Positively Curved 4-Manifolds and the
Nonnegativity of Isotropic Curvatures

MARIA HELENA NORONHA

1. Introduction

It is a classical problem in Riemannian geometry to study the topology of com-
pact 4-manifolds that admit a metric of positive sectional curvature. So far, such
manifolds have only been understood under additional assumptions, and the Hopf
conjecture remains unsolved: Does $? x S? admit a positively curved Riemann-
ian metric? Among these assumptions we find the nonnegativity of the isotropic
curvature. This beautiful concept of curvature was introduced by Micallef and
Moore in [13], and plays a role in the study of second variation of area of minimal
surfaces that is similar to the role played by the sectional curvature in the study of
geodesics.

In dimension 4, the nonnegativity of the isotropic curvature is equivalent to the
nonnegativity of the Weitzenbock operator, which we will denote by F. Further,
if the manifold M is oriented, then F commutes with the Hodge-star, and we can
consider two components—the self-dual and anti-self-dual of F—with respect to
the decomposition A2 = A%r @® A%_. The special feature of positive sectional cur-
vature in dimension 4 is that, for each point of M, either F* or F~ is positive. It
is then natural to investigate conditions that will imply that one of the components
is positive (or nonnegative) for all points of M. Then, using the classical Bochner
technique, we can conclude that M is definite.

Recall that, by Synge’s theorem, a compact oriented 4-manifold with positive
sectional curvature is simply connected. By the results of Donaldson [5] and
Freedman [6], if such a manifold is definite then it is homeomorphic to S*, or to
the connected sum CP2 { - - - f CP2, (b, times) if the second Betti number b, > 0.

Our first result in this paper is the following theorem.

THEOREM 1. Let M be a compact, connected, oriented 4-manifold with posi-
tive sectional curvature. If each point of M has a nonpositive isotropic curva-
ture, then M is definite. Moreover, if the Laplacian of the Weyl tensor W satisfies
AW = 0, then M is half-conformally flat (but not conformally flat). In this case,
if the scalar curvature is constant then M is the complex projective plane CP?
with its standard metric.
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It is known that locally irreducible 4-manifolds with nonnegative isotropic curva-
tures are also definite (see [16]). Then, in view of Theorem 1, we search for condi-
tions that imply the nonnegativity of at least one of the components of ¥ on a man-
ifold M that has points with positive isotropic curvature and points for which some
isotropic curvature is negative. Some such conditions are well-known. These con-
ditions are in terms of the Weyl tensor and the scalar curvature S because, in di-
mension 4, F does not depend on the traceless Ricci tensor. We mention first that
if M is orientable and S > 0, and if for some choice of orientation W~ = 0, then
F~ > 0. In fact, this statement can be generalized to ||W~||2 < $?%/24. It is in-
teresting to observe that, if the sectional curvatures are nonnegative (K > 0), the
same conclusion can be obtained by finding lower bounds for ||W~|| in terms of S.
For instance, suppose that we order the eigenvalues of W+ such that Wli < Wf <
WiE. Then WE < 0. If (W,)? + (W5 )2 > 58%/54 and K > 0, then F* > 0. Fur-
ther, if for both components we have (W;5)2 +(W;5)2 > 55%/54, then F > 0. This
is proved by showing that the above inequality implies that, for each point of M,
at least one of the components of the Weyl tensor satisfies || W*||Z > —(Wli) S/2.
Therefore, in our next result we weaken the condition (W;")% + (W;5)? > 552/54
to [W=|? > —( W )S/2. Before stating our next result, we point out that—at the
points where Theorem 2(b) is not verified—the eigenvalues of W satisfy the in-
equality in (c). We then assume that this inequality holds for every point of M.
With respect to the above order for the eigenvalues of W, our next result is as
follows.

THEOREM 2. Let M be an oriented 4-manifold with positive sectional curvature.

@ If [W* > —(W[)S/2, then either F* > 0or W~ =0.
(b) If all sectional curvatures satisfy K > S/16, then F > 0.
(¢) If W," + W[ > S/12, then either F* > 0 or F~ > 0.

Moreover, in each case, if M is compact then M is definite.

Theorems 1 and 2 are proved in Section 4. In Section 5, we study compact 4-
manifolds with harmonic Weyl tensor for which 7 > ( or one of its components is
nonnegative. Our first result in Section 5 extends a theorem of Polombo [17], who
proved that if AW = 0 and the isotropic curvature is positive then the manifold
M is conformally flat.

THEOREM 3. Let M be a compact oriented 4-manifold with nonnegative isotropic
curvature. If AW = 0, then one of the following holds.

(@) M is conformally flat with nonnegative scalar curvature.

(b) The universal cover is a Riemannian product of N1 x N, where N; is ho-
meomorphic to the sphere S2.

(c) M is biholomorphic to the complex projective space CP? .

Notice that in cases (a) and (c) of Theorem 3 we can find a metric with harmonic
curvature and whose isotropic curvatures are nonnegative. In fact, in case (a),
the solution of the Yamabe conjecture by Schoen [18] implies that there exists a
conformal metric with constant and nonnegative scalar curvature and hence such
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a metric has harmonic curvature [4, Prop. 3.17]. In case (c), we consider the
standard metric in CP? .

Compact 4-manifolds with harmonic curvature and nonnegative isotropic cur-
vature were completely classified in [14, Thm. 4.4]. Recall that the curvature ten-
sor R is harmonic if and only if each of the components Rj_', R, R*, R” with
respect to the decomposition A? = A2+ @® A%_is harmonic. However, by using The-
orem 3 we obtain (in the following corollary) the same conclusions of [14, Thm.
4.4] but with weaker hypotheses. It is a consequence of the classification obtained
in Corollary 1 that the harmonicity of W+ and R* implies that either the curva-
ture is harmonic or there exists a conformal metric (in the case of conformally flat
manifolds) with harmonic curvature.

COROLLARY 1. Let M be a compact oriented 4-manifold with nonnegative iso-
tropic curvature. Suppose AW = 0 = ARY. Then either M is conformally flat
or isometric to CP? or the universal cover is isometric to S? x N,, where S? and
Ny have constant curvature.

