A Geometric Characterization
of Smooth Linearizability

PaTrick D. McSWIGGEN

The question of how smoothly a diffeomorphism or flow can be linearized
in a neighborhood of a hyperbolic fixed point has a long and venerable
history, going back at least to Poincaré [P; S1]. Of particular note is the
work of Sternberg [S1; S2], which has been built on by Belitskii [Bl; B2],
Sell [Se], and others. Sternberg proved that a transformation is smoothly
conjugate to its linear part provided there is an absence of “resonance” in
the eigenvalues of the linear part. Belitskii has shown nonresonance con-
ditions to be both sufficient and necessary, in the sense that they are neces-
sary for smooth linearizability of the entire class of maps having the same
linear part. On the other hand, it is clear that conditions on the eigenvalues
could never be necessary conditions for linearizability of any one particular
map.

In this paper we present a completely different type of result, which can
be seen as a generalization of a theorem of Hartman [H]. For the special
case of hyperbolic attracting or repelling fixed points, we give criteria for
linearizability that are geometric in nature. These are not computable like
resonance conditions (although can possibly be verified as in the example
below), but do precisely characterize how smoothly a given diffeomorphism
can be linearized near its fixed points. Therefore, this result clearly indicates
where the obstruction to linearizability manifests itself for attracting and
repelling fixed points.

By the local nature of the question, we can take the fixed point to be
the origin in R”. Therefore, let f be a local diffeomorphism fixing 0 € R”,
which is at least C”. Throughout this paper we assume the origin is a hy-
perbolic repelling fixed point. The attracting case can be treated by taking
f~L. Consequently, let {A;} be the moduli of the eigenvalues of (Df),, where
1 <A< --- <A To each splitting of the spectrum, {Aq,...,A;} < {A;qs--.s
Ax), there exist complementary, generalized eigenspaces for (Df),, the weak
unstable and strong unstable subspaces, respectively. A general result is that
J has nonlinear analogs of these subspaces, the weak and strong unstable
manifolds. Locally these are embedded disks tangent to the corresponding
subspaces at 0 (and so can be given as graphs over these subspaces), which
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are overflowing invariant under f. Moreover, under iteration by f, points in
these invariant submanifolds exhibit the same asymptotic rates of expansion
as vectors in the corresponding subspaces do under the linear map.

By the pseudostable manifold theorem [HPS], the strong unstable mani-
fold is unique and as smooth as the diffeomorphism. The weak unstable
manifolds, however, are not unique. In this case, the pseudostable manifold
theorem guarantees the existence of weak unstable manifolds of at least a
minimum smoothness, which depends upon the gap between the two pieces
of the spectrum. (For the splitting as above, the weak unstable manifold
will be at least C*® provided that Aj < A;,,.) This does not imply, however,
that there might not exist weak unstable manifolds that are more smooth
than predicted by this theorem. We say that f has a complete set of C"™ weak
unstable manifolds if to every such splitting of the spectrum of (Df), there
exists at least one weak unstable manifold that is C". Under a linearization,
a weak unstable subspace must be taken to a corresponding weak unstable
manifold. Hence, if f is C’ linearizable, f must certainly have a complete
set of C” weak unstable manifolds. We prove the converse.

THEOREM 1. Assume 0€R" is a hyperbolic repelling fixed point for a C"*?
(1 < r =) germ of a diffeomorphism f. Then

fis locally C' linearizable
< f has a complete set of C" weak unstable manifolds.

Moreover, if r > 1, then the given C" conjugacy is the only conjugacy be-
tween f and its linear part that is at least C'+% (0 > 0), takes the given weak
unstable manifolds to the corresponding weak unstable planes, and whase
derivative at the origin is the identity.

From the uniqueness in Theorem 1 we will be able to obtain the correspond-
ing theorem for flows.

THEOREM 2. Assume 0 € R" is a hyperbolic repelling singularity for a C™*?2
(1 =r <o) germ of a vector field X. Let ¢, be the local flow of X, and set
B:=(DX)q. Then

@, is locally C" conjugate to the linear flow eB
= ¢, has a complete set of C” weak unstable manifolds.

Moreover, if r > 1, then the given C" conjugacy is the only conjugacy be-
tween ¢, and e®" that is at least C'*% (8 > 0), takes the given weak unstable
manifolds to the corresponding weak unstable planes, and whose derivative
at the origin is the identity.

Consider the following example. Let f be a local diffeomorphism of the
plane with f(x, y) = [kx, k2y]+[r?o;, y%p,], where r?2 =x2+y? and p,, p:
R2 - R are C* functions. The origin is a fixed point, and the eigenvalues of
(Df), are k < k2. With these eigenvalues a map is not in general even C?2
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linearizable [S1, p. 812]. However, for this example the x-axis is invariant,
and so the system has a C* weak unstable manifold (for the only possible
splitting of the eigenvalues). Consequently, Theorem 1 implies that f will be
C* linearizable for any choice of the p; (i =1, 2).

