The Holonomy in Open Manifolds
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According to the well-known result by Cheeger and Gromoll [CG], every
open (i.e. complete noncompact) manifold V" of nonnegative sectional cur-
vature K, = 0 is diffeomorphic to the space of the normal bundle »S of some
totally geodesic submanifold S, called the sou! of V". In this article we con-
sider some relations between the geometry of V" and the holonomy of this
bundle. If V" is isometric to the direct product V" =SXW (where W is
an open manifold of nonnegative sectional curvature, diffeomorphic to the
Euclidean space), then the holonomy operator is the identity; that is, for
every closed curve w(s) C S, 0 < s <1, the parallel translation I, along this
curve maps every vector of »,§ for p = w(0) into itself. So I, =id for every
closed curve w on S, and we will say that »S has trivial holonomy. One of
the main results of this article is that the converse is also true (see Section 1).

THEOREM 1. If vS has trivial holonomy, then V" is isometric to the direct
product: V' =SxXW.

This theorem was announced in [M1].

In Section 2 we find some conditions on the behavior of the curvature near
S for a trivial holonomy that, according to Theorem 1, lead to the met-
ric splitting. Originally these conditions (Theorems 2, 3, and 4 herein) were
found with the help of some geometric construction and received rather long
but straightforward proofs; see [M3]. Then a very short proof of Theorem 2
was presented to the author by G. Perelman, who suggested the possibility
of finding a similar short and analytic proof for Theorem 4 also. That is
done at the end of Section 2.

THEOREM 2. For every point p on S and every 2-dimensional direction o
that is normal to S at this point (i.e., 0 C,S), if

K,=0

then I, = id for every contractible curve » on S and the universal cover V"
of V" is isometric to the direct product.
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If S is flat, then the universal cover " of V" is isometric to the direct prod-
uct and the holonomy along any contractible curve in S vanishes. The next
theorem is a local version of this statement.

THEOREM 3. For every closed curve w contractible in some flat domain D
in S, the holonomy along v vanishes. That is, for every point p of w and
every v of v, S,

IL,v=v.

One of the most important examples of an open manifold of nonegative cur-
vature is the total space T'S” of the tangent bundle of the sphere S”; see
[CG]. When O(n+1) has a bi-invariant metric of nonnegative curvature and
O(n) acts on flat Euclidean space R” by rotation, the map

7: O(n+1)XR"> O(n+1)XR"/O(n)=TS"

is a Riemannian submersion. Therefore, according to [O], 7°S” admits a met-
ric of nonnegative curvature. It turns out that the soul S of 7’S” is unique,
the holonomy of the soul’s normal bundle is nontrivial, and all mixed curva-
tures vanish. It was shown in [M2] that for n = 4 these are the only direc-
tions of zero curvature. For instance, let o(p,v, e) be the 2-dimensional
direction at the point p generated by the vector e tangent to S, v being nor-
mal to S, and let /,(p) be the geodesic issuing from p in a direction w # v
normal to S. Then for the 2-dimensional direction o( p, e, v, w, p) obtained
by the parallel translation of o(p, e, v) along /(o) we have

2
Ko(p,e,v,w,0) = kp

for some k > 0. For arbitrary open manifold V" of nonnegative curvature,
according to [CG, Thm. 3.1] we have

Ka(p. e,u,w,0) = 0.

2
Ko(p,e,v,w0) = O(p%).

Is it possible for an arbitrary manifold that the curvatures of this type be
of greater order in p? The next theorem shows that, in some sense, this is
impossible.

Thus, in general

THEOREM 4. If for every point p on S and every e, v, and w

_ 2
Ko(p,e,v,w,0) = 0(p7)

as p— 0, then I,=id for every contractible curve » on S, the universal cover
V" of V" is isometric to the direct product, and

Ko, e,o,w0)=0-

1. The Holonomy Operator and Short Maps on the Soul S

Recall that the soul S of the open manifold V" of nonnegative sectional cur-
vature is the limit of an equidistant family of compact totally convex sets
C,, 0 <t < T, with the following properties:
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(1) int Cr # 0;
(2) forsome 0=ty <t;<:---<t,=Tandeveryt;,_<t<t,

C,={peC,lp(p,dC,)=t;—t};

(3) dimC,_, <dimC,; and
(4) $=C,,.