We then study compact 4-manifolds with harmonic Weyl tensor under the con-
ditions of Theorem 2. Since the assumption in (b) implies nonnegative isotropic
curvatures, we obtain in this case that M is either conformally equivalent to S*
or isometric to CP?. If we have nonnegative sectional curvatures, we can also
conclude that M is covered by R* or S3 x R or S? x S$? with their standard
metrics. Under the assumption in (a), more possibilities can occur. A complete
classification is the following theorem.

THEOREM4. Let M be a compact oriented 4-manifold with nonnegative sectional
curvatures. If AW = 0 and |W~|?> > —(W)S/2, then one of the following
holds.

(@) M is conformally equivalent to S* or covered by R* or S* x R with their
standard metrics.

(b) M is covered by S? x S?, where S? has constant curvature.

(c) M is isometric to CP?.

(d) M is anti-self-dual and negative definite.

(e) M is self-dual and the scalar curvature is not constant.

The same classification is obtained under assumption (c) of Theorem 2. Also, in
Section 5 we have more results for the case AWT = 0. If F* > 0 and AW =
0, a result in [14] implies that either W+ = 0 or the universal cover is Kéhler
with constant positive scalar curvature. Using Berger’s classification for holo-
nomy groups, we provide an understanding of the possible cases of this theorem
in [14]. We then apply the classification in the cases of positive and nonnegative
sectional curvatures.

2. The Weitzenbock Formula

Let M be an oriented Riemannian manifold of dimension 4,‘ and let A2 denote
the bundle of exterior 2-forms and A?> = A% @ A% the eigenspace splitting for
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the Hodge x-operator. The 2-forms in A? are called self-dual and in A% , anti-
self-dual.

The Riemann curvature tensor defines a symmetric operator R: A2 — A? given
by

1
Reij) = 7 > Rijien,
¥

where {e;} is a local orthonormal basis of 1-forms, e;; denotes the 2-form e; A e,
and R;jir. = (R(ei, ej)ey, er). The operator R can be decomposed as

R=RI+RI+R;+RC

with respect to the decomposition A? = A2+ @® A2 . This decomposition gives the
irreducible components of R (see [19]). They are: trace RT = trace R_ = §/4,
where S is the scalar curvature; the two components R¥ and R of the traceless
Ricci tensor; and the two components of the Weyl tensor W+ = RY — §/12 and
W~ =RZ — S/12. A manifold is conformally flat if W = 0. It is said to be half-
conformally flat if either W = 0 or W~ = 0. An oriented manifold is self-dual
if W~ = 0. It is clear that, on a half-conformally flat manifold, self-duality is a
property that depends on the orientation.

The signature of an oriented compact 4-manifold is given in terms of the Weyl

tensor by
1

1272
Let F: AT, M) — A%(T. M) be the Weitzenbick operator given by
(F(eij), ex) = Ric(e;, ex)dj; + Ric(e;, e1)8ix — Ric(e;, e1)di

— Ric(ej, ex)dii — 2Rijir,

r= / IWHIE = (W2 av.
M

where Ric denotes the Ricci curvature. This operator satisfies the well known
Weitzenbock formula, that is, Aw = —div Vo + F(w). Moreover, F is a symmet-
ric operator and A2+ and A®> are F-invariant. Then xF = Fx, and for each point
of M we find a normal form for F (as in [19] for R). Since this normal form will
be used in the rest of this article, we repeat the arguments used in [19].

PROPOSITION 2.1. Let M be an oriented 4-manifold. Then, for each x € M,
there exists a positively oriented orthonormal basis {ey, e;, e3, e} of TyM such
that, relative to the corresponding basis {e12, €34, €13, €42, €14, €23}, F takes the

form
A 0 O
( 0 A O ),
0 0 A;

Ai=(77i Mi)_
Mi i

Proof. Let{a;, az, a3} and {B;, B2, B3} be the orthonormal bases of eigenvectors
of F* and F~, respectively, and let r; and s;,i = 1, 2, 3, be the corresponding

where
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eigenvalues. Let us define the planes P; = (o; + 8:)/ V2 and Pl (o; —Bi)/V2 V2.
Then { Py, P,, P3, P{, Py, Py} is an orthonormal basis of AZ(T M); moreover,
F(P) = 0P, + p; Pt and F(P) = 0; P~ + w; P;, where n; = (r; + s;)/2 and
wi = (r; — si)/2. Since xP; = P, we also have that P, A P, = 0 = P+ A P,
which in turn implies that P; and P;- are decomposable. We also have P; A P, =
0 and hence P; N P, = {0}. Let e; € P; N P; be a unit vector, and let e, and e;3
be such that {e;, ez} and {e;, e3} are oriented bases for P; and P,, respectively.
Choose e4 to complete a positively oriented orthonormal basis of 7, M. Then P, =
e1 A ez, Py = e1 A e3, and e; A e is either £ P3 or & P;". The matrix of F rela-
tive to {e12, €34, €13, €42, €14, €23} is of the above type. O

It follows from Proposition 2.1 that the self-dual 2-forms

V2 V2 V2
Q= —2—(6’12 +e3), oy = -—2—(613 —e4), Q3= 7(314 + e23)

are the eigenvectors of F* with corresponding eigenvalues r; = 7; + u;, and that
the anti-self-dual 2-forms

V2 V2 V2

1= -2—(612 —e3), P2= -5—(613 +ex), B3= —(614 — €23)
are the eigenvectors of F~ with corresponding eigenvalues s; = n; — ;.

PROPOSITION 2.2. Let {e1, ez, €3, e4} be the orthonormal basis of Proposition
2.1. Then the 2-forms {a;} are the eigenvectors of ’Ri and the 2-forms {B;} are
the eigenvectors of R_. Moreover, if the corresponding eigenvalues are dencted
by A; and ¢;, respectively, we have
r1 =202+23), r2=2&1+2A3), r3=2(A1+2r2);
=2(p2 +93), 52=2p1+¢3), 53=2p1+ @2).
Proof. We will show that (R(«;), @j) = 0 and (R(B;), B;) = 0 fori # j. For

simplicity, we will show that (R(a;), @2) = 0; the others are proved in a similar
manner. Since (F(a1), az) = 0, we have

(F(e12), e13) — (F(e12), e24) + (F(esa), €13) + (F(e3s), e2s) = 0.
From the definition of F, we have that
0 = Ric(ey, €3) — 2Ry231 + Ric(ey, e4) + 2R1242
— Ric(eq, e4) — 2R3431 — Ric(ey, €3) + 2 R34z
= —2R1231 + 2R1242 — 2R3431 + 2R3412
= —4(R(ay1), a2).