As already observed, it is obvious that there must exist a complete set of
C" weak unstable manifolds if there is a C” linearization. It is somewhat
surprising, as in the above example, that this should also be sufficient. A
linearizing change of coordinates implies considerable geometric structure
in the neighborhood of the fixed point. Not only will every invariant sub-
space of the derivative have a corresponding smooth invariant submanifold,
but the family of planes parallel to any such subspace will be taken by the
conjugacy to a smooth invariant foliation. In fact, for any hyperbolic fixed
point, the existence of a smooth linearization is equivalent to the existence
of these invariant foliations of the same smoothness. This result hinges on
having certain crucial invariant foliations of sufficient smoothness. For these
foliations, the existence/smoothness of the foliation will depend entirely on
the smoothness of just one (particular) leaf. This is certainly not usual even
for invariant foliations—the smoothness of the leaves (let alone one leaf) is
typically quite independent of the overall smoothness of the foliation.

The uniqueness of the conjugacy says that there is considerable rigidity
with regards to linearizations in the smooth category. This is totally at odds
with the C? case, where one need only define a reasonable homeomorphism
between fundamental domains (i.e., one that “glues” properly at its bound-
aries). Consequently, one is free to make (almost) arbitrary modifications
on the interiors of the domains. For the smooth case, this theorem says
there is a one-to-one correspondence (up to multiplication by a linear map)
between the C” conjugacies and complete sets of C” weak unstable mani-
folds. If there exists one C” conjugacy, then the correspondence extends
to the complete sets of C” weak unstable manifolds of the linear map as
well. However, for a linear map there may be only one (smooth) weak un-
stable manifold for a given splitting—the linear subspace itself. For the
above example, the only C? weak unstable manifolds of the linear part are
the parabolas y = ax?. Hence, there is exactly a 1-parameter family of C?2
conjugacies (which happen to be C*). If the eigenvalues had not been re-
lated by an integer power, the conjugacy would have been unique.

A final remark is that this result does not generalize to hyperbolic fixed
points of mixed type. The strongest possible assumptions in character with
the hypotheses of Theorem 1 would be that there exist a smooth invariant
submanifold for every invariant subspace of the derivative (not just those
associated to pseudohyperbolic splittings). However, a saddle point of a C*
diffeomorphism of the plane trivially satisfies these assumptions yet cannot in
general be even C? linearized [St]. However, the inability to extend Theorem
1 to fixed points of mixed type is in itself interesting. Since under the above
assumptions the diffeomorphism can be linearized when restricted to both
the stable and unstable manifolds, additional obstructions must manifest
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themselves “between” these invariant manifolds. This emphasizes that for
fixed points of mixed type there are obstructions, unlike those of the attract-
ing and repelling cases, that are derived from the interaction between the
stable and unstable directions.

In principle, the proof of Theorem 1 falls into three parts: the existence of
strong unstable foliations; the existence of weak unstable foliations; and
linearizing functions in the special case where the eigenvalues of the deriva-
tive have a common modulus. A strong unstable foliation is an invariant
foliation on a neighborhood of the fixed point that has the strong unstable
manifold as a leaf (and hence is generally “parallel” to the strong unstable
subspace). A weak unstable foliation is defined analogously. These three
parts are the content of the following propositions.

ProPOSITION 3 [M]. Let f:R" - R" be a C"*?2 local diffeomorphism with
the origin as a hyperbolic repelling fixed point. For any strong/weak unsta-
ble splitting of the spectrum of (Df),, there exists a unique C’*! strong
unstable foliation.

PROPOSITION 4a. Let f: R¥ xRk 5 R¥xR"* pe a C"*! function (r =1)
Jixing the origin and having the form f(x,y) = (fi(x), fo(x, »)). Suppcse
that all eigenvalues of (D, f>)¢ have a common modulus 3 > 1, and that 3 >
|spl(D1f1)oll > 1. If f has a C" weak unstable manifold, then there exists a
C' weak unstable foliation that contains this weak unstable manifold as a
leaf.

PRroOPOSITION 4b. Let f:R" > R" bea C” (r > 1) local diffeomorphism with
the origin as a hyperbolic repelling fixed point. If all the eigenvalues of
(Df)o have a common modulus, then fis C' linearizable.

If f(x, y) has an invariant foliation, then the foliation chart “triangular-
izes” f: If the chart takes the leaves to the vertical planes, then in these
coordinates f leaves the vertical planes invariant, and so must have the
form (f,(x), f>(x, »)). Therefore, if f has two transverse, complementary-
dimension, invariant foliations (e.g., a weak and a strong unstable folia-
tion), then relative to a common foliation chart f is “diagonal”, f(x, y) =
(f1(x), fo(»)). If this is performed for each of the generalized eigenspaces
corresponding to the eigenvalues of a common modulus, then the resulting
components can be linearized independent of each other by Proposition 4b.

In practice, it is more convenient to combine the last two propositions and
find the weak unstable foliation simultaneously with linearizing the strong
unstable direction. Consequently, Propositions 4a and 4b are replaced by
Proposition 4 below.

REMARK. Although 4a follows directly from the statement of 4, 4b does
not. While true, we will not give an explicit proof of 4b. However, one can
obtain 4b from the proof of 4 by observing that in the extreme case, where
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the weak unstable plane is 0-dimensional, the extra level of differentiability
required of f in 4 is unnecessary.