From the fact that every C, is totally convex one can deduce the existence
of short maps, that is, of distance-nonincreasing maps ¢,: C,— S; see [S].
With the help of these maps we can prove the following theorem.

THEOREM 1. If vS has trivial holonomy then V" is isometric to the direct
product V"=S X W, where W is an open manifold diffeomorphic to the
Euclidean space of the corresponding dimension.

Proof. Let p be some point of S. Choose any vector v(p) of »,S and define
the vector field v on S in the following way:

v(q) =1, (v(P)),

where w, C S is any curve from the point p to the point g, and I, is the
parallel translation along w,. Since the holonomy is trivial it follows that
the field v is well-defined. Let y,: S — V" be the family of maps:

¥o(q) = exp(0v(q)).

The vector field v is parallel along every curve on S. Therefore, from the
Berger version of the Rauch comparison theorem (see [B]), it follows that
there exists a 6, such that for all 0 < 6 < 6, the maps y, are short (i.e.,
distance-nonincreasing) maps, and that y, is an isometry if and only if for
every geodesic y(¢) C S the Synge film = (s, £) = ¥;(y(?)) is totally geodesic
and flat. We reformulate the last property in the following way: Let p be a
pointon S, eeT,S, ver,S, and /,(8) = exp(0v). Let e(0), v(0) be two paral-
lel vector fields along /,(#) such that e(0) = e and v(0) = v. Moreover, let
o(p,v, e, ) be a 2-dimensional plane generated by v(0) and e(6). Then it is
not difficult to prove that the map y, is an isometry if and only if

Kopveo=0 forall 0= =<6, (L1

LeMMA 1.1.  If the holonomy of vS is trivial then, for all v and 8, all Y, are
isometries and (1.1) holds for all p,v, e, s.

Proof. For any given 6 < 8,, choose ¢ such that ¥, C C,. Then the map
¢,°¥y: S— S is the short one and is homotopic to the identity map. Hence
we can conclude that ¥, is an isometry and that (1.1) holds for all 8 < 8,. But
in this case the claim of the Berger theorem (stating that y, is a short map)
is also true for 8, < 6 < 6,, and we see (repeating the above arguments) that
(1.1) holds for all 8 < 8,. Therefore the set of all § such that (1.1) is true is
an open set. Obviously, this set is also closed, and therefore (1.1) holds for
all 6. 0O
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LeEMMA 1.2.  All submanifolds Sy = (S) are totally geodesic.

Proof. The proof is obvious. If we have two points p’= yy(p) and q’=
Vg(q) on Sy such that p and g are from S, then for vy(¢), which is the minimal
geodesic from p to g lying on S, the upper edge of the Synge film n(s, ) =
Vs(v(2)) is the geodesic v,4(¢) = Y(v(?)) lying on S,. Therefore S, is totally
geodesic. Lemma 1.2 is proved. O

Consider the family of the submanifolds
W, =exp(v,S),

which we will call fibers; W), is the fiber over p. Let us arbitrarily choose two
vectors, e from 7, S and v from », S, and let p > 0. Construct the geodesic

v(t) = exp,(te) C S

q(t) = y,(v(1)).