Now, the eigenvalues A and ¢ are given by
M = 3(K12 + K34) — Rizas, @1 = 3(K12 + K34) + Rioaa,

A= 3(Ki3+ K24) + Rizna, 92 = 5(Ki3 + K24) — Riza,  (23)
A3 = 2(Kis + K23) — Rians, @3 = 3(K1a + K23) + Riaos,
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where K;; denotes the curvature of the plane {e;, ¢;}. On the other hand, from the
definition of F we have
r1 = (F(a), a1)
= %(Ric(e1) + Ric(ey) + Ric(e3) + Ric(eq) — 2K 12 — 2K34 + 4R1234)
= K13 + K4 + K14 + K23 + 2R1234.
Using the first Bianchi identity, we conclude that
ry = K13 + K4 + 2Ry324 + K14 + K23 — 2R1423 = 2(A2 -+ A3).

Similarly, we obtain

51 = K13 + Koq + K14 + Ko3 — 2R1234 = 2(@2 + ¢3),
ro = K13+ K3g + K14 + Koz — 2R304 = 2(A1 + A3),
52 = K12 + K34 + K14 + Koz + 2R1324 = 2(¢1 + 93), (2.4
r3 = Ki2 + K34 + K13 + K2g + 2Ry423 = 2(A1 + A2),
53 = K12 + K34 + K13 + K4 — 2R1423 = 2(¢1 + ¢2).

From these equations we conclude that r; 4+ 2X1; = s; + 2¢; = S/2, where S is
the scalar curvature. O

We can therefore state our next result as follows.

PROPOSITION 2.5. The Weitzenbdck operator is given in terms of the scalar cur-
vature by

S S S S
+ _ + + - - — -
Ff=2-2Ri=2-2W"  F =2 -2RC=2-2W"

Now, let Hom(TM, TM) — M be the bundle of the homomorphism of the tan-
gent bundle TM . We denote the space of 2-forms with values in Hom(7M, TM ) by
Q2(Hom(TM, TM)). Notice that the curvature tensor R is in Q2(Hom(TM, TM))
and that, for V and W in T, M, R(V, W) is the skew-symmetric endomorphism of
Ty M given by
4 4
R(V,W)e; = Y (R(V, W)ej, exdex = D _(R(V AW), exs)ex.
k=1

k=1

Since a 2-form induces a skew-symmetric endomorphism of T, M by the formula
VAWX) =(V, X)W — (W, X)V, we conclude that R(V, W) = —R(V A W).
There are naturally induced metrics on

Hom(TM,TM) and Q*(Hom(TM, TM)).

For the Riemannian vector bundle Hom(7TM, TM ) — M with connection V, the
Weitzenbock formula applied to the 2-form R gives (see [10, p. 95]):

(AR)(V, W) = (V*VR)(V, W) + p(R)(V, W),

where
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p(R)(V, W) = R(Ric(V), W) + R(V, Ric(W)) + (RR)(V, W) + (RR)(V,W).

If{e;},i =1,...,4, is an orthonormal basis of 7, M, then
4
Ric(V) = ) R(V, ex)ex,
k=1
_ 4
(RR)(V, W) =) _ R(ex, R(V, W)ew),
k=1

4
(RR)(V,W) =) "2[R(ex, V), R(ex, W)I.
k=1

Let us consider the orthonormal basis of Proposition 2.1 and the 2-forms ¢; and
B as before. Recall that in SO(4) we have

leij, exm] = dimexj + Sjmeix + Sixejm + Sjxemi,

which imply

[o1, 2] = V2a3,  [o2, @3] = V201,  [o3, 01] = v2as,
[B1, B2l = V2B, (B2, B3l =281, [B3, Bil = V2B,

and [¢;, B;] = 0. If we denote by —p(R)(e;;) the algebraic term in the Weitzen-
bock formula p(R)(e;, €;), then a straightforward computation yields the follow-
ing result.

PROPOSITION 2.6.  Let {a;, &2, a3, B1, B2, B3} (defined as before) be an orthonor-
mal basis diagonalizing the symmetric operator F. Then the basis {a;, oz, 03}
diagonalizes the symmetric operator p(RL) with corresponding eigenvalues

S
pi =i~ 20T — Ay, ok # .

Similarly, the basis {1, B2, B3} diagonalizes the symmetric operator p(R_) with
corresponding eigenvalues

S

Oi = S ¢i — 20} —Apipr, J. k #i.

It then follows that tracep(Ri) = trace p(RZ) = 0. Moreover, p(RY): AEF —
A? is given by

PRI () = (g- - 2)»1') RE () — 2v2[R* ()), RF (e)]
and p(RT): A2 — A2, is given by

S
P(RY)(Bi) = (5 - 2991') R (B:) — 2v2[R3(B)), RT(BV).
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3. Preliminary Lemmas

In this section we collect some preliminary formulas that will be used to prove our
results. Let (, ) be the naturally induced inner product on the space of 2-forms
A*(T, M), and let || || be its corresponding norm.