ProrosiTioN 4. Let UCR!'xR"~! be a neighborhood of the origin, f:
U->R'xR"'a C™! function (r = 1) fixing the origin and having the form
f(x, ») = (fi(x), fo(x, ¥)). Assume (Df)y preserves the splitting, and set
A:= (D, f1)o and B:= (D, f,)o. Suppose that all eigenvalues of B have a
common modulus 3 > 1, and that 3 > |sp(A)| > 1. If f has a C" weak unsta-
ble manifold, then f is locally C" conjugate to (fi(x), By).

This conjugacy has the form G =id + (0, g), takes the given weak unstable
manifold to the weak unstable subspace, and has derivative equal to the
identity at the origin. Moreover, this is the unique conjugacy with these
properties. Specifically, if G’ is any C' semiconjugacy with these properties
and (D,G") is -Holder for some 6 > 0, then G'’=G (and so is in fact a C’
conjugacy).

All of the work in proving Theorem 1 is contained in Proposition 4, which
we leave for last. Proposition 3 is a weaker version of the result in [M].
However, in its stated form it is a simple application of the C” section theo-
rem [HPS]. We give a sketch of this method of proof below.

We make a final remark on Theorem 1 regarding the assumption that f be
C”"*2, This is most likely not sharp. In particular, if Propositions 3 and 4
were combined, it is conceivable that this assumption could be weakened (at
the expense of drastically increasing the complexity of the proof). However,
the theorem would definitely be false if this were replaced by the assumption
that f be only C”. If f is C' linearizable, then clearly it has C’ strong unsta-
ble foliations. However, in [M] it is shown that although a strong unstable
foliation for a C" function (with a hyperbolic repelling fixed point) is C"~!+¢
(some € > 0), it is not in general C’.

Proof of Proposition 3 (sketch). Choose coordinates near the origin so that
(Df), is block diagonal; (Df)o =A@ Be L(R'xR"~'). Let R’ be the weak
unstable plane and R”~! the strong unstable plane. By choosing an appropri-
ate adapted norm we can assume ||A||=:a <B:=m(B)=||B7|™. Let Abea
small closed neighborhood of the origin on which f is overflowing; f(A) DA.
If A is sufficiently small, then (Df) contracts the family of vertical cones =
Ax{Te L(R"~,R'):|T| =1} by a/B < 1. Therefore, since f is purely ex-
panding, f~!is purely contracting, and by the C” section theorem there is
a unique (Df)-invariant vertical plane field that is as smooth as (Df) = C"*!
(since f is C"*2). Consequently, if this plane field is integrable, then there is
a unique C’*! strong unstable foliation.

On the other hand, we can apply the pseudostable manifold theorem to
A itself. (This is more typically applied to invariant sets, but for finding
strong unstable manifolds, overflowing invariant is sufficient.) From this we
can conclude that through each point of A there exists a unique strong unsta-
ble manifold that is C"*2. Since these are unique, whenever two manifolds
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intersect they agree. Hence they form a unique, overflowing invariant C"*?2
strong unstable lamination. However, if this lamination is invariant under
f, its tangent plane field is invariant under (Df), so this is the unique plane
field found above. Since the lamination obviously integrates its tangent plane
field, the plane field is integrable and the lamination is a C"*! foliation.

Proof of Theorem 1. As above, let {A;] be the moduli of the eigenvalues of
(Df)g, where 1 <A;< --- <A,,. Choose coordinates (xi, ..., X,,) such that
(Df) is block diagonal and A; is the modulus of the eigenvalues of block i,
B;. By Proposition 3, there exist a total of m —1 C”*! strong unstable folia-
tions of decreasing dimension.

Let sy, ..., Sp—psatisfy A <51 <A, < -+- < §,,,_1 < A,,;. By the pseudostable
manifold theorem, the leaves of the strong unstable foliation associated to
the strong unstable plane (x, ..., x;) =0 are the equivalence classes of the
relation p ~ ¢ if and only if || f™"(p)—f""(q)|/s! — 0 as n—oo. Since s;
increases with i, the leaves of each successive foliation are contained in the
leaves of the previous (next higher-dimensional) one. Consequently, by first
choosing a foliation chart for the highest-dimensional leaves and working
toward the lowest, we can construct a common foliation chart.

In a common foliation chart, the family of planes (x, ..., x;) = constant
are invariant for each i. This implies fj, ..., f; are functions of (x, ..., x;)
only. Since this holds for every i, f(xy, ..., X)) = [fi(x1), f[o(x1, X2)5 -«
Fn(X1s ooy Xm)]. The function f is C™*!, and if we group the variables as x =
(X15 -3 Xm—1)s ¥ =X,,, we see that we have precisely the set-up for Prop-
osition 4. Therefore, there exists a C’ conjugacy from f to [fi(x;), ...,
Sm—1(X15 eees Xm—1)s BmXm]. Although the conjugacy is only C’, fi(xy), ...,
Jm—1(x15 ..., X, 1) are left completely unchanged so these functions are still
C’*!, and we can repeat the process to linearize f,,_;. Continuing in this
manner, we linearize all of the components. (For f; we need to observe that
the proof of Proposition 4 does not require that / be nonzero; that is, the
splitting may be trivial.) Our desired conjugacy is then the composition of
the individual ones.

