-
isfying 2 < |a| + |B| < 2m, there exist two complex numbers a; and C,g such
that

ulingoaj‘-’ =a; and vli)rgo Cyp = Cap.

The scaling that people used before is not precise enough in our case. Indeed,
this provides a rigid polynomial domain, but it is necessary to study the geome-
try of this domain to obtain the normality of holomorphic maps. The situation is
quite different with the new scaling we use here. It is more convenient because
we assign a weight to every complex line z;. Such an assignment allows us to con-
trol the points on every axis and then we know how the scaled domains converge.
In the convex case, this scaling is more natural because it induces the normality
of the holomorphic maps we consider. There seems to be a similarity between the
scaling we use here and the one used by Frankel [8].

We must be aware of the dependence of the axis (zp, ..., z,) on the variable v.
For convenience we do not state this explicitly.

Let us consider the dilation

Av(z) = (TU,OZ(), ceey Tv,nzn)

and the function 1
F v — —'r v o Av.
&y
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The function 7" has the following form:

- 1 - 1 -
P@)=-1+— Re( a;Tv,ij) +— > Cupretherf
v Jj=0 V 2<|el+8l<2m

4+ 0((8v)1/2m|Z|2m+1),

T(I1+ﬂl oy +Pn
v,1 :

where 10 = R

PROPOSITION 2.1. The functions r¥ are smooth and convex, and there exists a
subsequence of (7*), that converges uniformly on compact subsets of C"*! to a
smooth convex function r of the form

r() =-—1 +Re(ijzj) + P(Z"),

jz0

where P is a real convex polynomial of degree less than or equal to 2m.

Proof. The functions r” are smooth by construction, and are obtained as affine
transformations of the convex function r. Hence they are convex, and the func-
tion 7 will be smooth and convex as the limit of smooth convex functions. Letus
study the convergence of the functions 7”. Because O ((&,)'/?™|z|>"+!) converges
to zero on compact subsets of C"*! when v goes to infinity, we must study a con-
vergence in the space of polynomials of degree less than or equal to 2m. Since this
space is of finite dimension, all the norms are equivalent and there exists a positive
constant d; such that, for every v > 1,

sup {|a} 7y, ;, ICuglts P} < dy sup
Jj.o.B lw|]<C

Re( Z a}’rv,ja)j) + Zﬂ C;ﬂrf+ﬂwa5)3 .
J @,

This implies that there exists a positive constant d, such that, for every v > 1,

Re( Z a}’zj) + z; Copzz?
j o,

sup {la}|zy,j, |Caglti*P} < dy  sup

j-a.B z€CP¢,(q")
Using Lemmas 1.1 and 1.2, we obtain

sup |r(z)| < 2e,.
' 2€CPe,(gqv)
On the other hand, using Lemma 1.3 and the definition of the polydiscs P (qy)
yields
sup  O(lz]P"t) < &,.
z2€CPg,(qv)

All these estimates provide a constant d3 independent of v such that

sup {14} |7,,j, |Caglty P} < dse,.

j»a.B
Consequently, we can extract from the sequence ("), a subsequence that con-
verges to the function 7 given by Proposition 2.1, where b; are complex numbers.
[l
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Let €2, be the image of 2 N U under the change A! o A, o T,. Proposition 2.1
implies that the family €2, converges to the domain D = {f(z) < 0} in the sense
of the local Hausdorff convergence.

We conclude this section with the particular case when the sequence (g"), con-
verges normally to the point po, = 0. We denote the multitype of 92 at 0 by
M@R,0) = (1, my,...,m,); the points g” will be (—¢,,0, ..., 0) in the coor-
dinates (zo, z’) defined by Bedford and Pinchuk in [3] and independently by Yu in
[16]. Thus we may assume that, forall v > 1, 7y, = ¢,.. The function r is defined
in a fixed neighborhood of 0 by

r(z0,2') = Rezg + Po(z’) + R(2),

where Py is a nondegenerate weighted homogeneous polynomial of degree 1 with
respect to the weights M (952, 0), and R denotes terms of degree > 1. The domain

Qpom = {(z0,2’) € C"! : Rezg + Po(z’) < 0}

is called the homogeneous representation of the domain 2 at 0.

REMARK 2.1. Using the same scaling as in [3]—that is, without moving the
coordinates—it is possible to show that in the case of a normal convergence for a
convex domain, the domain 2 is biholomorphic to the domain Qpom.

We now prove that Qpop, is also the limit domain obtained after our scaling.

PROPOSITION 2.2. The sequence of functions (¥,), converges uniformly on com-
pact subsets of C"*1 to the function 7 defined by

7(z) = —1 +Rezgp + Po(z').

If z = (2o, ') is a point in C**! and if ¢ is a real positive number, then Py and R
satisfy the relations

Po(t/™zy, ...t ™7,y = tPy(2');

R(z) = o(lzol + le,-r"f).
j=l1

Let e; be the unitary vector such that p; = ¢” +17,, j¢; . In the coordinates (zo, z')
associated with M(3€2, 0), the point e; will be written eJ‘,.’ = (0, e}),p ces e}’,n).
As in [16], the multitype M (92, 0) will be denoted as

M(&Q,O)=(1,m1,...,ml,...,mk,...,mk).