LEMMA 3.1. Using the previous notation we have
(i) (o(RY), Ry =—18detRf + 3 [ — IRTI?] = —18det W+ + S |WH|)?;
(ii) (p(RZ), RZ) = —18det RZ + 4[Tg —IRZI1?] = —18det W~ + S ||W~ |12

Proof. From Proposition 2.6 we have that
(p(RT), RT) = —12det RT — 200 + A5+ A3) + = ||R+||2

Using that trace RT = S/4, we obtain

3
A+ 25+ 23 + 30 (A + A3) + 3A5(A1 + A3) +305(h + A2) + 6det RT =

64
Therefore,
3, 43 +_ S > 38 +12
2003 + 23 +23) = 6det R — a + —IIR -,
and this gives the first equality in (i); the second is obtained by replacing R with
W + §/12. In a similar way, we obtain (ii). O

LEMMA 3.2. Let Wi, i =1,2,3, be the eigenvalues of W*. Then we have:
@) (W5? < HIW*|? and det W* = WE[(W)? — JIW=|%);
(b) if IW*|? < 8§%/24 then F* > 0; and
(¢) if F* > 0 (respectively F~ > 0) then (p (R_Jlf) Ri) > 0 (respectively
{p(RZ), RZ) = 0).
Moreover; if W #£ 0, then F* > 0 implies

(p(R),RY) >0 and (p(RI),RZ)>0.

Proof. Using that trace W£ = 0, we obtain (a). Now, if |[W*||?> < $?/24 then
we have

S2
= 36’
together with Proposition 2.5, this ylelds (b). It also follows from Proposition 2.5
that if F* > 0 and W* > 0 then W* < §/6. Substituting in the expression for
the determinant, we have

(W5)? < nW*u2

2
detwisW,.i[:,,—uwiu2 uW*uZ] ||W*u

= 36
which, when substituted into Lemma 3.1, concludes the proof. O

LEMMA 3.3. Let us consider the Weyl tensor W as 2-form with values in
Hom(TM, TM).
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Then we have
(p(RD), RE) = (p(WF), W),
(p(RZ), RZ) = (p(W7), W™).
Proof. Computing the algebraic terms of the Weitzenbock formula for %I , We
derive p($51) = 0 and then
(P(RD), RE) = (p(WH), W) — (p(R}), 1.
But the second term is zero, since trace p(Rjt) =0. O

Now, since both A and F commute with the Hodge x-operator, the Weitzenbock
formula can be written as

Aw*t = —div Vot + F(ob).

If M is compact, then integrating by parts we obtain
(Aw®, 0b) = (Vot, ot) + f (F(0%), 0F) dV. (3.4)
M
Here ( , ) is the inner product on A%2(M) given by

@) = fM @, ¥ v,

where dV is the volume form of M and ( , ) is the naturally induced inner product
on the space of 2-forms A%(T, M).

Let H%(M; R) denote the second de Rham cohomology group of M. If M is
compact, it follows from Hodge’s theorem that H?(M; R) is isomorphic to the
space of harmonic 2-forms denoted by H; because xA = Ax, we obtain the de-
composition H = H+ & H~. We set bZ = dim H=*. Therefore, the second Betti
number b, = by + b; and the signature T = b] — b . From (3.4), the following
lemma is immediate.

LEMMA 3.5. Let M be a compact oriented 4-manifold. Then we have:

(i) if F* > 0, then a 2-form w™* is harmonic if and only if it is parallel; and
(ii) if F* > 0 and there is a point p € M such that F£(p) > 0, then 132i =0.

4. 4-Manifolds with Negative Isotropic Curvature

Let T, M ® C denote the complexified tangent space, and extend the Riemannian
metric ( , ) to acomplex bilinear form ( , ). Anelement Z in T, M ® C is said to be
isotropic if (Z, Z) = 0. A2-plane o C T, M ® Cis totally isotropicif (Z,Z) =0
for any Z € o. If o is a totally isotropic 2-plane then there exists a basis {Z, W}
of o such that

Z=e++—le; and W =e¢;+vV—ley,
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wheree;, ¢;, e, ey are orthonormal vectors of T, M. Conversely, any two such vec-

tors span a totally isotropic 2-plane. Let R denote the complex linear extension
of the curvature operator R: A> — A2,

DEFINITION 4.~1. A Riemannian manifold is said to have nonnegative isotropic
curvature if (R(Z AW),(Z A W)) > 0 whenever {Z, W} is a totally isotropic
2-plane.

It follows from this definition that, for Z and W as above,
(R(Z AW), (Z AW)) = Kix + Kim + Kji + Kjm — 2(R(ei, €j)ex, em) = 0,

where K;; denotes the sectional curvature of the plane spanned by ¢;, e; and R
is the curvature tensor of M (see [13, p. 203]). Then, for a 4-manifold M, the
nonnegativity of the isotropic curvature is equivalent to the nonnegativity of the
Weitzenbock operator F (see (2.4)). Moreover, from Proposition 2.5 we see that
the nonnegativity of the isotropic curvature implies the nonnegativity of the scalar
curvature.

LEMMA 4.2. Let M be an oriented 4-manifold with nonnegative sectional curva-
tures. If [WH||?> > §2%/24 then |W—||? < §%/24. Moreover, if the first inequality
is strict then so is the second.

Proof. Tt follows from trace R} = trace RZ = §/4 that if RE > 0 then |[W*|? <
§2/24 and if RZ > O then |W~||? < $?/24. Therefore, if |[W™ |2 > S2/24 then
R has one nonpositive eigenvalue. We show now that nonnegative curvature im-
plies R_ > 0, which finishes the proof. For that, suppose that after reordering
the basis {o;} we have A1 < A, < A3. If A1 < 0, then (2.3) implies that R34 >
0 and hence ¢; > 0. In order to show that ¢, > 0 and ¢3 > 0, we consider the
planes P = (o + ﬂz)/ﬁ and P+ = (a7 — 52)/«/5. The proof of Proposition
2.1 shows that there is an orthonormal basis { fi, f2, f3, f4} of the tangent space
such that fi2 = (o1 + B2)/+/2 and f34 = (1 — B2)/+/2. Hence,

K(f1, f2) + K(f3, fa) = A1+ 92 >0,

and if A; < O then ¢, > 0. In a similar manner we show that ¢3 > 0. This proof
also shows that if A; < O then ¢; > 0 fori = 1, 2, 3. Moreover, if the sectional
curvatures are positive then Ay < 0 implies that ¢; > O fori =1, 2, 3. O