We are left with showing uniqueness. Suppose G and G’ are two conjuga-
cies satisfying the conditions in Theorem 1. We want to show H:=G'-G ™! =
id. We know that (DH ), = I, and that H conjugates (Df), to itself. Since
the strong unstable foliations are unique and topological invariants, H pre-
serves the strong unstable foliations of (Df),; that is, the families of planes
(x1, ..., X;) =constant. However, this implies H is triangular; H(xy, ..., X;;) =
LH;(x1), Hy (X1, X2),5 «vns Hop (X1, ..., X)), Consequently, H, is a C'*? conju-
gacy of B, x to itself with derivative equal to the identity at zero. However,
we already have the identity satisfying these properties, and by Proposition
4, this is unique. Therefore, H, = id.

Continuing, we have [ H(x;), Hy(x}, xX3)] =[x, Hy(x1, X,)] is a C'*? con-
jugacy of B;® B, to itself with derivative equal to the identity at zero. More-
over, G and G’ map the same weak unstable manifold to the weak unstable
plane, so H preserves the weak unstable plane of B,® B,. But again we know
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that the identity is the only conjugacy to do this. Continuing in this fashion,
we conclude H; = id for each i, and so the conjugacy is unique. O

Proof of Theorem 2. By Theorem 1 there exists a conjugacy G from ¢, to
e? that takes the given weak unstable manifolds to the corresponding weak
unstable planes, and whose derivative at the origin is the identity. We ob-
serve that, for any ¢, e®’eGe¢_, is also a conjugacy from ¢, to e5, and has
the same properties. If » > 1, then G is unique. Therefore, e2°Geop_, =G,
and G is a conjugacy for the flow.

The case r = 1is not as direct. However, in the proof of Proposition 4 (on
which Theorem 1 is based), the uniqueness will be derived from a contrac-
tion mapping. Therefore, there is still uniqueness for » =1 relative to the
appropriate function space. Since ¢, is at least C? and has the same strong
unstable manifolds as ¢, one can show that e®’eGo¢_, is again in this same
function space, and so equals G. Hence, G is a conjugacy for the flow. We
leave the details of this case to the reader. O]

We are left with proving Proposition 4. For this we will need the following.

LemMA 5 [HP] (fiber contraction theorem). Let X be a topological space
and Y a complete metric space. Let ¥V: X XY — X XY be a continuous func-
tion of the form ¥(x, y) = (¥(x), ¥, (»)). Suppose that y has a globally at-
tracting fixed point pe X and, for each x€ X, that ¥,:Y —Y is Lipschitz
with Lip(¥,) < k for some k < 1 independent of x. Then ¥ has a globally
attracting fixed point (p, P)e X xXY.

Proof of Proposition 4. Let EY := R!x {0} denote the weak unstable sub-
space of (Df),, and let E**:= {0} x R"~/ be the strong unstable subspace.
Since the weak unstable manifold is tangent to E", locally it is the graph
of a C’ function A:[E"(6) - [E*”. Make an initial change of variable by
H(x, y) = (x, y+h(x)). H 'of-H leaves E¥ invariant and has the form
LAi(x), fo(x, y+h(x))—hefi(x)]. Although fe C™*}, h is only C". There-
fore, H™'sfoH is only C". On the other hand, the first component, f;, is
clearly still C"*!, and the second component is C"*! with respect to y in a
very strong sense.

LEMMA 6. Fork=<r, D,D¥(H'of+H) exists and is C" ¥ in both variables.

Proof. (H 'efoH)(x,y) = (fH)(x,y)—(0, hofi(x)). This is C” and so,
by the chain rule,

Dk(H_l"f'-"H)(x'y) = (Df)H(x’y)(DkH)(x,y)—Dk(os hofl)x+R(x,y)a

where R is a polynomial in the derivatives of f up to order k and the deriva-
tives of H up to order only k —1. Therefore, R is C"**!in x and y. (D*H)
and D*(0, h-f,) depend only on x, so

DZDk(H—l °f°H) = (sz)H(x,y)[(DzH)(x,y)s (DkH)(x,y)] + (DZR)(x,y)-
The least smooth terms here are (D¥H) and (D,R), which are C"'™ k. O
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Consequently, without loss of generality we can assume that near O our orig-
inal diffeomorphism has the form:

J(x,¥) = (Ax+p(x), By +py(x, »)),

where p;e C™*!; p, is C’, and C"*! in y (in the above sense); p,(x, 0) =0
(f leaves E" invariant); and if p := (p,, p2), then p(0) =0 and (Dp)y=0
[(Df)o = A®@ B]. Clearly conjugating f by H also conjugates f ! by H, and
in the new coordinates f~! leaves E" invariant. It follows that f~! can be
written similarly:

S % ) =A%+ 01(x), By +0,( x, ),

where o := (0, 0;) satisfies precisely the same properties as p. For notational
convenience, write ¢ := f 1= A '®B ' +o.