Then g(t) e W), and it is not difficult to verify that the vector g(¢) is nor-
mal to the submanifold W, at point g(¢). Denote by A4,(¢) the second fun-
damental form of W, corresponding to the normal §(#), and by G,(¢) its
trace:

and the curve

d—1
G, (1) = E(Ap(t)és(f),é;(l‘)),

where ¢€;(7) is an orthonormal basis of T,,W,, consisting of the eigenvec-
tors of the form A4,(?),

A,(D)e(t) = q(t) = Ay (1))

D
de;(1)

(é;(?) is not necessarily continuous in ¢). We see that Dg(¢)/dp = 0, so we
may assume that &;(¢) equals the vector 3/dp = —q(¢)v(¢) and that A;(¢) =0,
where pqg denotes the unit vector (in the direction of the minimal geodesic
pq at point p) connecting points p and g. To compute dG,(¢)/dt, let us intro-
duce the special system of the Fermi coordinates in the following way: Let
codim S = d —1, let the axis of the coordinate system be the geodesic y(#) on
S that is simultaneously the dth coordinate line, and let the geodesic pg(0)
be the first coordinate line. In this coordinate system all points g(¢) have the
following coordinates: g'(¢) = pd,;+1d;4. By e;(p, t) we denote the coordinate
vectors of this system at the point g(#) and choose ¢;(0, 0) so that e;(p, 0)
coincides with &;(0) for i < d, while ¢;(0, 0) for j = d generate 7,S. It is not
difficult to prove that e;(0,0), i <d, generate v,S. By definition e;(0, #) =
1, (ei(0,0)). Therefore, (0, ¢), i < d, generate v,(, S, and e;(0,1), j = d,
generate T, S. From the metric tensor estimates we see also that e;(p, )
generate T, S,, while e;(p, #), i <d, generate T,(, W, ,, and

(ei(p,1),ei(p,1))=0, i<d=]j. (1.2)

All S, are totally geodesic submanifolds, so we have
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D =0-
(Wei(p, t)’ ej(pa t))=03 (1'3)

e;(p, t) are coordinate vectors, so they commute. Therefore, from (1.3) it
follows that

_ D
P P Rl M P e SR
— D q — . — . o .
= ———_Be,-(p, 0 g(0) = A,(0)e;(0) = A;(0)é;(0). (1.4)
LEMMA 1.3.
d—1
-Golt) = = X (Rleq(p: 1, eilp, DI+XHD), (1.5)

where R{v,w] is the sectional curvature of the plane spanned by v and w.

Proof. Without loss of generality we may assume that ¢ = 0. By definition,
d—i
G, (1) = 2 (A, ()éi(1), &;(1))
i=1

and, if =0, then &;(0) =¢;(p,0), i <d, and e;(p,0) is the orthonormal
basis. Since A4,(¢) is symmetric, we have

9 p: d—1 _ _
B?Gp(t) == EI(AP(t)e,-(l‘), é;(1))

d—1
(D
B El(atAp(t)

3 d—-1

= E E (Ap(t)ei(p’ t)’ ei(ps t))
i=l1

d—1

-2 3 (Ap(t)ei(p: 1), %e,-(p, t))

i=1

d—1 D
é;(0), 55(0)) = (5;14,;(1)
0 i=1

e;(0), ei(O))
0

1= =

t=0

=0
Therefore, from (1.4) we see that

9 9 d—1
_Gp(t) = 'Et_ E(Ap(t)ei(p, t)s ei(pa t))

— 2
= 23 A%

t=0 i<l

But
a d—1
a1 = AsDeilp, 1), eilo, 1)

t=0
DZ

—d-—l D D
- i§1 (Wei(p: t)a ei(ps t)) t=0+(-678i(p’ t), 'g’ej(p, t))

The vector fields e;(p, f) along g(#) are the variation fields of d-coordinate
lines:

(1.6)

t=0

ei(p, 1) = %wuw,,p(v(t»,
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where v(0) = v+ 0e;(0, 0). But all lines v, ,(v(¢)) are geodesics. Therefore
the vector fields e;(p, t) are Jacobi fields along g(#) and

DZ
—e€i(p,t) = —R(ei(p, 1), e4(p, 1))eq(p, t),

at?
where R is the curvature tensor of V”. Inserting (1.4) and the last equality
into (1.6), we obtain the claim of the lemma. a

LeEMMA 1.4.  All submanifolds W, are totally geodesic.