Proof of Theorem 1

If each point of M has a nonpositive isotropic curvature, then by Lemma 3.2 we
conclude that at each point either |[W (> > $%/24 or [[W™||> > S?/24. Let us
suppose then that [[W*|[|? > $?/24 at some point x. Then, from Lemma 4.2 it
follows that at this point R_ > 0. We claim that this implies RZ > 0 for all
points of M. In fact, since R_ > 0 on an open neighborhood U of x, we still have
W ||? > 52/24 for every point of U; otherwise, all isotropic curvatures at these
points would be positive. Then, by continuity, ¢; > 0 and |W*||2 > $2/24 on
the boundary of U. If ¢; = O then the proof of Lemma 4.2 implies that RT > 0,
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contradicting ||[W*||2 > $%/24. Then R_ > 0 on the boundary of U, and this can
be extended to all points of M. Therefore |W~||> < S$2/24 for each point of M,
and Lemmas 3.2 and 3.5 imply that b, = 0 and hence M is positive definite.
If AW = 0 then the Weitzenbidck formula for W~ gives
(AW™, W7) = 3AUWTI2) + VW12 + (p(W™), W™).

Integrating by parts, for a compact oriented manifold we obtain
f (AW, W™)dV = f IVW™II>dV + / (p(W™), W™)dV.
M M M

Now Lemmas 3.3 and 3.2(c) imply that VW~ = 0. It is well known that this fact
implies that either W~ = 0 or M is locally Kéhler—that is, Kihler on a double
cover (see [3, p. 455, 16.75(ii)). We claim that the second case cannot occur. In
fact, the second case would imply that one of the eigenvalues W;,” = §/6, which
in turn gives W, + W, = —S5/6. Using Lemma 3.3 and Lemma 3.1, we conclude
that det W~ = (§/36)|[W~||2. This implies that W, = W, = —S5/12 and hence
IW~=|I> = §%/24, contradicting that [|W*||> > S2/24 by Lemma 4.2. Therefore
W~ = 0 and, for this orientation, M is self-dual. Moreover, since S > 0 and
IWT||?> > §?/24, M cannot be conformally flat. In addition, if the scalar curva-
ture is constant, since AW = 0 we have that the curvature is harmonic. Because
W is not zero, the signature of M is nonzero. A result of Bourguignon [4] im-
plies that M is Einstein. But a compact self-dual Einstein manifold with positive
scalar curvature is either isometric to $* or to CP? (see [7] or [9]). Since in our
case M is not conformally flat, the only possible case is CP2. O

REMARK 4.3. Notice that if we assume in Theorem 1 that one point has a negative
isotropic curvature, then the curvature cannot be harmonic because the standard
metric in CP? has nonnegative isotropic curvature. We can also conclude that M is
definite by supposing that K > 0 and that each point has a negative isotropic cur-
vature. With these assumptions, for AW = 0 we have that M is half-conformally
flat and that the curvature is not harmonic. In fact, if AR = 0 then § is constant. If
S = 0 then, since K > 0, M is flat. If § > 0 then we conclude, as in the proof of
Theorem 1, that M is isometric to CP2. In each case M has nonnegative isotropic
curvatures.

LEMMA 4.4. Let S > 0 and suppose that the eigenvalues of W* are ordered such
that Wli < Wz"t < W3i. Then we have:

@ if (Wy)2 + (Wy)? = 55%/144 and W~ < S%/24, then |W-|f >
—W[S/2;

(b) if [W™||> = —W[ S/2and ¢, > 0, then p(RZ) = 0;

(©) if p(RZ) = O then either W~ =0or ¢; = 0and ||W~|? = S?/24.

Proof. Suppose that ||[W~||> < —W[ §/2 and ||[W~||?> < §?/24. Using Lemma 3.2,
the second inequality implies that det W~ < (S/36)||W~||?> and hence det W~ <
— Wy S/72. Recall thatdet W~ = Wy [(W;)2—1||W~|?] (Lemma 3.2(a)), which
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in turn implies in the previous inequality that [W~[|? < 2(W;)? + $%/36. This
inequality, when added with ||[W~||*> < §2/24, gives (W5 )2 + (W5 )2 < 55%/144,
contradicting the assumption. This proves (a). Now it follows from Proposition
2.6 that the eigenvalues of p(RZ) are given by o; = (S/2)¢; — 2¢? — 4¢;pr and
trace p(RZ) = 0. Substituting ¢; = W;” 4 §/12, we obtain

S
o; = —6(W,)? + Wi+ 2w 2. (4.5)

If ¢; > 0 then W, > —S§/12; together with |W—||? > —W, §/2, this implies in
(4.5) that o7 > 0. Using (4.5) again, o; > 0 gives that

.85 1 2, 5%
Wl— \/” l|+144

Because we are supposing that WZ" > W, the same inequality holds for W, .
Then we obtain that

<———+\/ W II2+—

But ¢; > 0 implies [|[W™||> < §%/24 and hence

Jawp e S S
144  4°

Wy —24+ \/ W 'z+m

which in (4.5) implies o3 > 0. We have shown that all eigenvalues of p(R”) are
nonnegative; since its trace is zero, we have proved (b). Now observe that

which gives

0; — gj = 6(p; — @;) k.

Therefore, if all the o; are zero, then either ¢; = 0fori =1,2,3 or¢; = ¢;. The
first case implies W~ = 0. Moreover, from Lemma 3.1 we obtain thatif p(R”) =
0 then det W~ = (S/36)]|W~||2. Hence, in the second case, the only possibility is
@1 = g2 = 0 and @3 = S/4, which gives ||[W~||?> = $%/24 and so proves (c). [

PROPOSITION 4.6. Let M be an oriented 4-manifold with nonnegative sectional
curvature. If (Wy)? + (W;)? > 55%/144 for all points of M, then F* > 0.
Therefore, if (W;5)? 4+ (Wi5)? > 55%/144 then F > 0.

Proof. Suppose that, for some point of M, F* has a negative eigenvalue. It fol-
lows from the proof of Lemma 4.2 that R_ > O at this point. Since RZ > 0
implies [W~||2 < S?%/24, from Lemma 4.4 we obtain that W~ = 0. But then
(W;)? + (W;)? > 55%/144 implies S = 0, and since K > 0 we conclude that
all sectional curvatures are zero at this point. This in turn implies Wt = 0, which
contradicts that F* has a negative eigenvalue. [
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PROPOSITION 4.7. Let M be an oriented 4-manifold with positive sectional cur-
vature. If |W~|*> > —W S/2 for all points of M, then either F* > 0 or
wW—=0.