Since |sp(B)| =8, for any e > 0 we can choose an equivalent, adapted
norm on E“ such that || B|| < 8+e¢ and | B™!|| < 87! +e¢. Likewise, |sp(47")| <
1, and so there is an equivalent norm on E” such that ||[47!|| < 1. Hence,
given any 0 < 6 <1 and ¢ sufficiently small, we can choose these such that
IBI(|B~!||+€) (|47} +€)? < k < 1. Fix this ¢ (and these new norms). Take
the norm on [E" X E** to be the box norm, [|(x, y)||:= max{]|x|, ||»]}-

(Dp), and (Do), are continuous, and both are zero at the origin. There-
fore, [|(Dp),|, ||(Do),| < e for all p in a sufficiently small neighborhood of
the origin. By rescaling, we can assume for convenience that this neigh-
borhood contains the unit ball E(1) = {(x, y): |[(x, »)|| = 1} = E*(1) X E**(1).
Since 0 is a repelling fixed point for f, a conjugacy will be uniquely deter-
mined by its values on any neighborhood of the origin. Therefore, it will
suffice to find one on the unit ball.

We look for a conjugacy of the form G(x, y) = (x, y+ g(x, y)) which leaves
E" invariant and has derivative I at the origin. That is, g(x,0) = 0 and
(Dg)o=0. Let F(x,y):=(fi(x),By). If G conjugates f to F, then G =
FoGof~'. Expanding, we have g = Bgof '+ Bo, = Bgop+ Bo,. For con-
tinuous g: E*(1) X E¥¥(1) —» E*¥, define I'(g) = Bge¢ + Bo,. A fixed point of
I then corresponds to a semiconjugacy G =id+(0, g) from f to F. If g is
C! and (Dg)o =0, then G is a diffeomorphism on a neighborhood of zero.
However, as already observed, this then determines G, and so G is a global
diffeomorphism, and in particular a conjugacy.

Consequently, we look for a fixed point of I. Let

Go:= {ge CYE(1), E“*): g(x, 0) = 0}.

For ge Gy, define ||| :=sup{llg(x, ») |/([7]|-Cx, )I|°): y 0}, where || g]] is
possibly infinite. Set G := {g e Go: ||| 2]l < o}. |||l is clearly a norm on G, and
it dominates the usual sup norm, ||g||s,, < |l|lgl|. From this it follows that
(S [lI-|ll is @ Banach space.

LEMMA 7. Let g€ Gy. Suppose that (D,g) exists and is 0-Hdélder, and that
(D,8)o =0. Then ge Q. In particular, if ge C'*°% and (Dg)y =0, then geG.
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Proof. If g€ Gy, then g(x, 0) = 0. Therefore, ||g(x, y)| =|g(x, y) —g(x,0)],
and by the mean value theorem, ||g(x, y)|| = (supo<,<1l|(D28)x, DX
However, (D,g) is §-Holder and (D,g)o = 0. Therefore, ||(D28)x,mll =
K||(x, )||° = K||(x, »)||° for some K > 0. Consequently, ||g|| < K. O

LeEmMA 8. T is a contraction of G into itself.

Proof. By our choices, [|[(Dg),|<[A7'@B7Y|+[[(Da),|=|A7!|+e<1 for
all p in E¥(1) X E“*(1). Consequently, ¢ = f~! maps E"(1) x E**(1) inside it-
self, and I'(g) is well defined for any g e CO(E"(1) x E**(1), E¥¥). If g€ G,
then, since ¢ leaves E" invariant, implying ¢(x, 0) =(x’, 0), we have

I'(g)(x,0) =B[g(x,0)+02(x,0)]=0 and TI'(g)e G-

Now suppose g€ G. ||[T(@)||l<||Bllllg=¢ll+ | Bllllo2lll- By construction, o, €
Gos (D303)0=0, and (D,05) is C” (r = 1). Therefore, 0, G by Lemma 7,
and we need only show [[ge¢||| < o to conclude I'(g) € G.

By definition, |(g°¢)(x, )| =|lgle(x, YD = [lgll-|e2(x, 2]} o (x, 2)]|°.
Since a5(x, 0)=0, [l¢2(% M| =B~y +020x, )~ 0a(x, )| < (| B-1] + )] .
Likewise, [e(x, »)[| < (|47 + €)[|(x, »)||- Hence, ||lg- || = (|B7'|| + ) x
(47 I+l and T'(g) € G-

Finally, let g;,g,€G. Then I'(g,) —I'(g,) = B(g,—&>)°¢, and by the pre-
vious argument [[T(g) — T(enll = IBJ(IB~ + (14~ + &’ llg, - &l <
k||lg1 — &2]l|- Since x < 1, T' is a contraction. O

Since I' is a contraction of the Banach space G, by the contraction mapping
theorem we can conclude that there exists a unique g € G such that I'(g) = 2.
As observed, G :=id+ (0, 2) is then a semiconjugacy from f to F. We need
to show that g is C’. However, first we show that under the assumption of
smoothness, G is a conjugacy and is unique.

LEMMA 9. If G =id+(0, g) is a C' semiconjugacy from f to F with (Dg), =
0, then G is a conjugacy. If, in addition, (D,g) is 0-Hélder and G leaves EY
invariant, then g € G and is the unique fixed point of T.