This means that we take account of the multiplicity of each integer m;. For every
J < k, we assume that there are exactly s; coordinates with weight m;, that is,

2m=my = - Zmg=2;

we set so = 0.
For convenience we write A, ~ B, if there exist two positive constants C; and
C, independent of v such that, for every v,
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Cle = Av =< CZBv-

Foreveryv > land1 < j < n, €] is aunitary vector of the tangent space ToC (02).
If L} is the complex line generated by ¢} then the construction of ¢; implies that,
foreveryl < p <kandeveryso+---+s,_1+1=<j <so+---+s,, the order
of contact between L}.’ and 02 is exactly m,. We may also assume that the family
(e],...,e)), converges to a unitary system (e, ..., e,) in TOC(a 2). The order of
contact between the complex line associated with e; and 9€2 at O is finite and, ac-
cording to Corollary 6 of [16], e; is associated with m,,. If x;' is the real axis such
that e}’ is a point on Rx; then there exists a positive constant c; such that for every
v>1l,everyl < p<k,andeveryso+---+s,_1+1=<j<so+---+sp,

o™ P,
TO(O) = (1.
(axj )"e
Consequently we have the condition
&y = (rv,j)mp- (3)
Lete; = (ej,1, ..., €j,n). Since ¢; is associated with m,,, there exists a positive
constant ¢, and a number /; in {so + -+ - +sp—1 +1,..., 50 + -+ - -+ 5,} such that
lej,i;| = ca. 4)

Consider now the defining function

1
' =—ro(A,oT,) 1oA,.

&y
Because lim,_, o éR o (A, 0 T,)"! o A, = 0 uniformly on compact subsets of
C**t!| we are interested in the convergence of the function

1
¥ —1 — Re(zg) — E—R o(A, o T) Lo A,.
Vv

This function can be written as Py o B,,, where B, is the invertible matrix

¢ Tv.j
B, = i .
(&)™ J;

To prove the convergence of Pyo B,,, we need some information on the polynomial
Po.letS'={zeC": Zj |zj|™ = 1}. Then we have the following lemma.

LEMMA 2.3. There exists a positive constant c3 such that

inf max Py(z) = c3,
L ;eLnS!

where the infimum is taken over each complex line L in C".

Proof. This is done by contradiction. Assume that there exists a sequence (L,),
of complex lines such that
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1
max Py(z) < —.
zeL,NS! n

'We may assume that the sequence (L), converges to a complex line L. Each point
zin L N S! is the limit of a sequence of points (z"), in L, N S1 so Py(z) = 0.
Then Py is identically 0 on L N 8! and, as it is a convex polynomial, it is identi-
cally O on L. This contradicts the nondegenerancy of Py. 0O

LeMMA 2.4. The sequence (B,), converges to a matrix B in GL(n, C).
Proof. Assume that there exists a sequence of points (z"), such that

w>1, 2°=1;
lim || B,(z")[| = +oo0.
»—=>00
Set ¢ = B,(z") = (q7,...,q;), and let L, be the complex line such that the
point

G = ( q; qn )
(X, 1g2im) ™ (X, lqrim)!m

ison L, N S!.
We may choose 8, such that the point e

Po(eievc]”) = max Py(2).
zeL,NS!

gV satisfies

Then we obtain the identities

(Poo B))(€2%) = Po(e®q") = 3 lg! Py ")
J

= C3 Zlq;lm} —>v—00 O0.
J

However, by Proposition 2.1 the sequence (Py o B,), converges to a polynomial
Q. This contradicts the preceding inequality, and the sequence (B,), converges to
a matrix B. Moreover, using condition (3), the convergence of (e, ..., e}),, and
condition (4), we obtain that B is a lower triangular matrix and that each diagonal
bloc is an invertible bloc of dimension s;. Then B is an element of GL(n, C). O

‘We can now prove Proposition 2.2.

Proof of Proposition 2.2. We showed that the sequence (¥V), converges to the
function 7 defined on C"*! by

7(z) = —1 4+ Re(zp) + (Po o B)(2).
Considering the change of coordinates
Zo=z0—1 and Z'= B(Z),

we obtain the proposition. O
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REMARK 2.2. This result shows that the normal convergence of the points g”
implies that the scaled domains converge to the rigid homogeneous polynomial
representation of €2.

3. Final Result

In this section we give the proofs of Theorems 1 and 2 by showing the normality
of certain holomorphic maps.
Let us consider the mapping £, from A, (2 NU) to Q, defined by

fi=A10A,0T,0h,.

We know that lim,_, . A7 Q@ NU) = Q, and we showed in Section 2 that
lim,_, 0 2, = D.

LemMA 3.1. The family (f,), is a normal family.

Proof. Letej = A (p}) forevery v > l and j > 0.