Proof. If F* is not a nonnegative operator, then F* has a negative eigenvalue at
some point of M. We again have R_ > 0 at this point, and from Lemma 4.4(b)
and (c) we conclude that W~ = 0, implying R_ = S/12. We are supposing that
the sectional curvatures are positive, so R_ is positive on an open neighborhood
U of this point. Then we apply Lemma 4.4(b) and (c) once again to the points of
U. We conclude that W~ = 0 for each point of U and hence on the boundary of
U. This implies R_ > 0 for all points on the boundary of U; continuing this pro-
cedure, we obtain that W~ = 0 for all points of M. 1

The assumptions of Theorem 1 and Proposition 4.7 implied that F~ > O for all
points of M. We now look for conditions which guarantee that one of the compo-
nents of F is always nonnegative, even for cases where | W*||?> < S%/24 for some
point or where W = 0. First, observe that if F* has a nonpositive eigenvalue
then, by Proposition 2.5, we have W, > §/6. If the sectional curvatures are non-
negative then from Lemma 4.2 we conclude that ¢; > 0, implying W > —§/12.
In this case we then have W' + W~ > §/12. Under this condition, we prove the
following proposition.

PROPOSITION 4.8. Let M be an oriented 4-manifold with positive sectional cur-
vature. If W;t + W[ > S/12, then either F* > 0 or F~ > 0.

Proof. Let us suppose that F+ has a negative eigenvalue at some x in M. Then,
as before, on an open set U containing x we have [|[W*||?> > $2/24 and R~ > 0.
Now, if y is a point on the boundary of U then we have [W*||*> > $?/24 and R >
0 at y. But if ¢; = 0 then—since we have positive sectional curvatures—Lemma
4.2 implies that R¥ > 0, which contradicts |W*||> > $2/24. Therefore we still
have RZ > Oat y.If ||[W+||> > S$2/24 on an open neighborhood of y where R~ >
0, we repeat the argument to obtain the same conclusions. However, if |WT |2 <
S%/24, Lemma 3.2 implies that W;~ < §/6. Therefore, our assumption implies

S/6 + Wi > Wy" + W > §/12

and hence W;” > —§/12, that is, ¢; > 0. Then R_ > 0, since ¢, is the small-
est eigenvalue. We then conclude that |[W~||> < S?/24 for every point of M and
hence that F~ > 0. O

PROPOSITION 4.9. Let M be an oriented 4-manifold with nonnegative sectional
curvatures. If all sectional curvatures satisfy K > S/16 then F > 0.

Proof. Suppose that, at some point, F* has a negative eigenvalue. Then we have
W,;" > S§/6. Again from Lemma 4.2 we obtain that ¢; > 0 and hence W; >
—S/12. Then W57 + W > S/12. With the notation of Section 2 and using Prop-
osition 2.5, we conclude that r3 + 51 < S/2. As in the proof of Lemma 4.2, we
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consider planes P = (a3 + B1) /\/i and P+ = (a3 — B1) /\/5; we obtain an or-
thonormal basis { f1, f2, f3, f4} of the tangent space such that fi, = (a3 +B1)/v/2
and f34 = (o3 — By)/ V2. Hence, by the definition of F we have

r3 +s1 = 2[K(f1, f3) + K(f1, fa) + K(f2, f3) + K(f2, fa)] < S/2.

Hence S cannot be zero because this would imply that all sectional curvatures are
zero, which contradicts (4.10). Moreover, (4.10) implies that the smallest curva-
ture is less than S/16, contradicting our assumption. Thus F cannot have a nega-
tive eigenvalue, since the same proof could be applied to F~. L

Proof of Theorem 2

The first part follows from the previous propositions, and we have that #+ > 0 or
F~ > 0or F > 0. Now, suppose that M is compact. If F~ > 0, then Lemma 3.5
implies that b, = 0 and M is positive definite. If F *+ > 0and b} = 0 then M is
negative definite. Now, if F™ > 0 and b;“ > 0, from Lemma 3.5(a) we conclude
that there exists a self-dual parallel 2-form. Then dim Ker F* > Q and |[W™|? =
S$2/24 for all points of M. Now Lemmas 4.2 and 3.2 imply that F > 0, that is, M
has nonnegative isotropic curvatures. Since M is oriented, by Synge’s theorem it
is simply connected; because b5 > 0, M is biholomorphic to CP? by a result in
[16]. Therefore M is definite. O

5. Nonnegatively Curved 4-Manifolds with AW = 0

In this section we study first the case that the self-dual component F+ > 0. In [14]
the authors proved that if AW = 0 then either W* = 0 or the universal cover
is Kéhler with constant positive scalar curvature. A complete classification is the
following.

THEOREM 5.1. Let M be a compact oriented 4-manifold such that AW = 0
and F* > 0. Then one of the following holds.

(@) W = 0 is identically zero and M is negative definite.

(b) M is an anti-self-dual Kahler manifold with b'{ =1.

(c) M is a quotient of a K3-surface, either with a Ricci-flat (i.e. Calabi—Yau)
metric or conformally flat isometrically covered by either R* or S2 x H2, where S2
is the standard sphere and H? is the hyperbolic plane. (A K3-surface is a complex
surface with first Betti number b; = 0 and first Chern class ¢; = 0.)

(d) M is locally Kdhler (Kdhler on a double isometric covering) and has con-
stant positive scalar curvature. If M is Kéhler then by = 1.

(€) The universal cover has constant positive scalar curvature and is a Rie-
mannian product N1 x N,, where N, is homeomorphic to S>.

Proof. Integrating the Weitzenbdck formula we obtain

f(AW+,W+)dV=f ||VW+||2dV+[(p(W+),W+)dV.
M M M
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It follows from Lemmas 3.3 and 3.2(c) that VW* = 0. This in turn implies that
either W+ = 0 or ||W™||? = §%/24 is constant and so is S. Next we consider all
possibilities.