Proof. 1f (Dg)y =0, then (DG)y = I and so G is locally a diffeomorphism,
which means that G is a conjugacy near zero. On the other hand, G =
FoGof~! and so G =F"-Gof~" for all n. But f is an expansion, so for
sufficiently large, f~"[[E(1)] will be contained in the neighborhood of zero
on which G is a diffeomorphism. Therefore, F"-Gof " is a diffeomorph-
ism, and G is a conjugacy. Now, if G leaves E" invariant then g € G, and,
by Lemma 7, ge G. Therefore, g must be the fixed point of T'. O

We are now prepared to prove that § is C’. We begin with C!, and be-
cause of the dissimilarity in the differentiability of f with respect to its
variables, the two partial derivatives must be handled separately. If g is
the fixed point of I' and 2 is C!, then we must have (Dg),=D(T'g),=
B(Dg)y(p)(De)p+ B(Do3),. For L in COE(1), L(E, E¥)), define I'}(L) by



330 PaTrick D. McSWIGGEN

(T\L), := BL,(,,(D¢),+B(Da3),. ¢ =f'is C" (r =1). Therefore, I' L is
continuous if L is. We want to show I'; has a fixed point for some subset of
CO(E(1), L(E, E“*)) and that this is the derivative of 2.

Define & C CO([E(1), L(E*¥, E**)) and 9T C C%(E(1), L(EY, E**)) by

Ee8 & ||E|| :=sup{||E,|/||p|°: p =0} <0
and
Ne RN o ||N||:= sup{||Nix, »ll/[|¥]|: ¥ # 0} < co.

This of course implies if E€ & then Ey =0, and if Ne I then N, o) =0.
As with G, these are norms which dominate the respective sup norms, and
which make & and 9T Banach spaces.

Set £ =8&xIN. £ is naturally identified with a subset of C°(E(1), L(E, E*)),
(E,N)e [N E]; thatis, for (u,v) e EY X E*¥, (E, N)(u,v) = Nu+Ev.

Lemma 10. T, is a fiber contraction of &X 9 covering a contraction on &.

Proof. (Dy)is triangular, so [N E(Dg) = [(N(D,¢,) + E(D;¢,)) E(D;¢,)],
or
I'(E,N), = (BE,(p)(D2¢2),+ B(D305)p,

BN, (p)(D1¢1)p+ BE,(p)(D1¢3)p+ B(D,03),).

Therefore, I')(E, N) = VY(E,N) = (Y(E), ¥Yg(N)) has the form of a fiber
map. For & we proceed as we did for G. (D,0,)is C" (r =1), and (D505)=0.
Therefore, |(D,0,),|| < K| p| and B(D,0,) € &. Moreover,

IBE,(p)(D202),ll < | BIUIEN-l ()Y (1B~ +e)
<|BII1B~ I+ A7 |+’ NEN-I 2I° < «IEI-| 21"

Therefore, ||BE, (D¢l < «||E||, and ¥ maps & into itself. Likewise,
¥ (E) — ¥ (ED|| < || E, — E,|| and « < 1, so ¢ is a contraction.

We need to show that ¥z maps N into itself. Observe (D,¢;), = (D;03),.
By assumption, (D,Dag,) exists and is continuous. In particular, (D, D,0,)
exists and is continuous. Moreover, 0,(x,0) =0, so (D;03),0) = 0. There-
fore, by the mean value theorem,

1(D102) (x, ll = 1(D102)x, yy — (D102) (x, 0yl
< Cl|y|| for C=sup,||(D,D;03),|.

As a result, since | E | <IENl-le(oI° <IE]l (le(p)]<1), both B(Diay)
and BE,,(D,¢,) are in 9. We have

IBN,(p)(D1e1),]| = | BICUINII- 2 DA+ ),

and again ¢, is C! with ¢,(x, 0) = 0. Therefore, ||¢2(x, ¥)| < (|B 7|+ )| ¥|,
and so || BN, (D;¢))|| < . Hence, ¥g maps 9 into itself. This also shows
that ¥,(E,N) = ¥z(N) is a bounded affine map in (£, N), and so ¥ =T}
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is continuous. Finally, ¥ contracts fibers by || B||(|B~!||+e)(|4A7|+¢) =
k<1, O

By the fiber contraction theorem, there exists a unique L € £ that is a glob-
ally attracting fixed point of I';. Comparing to the usual sup norm on £, we
have ||(E, N)|lsup =< | E |sup + | N llsup = I E|| + || N]|. Consequently, L is glob-
ally attracting (in £) relative to the sup norm. Now suppose g€ G is C!
and (Dg)e £ (e.g., g = 0 satisfies this). By construction, I';(Dg) = D(I'g).
Hence, the orbit of (g, (Dg)) in G X £ under (I' XI}) is a sequence of 1-jets
(gi, (Dg;)) that converge in § X £ to (g, L). However, this implies uniform
convergence in both factors, so (g;);; is converging in the C' topology.
Consequently, g is C! and (Dg) = L.