The coordinates we consider now are those defined in Section 1 and thus they
depend on v. In such coordinates (zo, ..., Zn), p}’ =(,...0,7,;,0,...,0) and
soe; =(0,...,0,1,0,...,0). Moreover,

ar” Ty, or’

—_—{e;) = —
az,-(’) &y 9z

(p;);

using part (ii) of Lemma 1.4, we obtain a positive constant d4 such that

or’
8_2-; (ej)
We conclude then that there exists a positive constant ds such that, for all suffi-
ciently large v,

T
> d4 v,O.
&

v

arY
E;j'(ej)

> ds. )

Part (iii) of Lemma 1.4 then implies that, for every £ > j and all sufficiently
large v,
ar’

9zZx

(ej) = 0.

Using the estimate (5), we can show that the family (£°), of the first components
of the maps f, is a normal family. Indeed, for every v > 1, ¢y is a point in 3€2,.
According to Lemma 1.4, the real tangent space to 9€2, at e is given by

orY

dxg

TR (0RQ,) = {z e Crl: ( (eo))(Re zo—1)=0 }

Since €2, is convex, we may assume that for every z in ,,,
orY

ox 0

(e0)(Rezgp—1) < 0.
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Let K be a compact subset of 2. For all sufficiently large v, K is a compact
subset of h;l(ﬂ NU) and so f,(K) is a compact subset of 2,,. Then every point
o in K satisfies the inequality

~

using condition (4), we may assume that

Re(f2(w)) < 1.

Consequently, the family (£2), is normal. However, for every v > 1 we have the
equality f,(p) = 0. Then we may extract from (£), a subsequence, still called
(£9),, that converges to a holomorphic mapping f° from € to C.

Let us show now that ( fvl),, is a normal family. The real tangent space to €2, at
e; is given by

7 7Y
TROQ,) = { 2 € C**1 : Re( ——(e1)z0) + ——(e1)(Rezi — 1) =0 }.
1 320 3)61

However,

orY ar
vl_lglo 5——(81) = 5;—(31)

() = —r(el)f°(w).
ZO

vooa

Using condition (5), we may assume after translation that, for all w in K and
sufficiently large v,
Re fl(w) < 1.

Then the family (f), is normal and there exists a subsequence that converges to
a holomorphic mapping from €2 to C. Repeating this process, we obtain that, af-

ter extraction, the family (f,), converges to a mapping f from €2 to D. O
Let us study now the behavior of the family (£,}),.
LEMMA 3.2. The domain S is taut.

Proof. Since 2 is convex of finite type near the point p,, there exists a local peak
function for 2. By this we mean a holomorphic function defined on a neighbor-
hood U of p, in 2, equal to unity at the point ps, and of modulus < 1 elsewhere.
Using Theorem 2.3 of [7], we obtain an estimate on the Kobayashi infinitesimal
pseudometric near po, that implies the tautness of £ N U. Because an orbit of
Aut(£2) accumulates there, Proposition 2.1 of [4] shows that €2 is taut. (]

ReMARK 3.1. With the assumptions on €2 near p.,, we can show in fact that Q
is complete hyperbolic and consequently taut.

LEMMA 3.3.  f is a biholomorphic mapping from S2 to D.
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Proof. By Lemma 3.2, the family (f,™!), is a normal family and, since f,1(0) =

p € 2, this converges to a mapping g from D to . We can now apply Theorem 1
of [9, Sec. 6]. This theorem, given for bounded domains, can be extended to un-
bounded domains (following the original proof step-by-step), and proves that f is
a biholomorphism from €2 to D with fl=g. O

REMARK 3.2.  We need not show that the domain D = {7(z) < 0} is taut in order
to prove Theorem 1. We will obtain this result as a consequence of the biholo-
morphism between €2 and D. However, the tautness of D may be proved by using
the proof of Lemma 3.1 and (more precisely) the localization of all the tangent
spaces.

Proof of Theorem 1. Using Lemma 3.3, we know that €2 is biholomorphically
equivalent to the domain D = {(zg,2') € C"*1: ——1+Re(z 0 b]zj)—I-P(z ] <
0 }. Using condition (5), we can see that the constant by is dlfferent from 0. Then
by an affine change of coordinates, D is equivalent to the convex domain D =
{(z0,2') € C"! : Rezg + P(z') < 0}. Since £ is hyperbolic, D is hyperbolic
and by a result of Barth [1], D contains no nontrivial complex affine line. Then
there is no complex line in dD and, according to [11, Thm. 1.1], D is of finite type
and P is nondegenerate. O

Proof of Theorem 2. Because p is a point of strict pseudoconvexity, a classical
result gives that €2 is locally biholomorphic to a strictly convex domain. Hence
there is a neighborhood V'’ of ps, in C"*! and a biholomorphism ¥ from V' to
Y(V') such that ¥ (2 N V') is strictly convex. Since ¢ is a holomorphic map-
ping, the boundary of ¥ (2 N V') is of class C*°. We are then in the situation of
Theorem 1, replacing Q NV by ¥ (2N V’). The limit function 7 has the following
form:

r(z) = -1 -I—Re(Zb,-zj) + P(z),

j=0

where P is a convex positive homogeneous polynomial of degree 2. Since P is a

positive definite Hermitian form, P(z’) = ;-’21 |z;| after a holomorphic change

of coordinates. Then £ is biholomorphically equivalent to the unit ball in C**1,
O
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