If there is a point in M for which F*(p) > 0, then W is identically zero. In
fact, since |W|| is constant, if W+ (p) is not zero then by Lemmas 3.2(c) and 3.3
we would have (p(W*), Wt) > 0, contradicting the Weitzenbock formula for
W, since AWt = 0. Therefore W*(p) = 0 and W is identically zero. Now
the fact that F*(p) > 0 implies, by Lemma 3.5, that b} = 0; this is case (a).

If dim Ker F* > 0 for every point in M, it follows from the first part of this
proof that |[W*||? = $%/24 and S is constant. If § = 0, we conclude again that
W is identically zero and F* = 0. If b)” = 0, we are again in case (a). If 55 >
O then, by Lemma 3.5, there exists a self-dual harmonic 2-form that is parallel.
Thus M is an anti-self-dual Kédhler manifold with the natural orientation. Here we
have three possibilities as follows.

Case 1: The universal cover M is an isometric product N x R. Consider an
orthonormal basis {e;, ez, €3, e4} such that e, is tangent to R. Now the formulas
(2.4) together with the fact that F* = 0 give F~ = 0 = W~ and M is confor-
mally flat. Moreover, the eigenvalues of F are the Ricci curvatures and hence M
is Ricci flat; being conformally flat, M= R*, and this is one of the cases in (c).

Case 2: The universal cover M is an isometric product N; x N, and N; is 2-
dimensional. Consider an orthonormal basis {e;, e2, €3, €4} such that e; and e, are
tangent to N and e3 and e4 are tangent to N,. From the formulas (2.4) and the fact
that F+ = 0, we obtain again that M is conformally flat and so is M. Now, [15,
Prop. 5.2] yields another case in (c).

Case 3: The restricted holonomy group G of M is irreducible. Recall that in
this case Berger [2] proved that either M is locally symmetric or the only possibil-
ities for G are SU(2) or U(2), since M is Kéhler. Because we are supposing that
M is locally irreducible, if M is locally symmetric then M is Einstein and hence
Ricci-flat. In this case we conclude that M is flat. If G = SU(2), Berger also
proved that the metric is Ricci-flat; then M has the Calabi—Yau metric (see [21]),
yielding the remaining case in (¢). If G = U(2) then this is a holonomy group.
This case will imply b = 1, and we will be in case (b). In fact, Lemma 3.5
implies that each self-dual harmonic 2-form is parallel. Since CP? has the same
holonomy, each such form gives rise to a parallel and hence harmonic 2-form on
CP?, by the holonomy principle. Because bg(CPz) = 1, we have that bj =1.

If S$ > 0 and dim Ker F* > 0 for every point in M, we can suppose (consid-
ering a double cover, if necessary) that M is Kéhler. Then we proceed as above,
studying the three possible cases. In Case 1, the formulas (2.4) would imply that
N has nonnegative Ricci curvatures. The topological classification of compact
3-manifolds with nonnegative Ricci curvature in [8] implies that N is homeomor-
phic to S3, contradicting that b, > 0. In Case 2 we have K3 + K34 = S > 0
and S is constant. Therefore, if each N; has a point with nonpositive curvature,
this contradicts S > 0. Then, say, N; has positive curvature, yielding (e). Now, in
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Case 2 the only possibility for the restricted holonomy group is U(2), which gives
case (d) by the holonomy principle. O

REMARK 5.2. 1In case (b), there is more to be said if the first Betti number b; =
0. LeBrun observed in [11] that, with such assumptions, M is diffeomorphic to

CP?  mCP? for m > 9, where mCP? is CP? with the conjugate orientation and
m points blown up.

COROLLARY 5.3. Let M be a compact oriented 4-manifold such that AW = 0,
F* >0, and K > 0. Then one of the following holds:
(@) W' = 0is identically zero and M is negative definite;
(b) M is flat;
(c) M is biholomorphic to CP?;
(d) M has constant positive scalar curvature and the universal cover is a Rie-
mannian product N1 x N,, where each N; is homeomorphic to S?.

Proof. In (b) and (c) of Theorem 5.1, M is Ricci-flat, implying (b) of the Corol-
lary. In cases (d) and (e) of the theorem we have |[W*|? = §%/24. Now, Lemma
4.2 implies that ||W~||> < $%/24 and from Lemma 3.2(c) we conclude that M has
nonnegative isotropic curvature. If M is locally reducible then we are in case (d)
of the Corollary. If M is locally irreducible and Kéhler then it follows from [14,
Thm. 2.1(b)] that M is simply connected, and [16, Thm. 1] implies that M is bi-
holomorphic to CP?. This implies, in (d) of Theorem 5.1, that M itself is Kih-
ler; by the foregoing, M would otherwise be covered by CP2, which is clearly a
contradiction. U

Proof of Theorem 3

Now we add the assumption that F~ > 0 to the cases studied in Theorem 5.1.
From Lemma 3.5 we obtain that if F* > 0 at some point p; then b} = 0.Ifb; =
0 then the signature of M is zero. Since in this case we have W+ = 0, we con-
clude that M is conformally flat and S is positive at p. If b, > 0, we use again
Lemma 3.5 to conclude that M is a Kihler manifold in the conjugate orientation.
Reversing orientation, we get that M is isometric to CP? with its standard metric
(see [16, Prop. 3.8]). If dim Ker F*+ > 0 for every point in M and S = 0, since
F > 0, we again have W = 0. For the remaining cases we can suppose, passing
to a double cover, that M is Kahler. If the universal cover of M splits isometri-
cally, we are in case (b) of the theorem. If the universal cover is not a product then
by = 1 and S > 0. In this case, M is biholomorphic to CP2.

Before we prove Corollary 1, we consider a Kiihler manifold with the natural
orientation and constant scalar curvature. In this case AW+ = 0. Then we prove
the following proposition.