For 1 < k < r we proceed by induction in much the same fashion. For each
i <k, we choose £; C C(E(1), L{,,(E, E**)) and a norm ||+ || on £; which
makes £; a Banach space and which dominates the sup norm, ||L®?|,, <
IIL?]|| (so convergence in £; implies uniform convergence). For each i < k,
we assume a continuous function I'; mapping £, X --- X £; into itself such
that T; has a globally attracting fixed point, and if g is C’ and ji(g)e
X £, X - X L; then (I'xT,)(j’g) = j(I'g), where j(-) denotes the ith jet
of (-). The previous case showed these assumptions are satisfied for i =1 if
we set [|(E, N)||:= | E]|+ | V]

Suppose we can extend this to i = k. Then, by the same argument as
for the C! case, we will have that g is C*. For if ge G is C* and j*(g)e
GX L X -+ X £ (again g = 0 will do), then the orbit of j¥(g) under I' X T,
will be a sequence of k-jets, j¥(g;). These converge uniformly to the unique
fixed point of I' xI';. Consequently, (g;);»; is converging in the C* topol-
ogy, so g is C¥ and the fixed point of I' X I'; is j*(g).

For i > 1, define £; as follows. Let 7;: E” X E*¥ —»[E" X {0} be the usual
projection. Define [[L?|]:= max{||L?|sup, sup{|L{s e (=11 7]z ¥ # 0});
then L e &; if and only if ||L?]| < . Clearly | L®|g,, < [|LD|, and if
LW e &, then L{ o,o[#{]=0. One can again see that ||-|| is a norm, and
(L4, [+ ) is a Banach space.

Given I'; (i < k) satisfying the above assumptions, construct I', as fol-
lows. For (LY, ..., LW)e & x --- X & and p e E(1), let v,: E—>[E“* be
the polynomial v,(q) :=LY,(q—¢(p))+ --- +Lfo]8,)(q —o(p)®). Define
T (LD, ..., LOY(p) i= [T (LD, ..., L*~DY(p), DK(T'y,),]. If g is C¥ and
(LD, ..., L%y = (Dg), ..., (D*g)), then v, and g have the same derivatives
at o(p) (the constant term does not matter). Hence, D¥ (Tvp)p = D"(I‘g)p,
and I, ((Dg), ..., (D*g)) = (D(T'g), ..., D¥(I'g)) by the assumptions on T _;.
Consequently, (I' x ') (j*g) = j¥(I'g).

We need to show that I, maps into £;X --- X £, and has an attracting
fixed point. For the former we need D¥(T'y,), e £, for any (L, ..., L") e
£1X -+ X L. We have D¥(T'y,), = B(D*(v,°¢),+ (D*s,),). By assump-
tion, (Dszaz)p exists, and it and (D*o,) p are continuous. Moreover,
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(D*03) o [7f1=(Df0,), and a5(x, 0) =0, so we have (Df0,)(y. o) = 0. There-
fore [[(D*0)(x, e [7 1| = [(Df02) (x, | < (D2 D*02) | sup || ¥ || and (D*o5) € &4
From the higher-order chain rule, D*(7y,°¢), is the sum of terms of the form

(DY) [(D110), ..., (DIig) ] = LE) ) [(DI1g) 5, ..., (DIig) 5],

where 1 =i <k and j;+ -+ j; = k. Therefore, it will be sufficient to show
these are in £,. These are clearly continuous functions of p. Moreover,

1Ll D7) s (DI)lsup < TPl sup -+ (D) sup IO
Consider Ly p)[(D”'¢), ..., (DY) 1o [wf1 = Lyl [(D{0) p, ..., (Do) 1.
(D{p), = [(Dlpy), 01" +10 (Dipy),1%,

which for notational convenience we will write as (D,j(pl) pt (D{ ®2)p. Using
the multilinearity of L, we have

LA U(D{'¢) s ..., (Df'p) ]
= L) [(D{'¢1) py -, (Dii 1) ]
+ 2 L1(p,()p)[“'r (D{r_l‘tol)p: (DiltﬁoZ)pa (DIJH-]‘P)p: ]s

O<t=i

1(D{22) s, 9l = |(Dfo2) 5, )| = (D2 D02)lsup 17,
L (D 01) ps -.vr (D)) ) = LYy 0[] 1 (DL @) s -, (D) 1,

and || Ly, e lm{ll < WLO||-Joa(x, 0l Since Jleotx, 1) < (1B~ +e) ¥,
every term has a factor of ||y|. Consequently,

ILG (D" 0) s ..., (D) p]o [xf]|| < (constant) ||LP |- [ ¥

Since this holds for all the terms in D¥(y,°¢),, we have D¥(y,°¢) € £, and
D*(T'y,), € £;. The above computations also showed that D¥(T'y,), is a
bounded affine map in the L), so I is continuous.