Proof. Allvalues in (1.5) do not depend on the particular choice of the basis
€;(?), but only on the point y(¢) and the vector y(¢) (if v from »,S and p > 0
are given). Let us assign
d-1
_ZZ(R[ed(p, 1), &;()] = K(v(8),v(1)
i=
and
-1,
5 AH0 = Ay, 7).
i=
Using the compactness of S, we see that the function G,(¢#) is bounded:
There exists some constant K such that
|G,()| =K forall —o<t<oco.

Therefore, for arbitrary 7> 0, from Lemma 1.3 we have

IA

NI N

1 (T .
57 | K. yunar s 7, o

IA

1 (T .
= f_T AGy(0), ¥(1)) dt (1.8)

A geodesic flow—that is, the map sending (p, e) to (y(¢), yv(f))—preserves
the volume form of the bundle T''S of the unit vectors tangent to S. So, from
the Birkhoff-Khintchine theorem, we see that the left-hand sides of (1.7) and
(1.8) under the constraint 7— oo tend to the mean values of the functions X
and A on T''S, which equal zero according to (1.7) and (1.8). Hence the non-
negativity of K and A implies K =0 and A = 0. Since p and v were chosen
arbitrarily, W, is totally geodesic for every p. Lemma 1.4 is proved. 0

Now we can complete the proof of Theorem 1.

Let g and g’ be arbitrary points in the r;;,-neighborhood of S. Find p and
p’so that ge W, and g’e W,.. Connect p and p’ by some minimal geodesic
¥(), 0 =t =<1y, on S, and define the map w(?): W,—» W, by

w(1)(exXpp ¥) = eXP.y (1) (Lpy (1) (V).

From (1.1) it follows that w(¢)(r), for fixed r, is the geodesic, and that w(?) is
an isometry if all W, are totally geodesic. Therefore, from Lemma 1.4 we
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see that all maps w(?) are isometries. Let us connect g’ with w(?)(q) by some
minimal geodesic /(£). The fiber W, is totally geodesic, so /(£) C W,.. Con-
sider the film

w(£, 1) = w(t e (t)I(£)).

If £ is fixed then w (&, t) is geodesic, and from K =0 we easily see that the
vector field dan(&, t)/9¢ is parallel along this geodesic. Therefore w (£, f) is
locally isometric to the Euclidean plane and, in fact, is totally geodesic,
because /(£) is geodesic. So

p(q,q’) =Np2(p, ')+ p%(q’, w(ty))

and i: SXW,— V", where i(p’, exp, v) = exp,-(I,,/(v)) is an isometry in the
considered r;,-neighborhood of S. We can extend the given consideration
to a larger neighborhood of S, replacing S by some S, , with p < r;,. Thus
we can prove that the domain where V" is a direct product is open. Obviously
this region is closed. Therefore, from standard arguments we easily obtain
the claim of the theorem: V" is isometric to the direct product SxW,. [0

2. Proofs of Theorems 2, 3, and 4

According to Theorem 1, the claims of Theorems 2, 3, and 4 will follow
from the vanishing of the holonomy, that is, I, = id for every contractible
curve w C S (or w C D in Theorem 3). If w =990 for some surface Q in S
(or in D in Theorem 3) then, according to the Ambrose-Singer theorem, to
prove this it is sufficient to check that

R(e,e)v=0 2.1)

at all points p on {2 and all e; and e, of 7,2 C 7,,S and v of , S.

To simplify the notation we choose a Fermi coordinate system in some
neighborhood of an arbitrarily chosen p such that e; and e, are the first
coordinate vectors at p, e, is the direction of the axis, and v is the third
vector. Because S is totally geodesic for every e tangent to S at p, we have
(R(ey, €2)v,e) = 0. So, to prove (2.1} it is enough to check that, for every w
normal to S,

(R(ep, ex)v,w)=0. (2.2)

Choose such a w and denote it by e4 of our coordinate system.