PROPOSITION 5.4. Let M be a compact oriented Kdhler manifold with constant
scalar curvature. If ART = O then either M is Einstein or is covered by the iso-
metric product of two surfaces of constant curvature. It follows then that the Ricci
tensor is parallel and therefore AR = 0.
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REMARK 5.5. Matsushima and Tanno (see [12; 20]) proved that a Kéhler mani-
fold with AW = 0 must have parallel Ricci tensor. Here, in dimension 4, we can
substitute the harmonicity of W™ by the harmonicity of R7 .

Proof. Let w be the Kihler form in A2+. Since w is parallel, we have that wis an
eigenvector of F* with corresponding eigenvalue zero. On an open dense set U
of M, where W has eigenvalues of constant multiplicity, we can find local sec-
tions ey, ez, €3, e4 of TM such that at x € U the basis {e; (x)} is the orthonormal
basis of Proposition 2.1. Without loss of generality, we can suppose that w = «;.
Then R(az) = R(a3) = 0 and, with the notation used in (2.3), we have A; = §/4
and A, = A3 = 0. From (2.6) we conclude that p(RT) = 0. Let u be the Ricci
form of M given by u(X, Y) = Ric(X, JY), where J is the complex structure
given by w. We then have

Ric(ey, e2) = Ric(es, e5) =0, Ric(ey, ;) = Ric(ey, e7),
Ric(e3, 63) = Ric(e4, 84).

Moreover, since F* has an eigenvalue of multiplicity 2, we can find a suitable lin-
ear combination of o5 and a3 such that {e;} is a basis of eigenvectors for the Ricci
curvature operator. Therefore the only nonnull entry in the matrix of R with re-
spect to the bases {«;} and {8;} is (R(1), B1). Let us denote this number by R;;.
Now, since ART = 0 and p(R}) = 0, the Weitzenbdck formula integrated over
M gives that VRT = 0. This implies that R;; is constant on the dense set U and
hence on M. If Ry, is identically zero then M is Einstein. If R;; is never zero then
we have the local equation

(VxR (1) = X(R11)B1 + RuVxp1 — R¥(Vxay) =0,

which implies that Vx 8; = 0, since Rj; is constant and R*(Vxa;) = 0, because
Vxay is orthogonal to «;. The existence of this local parallel section in A% im-
plies that ¢; = S/4 and ¢ = @3 = 0 (since A; = S/4 and Ap = A3 = 0). Thus M
is locally a product of two surfaces, the constant scalar curvature is given by § =
K12 + K34, and—since 2R;; = K3 — K34 is constant—we have that M is cov-
ered by the isometric product of two surfaces of constant curvature. O

Proof of Corollary 1

We apply Proposition 5.4 to the possible cases of Theorem 3. In case (b), M is
covered by a Riemannian product of two surfaces and hence, by Proposition 5.4,
the surfaces have constant curvature. If M is Einstein then RT = R] = 0. Since
F > 0, Lemma 3.2(c) implies that (o(R}), RT) > 0 and (p(RZ), RZ) > 0. Now
the Weitzenbock formula gives that VRT = 0 and VRZ = 0, implying that M is
locglly symmetric. Thus, if M is locally irreducible, M is isometric to S* or to
CpP-.

THEOREM 5.6. Let M be a compact oriented 4-manifold with nonnegative sec-
tional curvatures. If all sectional curvatures satisfy K > S/16 and AW = 0 then
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M is conformally flat, or is isometric to CP?, or is covered by S? x S2, where S*
has constant curvature.

Proof. Recall that Proposition 4.9 implies that M has nonnegative isotropic curva-
ture. Since now we have AW* = 0, this implies that (i) W = 0, or (ii) |W*|?> =
§2/24, or (iii) one of the components of W (say, W ™) is zero and || W ||> = $%/24.
In the second case and third cases we have that S is constant, and without loss of
generality we can assume that M is Kihler. If |W*||2 = $%/24 then the signature
is zero. In this case M is locally reducible; otherwise, [14, Thm. 2.1] would imply
that b(M) = 1. Hence M is covered by S? x S, and since the curvature of M is
harmonic, S? has constant curvature. In the latter case, if § = 0 then M is flat. If
S > 0 then M is biholomorphic to CPZ, and since S is constant and AW =0, M
is Einstein and thus isometric to CP?. O

Proof of Theorem 4

If F* > 0, we conclude either that W is identically zero or § is constant and
|W+|1?> = §2/24 for all points of M. The second case implies by Lemmas 4.2 and
3.2 that F~ > 0, and the Weitzenbdck formula gives that either W™ is identically
zero or |[W™||> = §?/24. Therefore M has nonnegative isotropic curvatures. If
IW—]|> = S%/24 then, as before, we conclude that either M is flat or covered by
82 x §2, where S? has its standard metric. If W~ = 0 and S = 0 then we obtain
again that M is flat. If W~ = Q0 and § > O then, since S is constant, the curva-
ture is harmonic. It follows from Bourguignon’s theorem [4] that M is an Einstein
manifold, because the signature is nonzero. Since the isotropic curvatures are non-
negative, M is isometric to CP2. For the case where W is identically zero, if
W~ = 0 then M is conformally flat and hence either conformally equivalent to S*
or covered by R* or S x R, where S3 has constant curvature (see [15, Thm. 1]).
If W~ # 0, we conclude from Corollary 5.3(a) that M is negative definite.

If F* has a negative eigenvalue at some point and hence on a neighborhood U
of this point, then |W*||> > $§%/24 for each point in U. From Lemma 4.4(b) and
(c) we have that either W~ = 0 or [W~||> = §%/24 on U. But the second asser-
tion contradicts |W*||> > S%/24 by Lemma 4.2. Therefore W~ = 0 on an open
set and so W™ is identically zero by [1], since it satisfies AW~ = 0. In this case S
cannot be constant, because this would imply that the curvature is harmonic; since
M is self-dual, it is Einstein by [4]. If § = 0 then M is flat. If S > 0 then, by the
results in [7] and [9], M is isometric to CP? . Either case contradicts that F* has
a negative eigenvalue. O

REMARK 5.7. If a nonnegatively curved compact oriented 4-manifold satisfies
condition (c) of Theorem 2 and if AW = 0, we can say more when W* = 0. In
W3+ + W, = §/12, W+ = 0 implies W~ = 0 and S = 0 and therefore M is flat.
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