We are left showing that I'; has an attracting fixed point. Recall from the
induction hypotheses that I';_; has a globally attracting fixed point. To show
that I'; has an attracting fixed point, we split the £, term into two pieces as
we did for the k =1 case. Since elements in £; are symmetric, there is con-
siderable redundancy in their entries, and it is not necessary to observe all
of the entries to know that a sequence in £, is convergent. In particular, for
any L) e £;, define subblocks N:= L® e [7f] and E := L®) o [rr,, I, ..., I];
in other words, for v; =w;+u;eE (i =1, ..., k), w; = 71(v;), and u; = w,(v;),
let N[vy, ..., 0] = LO[wy, ...,w] and E[vy, ..., vi] = LO[uy, vs, ..., vl

Let N :={N=LWo[xf]:L®V e L,} and &:={E =LK o[x,, [k1]:
L* e £,}. Give these the norms inherited from £;, and & X 9T the Box
norm. Let IT: L®) s (E, N') be the map from £ onto & x 9. Since Eo[nf] =
L®o[mpomy, xf 1= 0, | El = | Ellup =< 1LY Likewise,

IVl = sup{| N, I /1711 5 # 0} < JILO)).
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Therefore, IT is linear with [|II|| < 1. On the other hand, L¥) can be rewritten
in terms of E and N. We have

LBy, o, 0] =LPOMwy, o, W+ X LOL, Wiy, i, Vi, -],
i
and by symmetry

LT Wity Uiy o0 1 = LT, U1y ooy Uy Wiy veny Wiy ]
= E[U,', coey Uk 7!'1(1)1), ...].
Therefore, if P; denotes the cyclic permutation (to the left) by i places, then
LO =N+3;_o .. k1 EoPio[w}, I*"'], and so II"! exists and | [I7|| < k +1.
Consequently, IT is an isomorphism between £, and & X 3.
Via this isomorphism, Iy induces a map I'y from £;X -+ X L, X EX N
into itself. It will now suffice to show I'; has a globally attracting fixed point.

This will be guaranteed by the following lemma together with the fiber con-
traction theorem.

LeEmMA 11. Ty is a fiber contraction on both

(Xi<k—1£)XE and (Xi<p_1 £LIXEXN.

Proof. Let (LW, ...,L%®)e £,x -+ x £, and let (E, N) =II[L¥] as above.
The &-component of I‘k[L“’ ooy LETD B, N1(p) is DX¥(Ty,) o[y, 1K1,
and Dk(I"yp)p—BLs,(p)[(Dcp)p]+terms involving only (L, ..., Lk-1),
Since (Dy)), is triangular,

(Dp)pomy=mre(Dr03)p.
Hence, D¥(T'y,) o [my, I* 71 = BE(p)[(D202), (Dg)% ']+ terms involving
only (L, .. L(" D). Therefore, T, is a fiber map on (X;<4_; £;) X 8. If
E,E’ are two elements in &, then
I(TL..., L4, E1=T[..., L*D, ET) ()|

= |B(E(py— Ep(y) *[(D292) s (D) ]

<= B+B+(|A7 [+ T Eypy—Epp

< k(A7 +e* O E-E.
Since k = 2, it follows that x(||4~!||+€)*~!~% <1 and T is a fiber contrac-
tion on (X;<4_; £;) X 8.

We are left with showmg I‘k contracts on 9l-fibers. The 9-component of

Ty is D¥(T'y )po[7r1 ] —BL‘(p,[(D¢)p] [w, ]+terms 1nvolv1ng only (L(” .

L*=1) Hence BLY) [(Dg)k]o[xf]=BLY) (D)1 = BN, ,,[(D101)5]+
terms involving E. Therefore,

[(TeL.... B, N1=Ty[..., E, N'D(P)| = (B+ (A7 |+ ) | Ny oy = Nop -

However,

1N, 50— N ol = IN= N7l o206 2 = (B~ + ) IN=N"||- | ¥l
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Consequently,
ITkL..., E, N1=T4[..., E,Nl|| = B+ &) (B +e) (|47 Y|+ )| N—N'||
<«kf|N=N|[,
and again this is a fiber contraction. _

We now observe that this completes the proof of Proposition 4. By induc-
tion we have shown that g is C* for each k, 1 <k <r, where ge G is the
unique fixed point of I'. Moreover, G = id + (0, g) is a semiconjugacy from
fto F. Since g is at least C! and g(x, 0) = 0, then certainly (D), = 0. Since
g€ G and g(0) =0, we have ||g(0, »)—g(0)|| <[ »|'*®% and so (D,&),=0.
Therefore, (Dg), =0 and, by Lemma 9, G is a conjugacy. Converting back
to the original coordinates, GoH ! is then a local conjugacy between our
original f and (f;(x), By) that takes the given weak unstable manifold to the
weak unstable plane, EY. Both G and H are C’, so GoH ' is C". Moreover,
since H ~Y(x, y) = (x, y—h(x)) and since the graph of # is the weak unstable
manifold, implying #(0) = 0 and (Dh), =0, we have D(G-H ')y =1. We
can see directly that Go H ! has the general form id +(0, g). Therefore, we
have exhibited the desired conjugacy.

Finally, suppose G’ =id +(0,g’) is a C! semiconjugacy with the same
properties. Then G’ H has the form id + (0, g), leaves E" invariant, is C/,
and D(G’-H )y = I, which implies that (Dg), = 0. If (D,g’) is §-Hdlder for
some 0 > 0, then (D,g), = (D2&")u(p) is also 8-Holder. In the above proof
6 was any number with 1= 6 > 0. Therefore, for this specific 8, we have by
Lemma 9 that g = g € G(0) is the unique fixed point of " on G(8). On the
other hand, the sets G(6) are a nested family, so if ge G(8,) C G(8,) is a
fixed point of T on G(#,), then it is also a fixed point of I" on G(6,). Hence g
does not depend upon 8, and so G’ = G- H ! and the conjugacy is unique.
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