Proof of Theorem 2 (due to G. Perelman). As explained above, to prove
Theorem 2 it is sufficient to verify (2.2) under the conditions of the theorem.
According to these conditions R34 34 =0, and nonnegativity of the curva-
ture leads to Rg4 34 =0 and R;, 34 = 0 for all 5. By direct computation one
gets (R(e, +e3, e5)(e;+ e3), e4) = 0 which, again because of the nonnegativ-
ity of the curvature, leads to

(R(e;te;,ez)(e +e3),eq) =0 (2.3)



270 VALERY MARENICH

or, if we take into account that by the same reasoning Ry, 14 = R3;,34 =0, to
R\, 34 = Ry3 14. In the same way, considering (R(e;+e4, e3)(e;+e4),e3) =0
we have Ry, 34 = Ry3, 24, and from the first Bianchi identity

R334+ Ry4,23+Ry3,42=0
we obtain the claim of the theorem:

Ry3,34=0.
Theorem 2 is proved. O
Proof of Theorem 3. In the same way as above, it is easy to see that Ry |, =

0 also leads to the vanishing of (2.3), which yields R,, 34 =0 and the claim
of the theorem. O

Proof of Theorem 4. Note that, since e; and e, are normal to S, we have

(R(ey, es)es, e3) = 0, (R(ey, es)es, e4) = 0,
and
(R(e, e3+eq)es, eztey) =0,
or
Ry4,53 = Ry3,45- (2.4)

Therefore, from the first Bianchi identity

Ry3 34+ R4, 23+ R342=0
it follows that
Ry2,34 = —2Ry4,23 = —2Ry3,43. (2.5)

Obviously the same is true for every s instead of 3, if the vector e, is normal
to S,
Ry3,54=—2Ry4 25 = —2Ry 42,

and for every s instead of 2 if the vector e, is tangent to S,
Rys,34=—2Ry4 53 = —2Ry3 4s. (2.6)
According to the conditions of Theorem 3, we have
(Ry3,13)44=0.
These conditions also imply that
(Ry3,34)13 = (Ry3,41)34 =0,
because from the nonnegativity of the sectional curvature of V" we have

|R13,34] = V|R13 31]| Ra3, 34| = 0(p)

and

[R3,41] = V|R13,31[|Rar, 14] = 0(0?),

correspondingly. Taking the derivative of the second Bianchi identity,
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(Ry3,13)4+ (Ry3,34)1+ (Ry3,41)3
=T34 Rg3,13+ 11 Rs3, 34 + T3 Rs3 41+ T34 Ris, 13+ 151 Ry, 34+ T35 Ry, a1

along the fourth coordinate we obtain at the point p (where all Christoffel
symbols are zero) the following equality:

0 = (1114 Rs3,34+ (T5)4(Rys, 34+ Rz, 41)- (2.7
In the Fermi coordinate system with axis of direction e; we have
D?*/3ef(ey) =0,

because all coordinate vectors are parallel along the axis. Therefore, from
R4,15 =0 we conclude that
(T =0.

As above, for e; normal to S, from

(R(ey, es+e5)es+eg,e)=0
we have
(R(ep, e4t+e5)es+eg,e3)=0

and Ry, 34+ R3 41 = 0. For e, tangent to S, from (2.5) we have

Ry 34+ Rs3 41 = 3R;3 4.

Therefore (2.7) gives
(T51)4Rs3,41 =0,

where summation is over all s such that e, is tangent to S. Interchanging 3
and 4, we have
(T3)3Rs4,31 =0,

which according to (2.4) and (2.5) gives
((T5)a+ (T3R5, 38 = 2(Rys,34)* =0,
M

where summation is over all s such that e, is tangent to S. In particular,
R 34 =0. This completes the proof. O
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