The Holonomy in Open Manifolds of Nonnegative Curvature

VALERY MARENICH

According to the well-known result by Cheeger and Gromoll [CG], every open (i.e. complete noncompact) manifold V^n of nonnegative sectional curvature $K_{\sigma} \geq 0$ is diffeomorphic to the space of the normal bundle νS of some totally geodesic submanifold S, called the *soul* of V^n . In this article we consider some relations between the geometry of V^n and the holonomy of this bundle. If V^n is isometric to the direct product $V^n = S \times W$ (where W is an open manifold of nonnegative sectional curvature, diffeomorphic to the Euclidean space), then the holonomy operator is the identity; that is, for every closed curve $\omega(s) \subset S$, $0 \leq s \leq 1$, the parallel translation I_{ω} along this curve maps every vector of $\nu_p S$ for $p = \omega(0)$ into itself. So $I_{\omega} = \mathrm{id}$ for every closed curve ω on S, and we will say that νS has trivial holonomy. One of the main results of this article is that the converse is also true (see Section 1).

THEOREM 1. If vS has trivial holonomy, then V^n is isometric to the direct product: $V^n = S \times W$.

This theorem was announced in [M1].

In Section 2 we find some conditions on the behavior of the curvature near S for a trivial holonomy that, according to Theorem 1, lead to the metric splitting. Originally these conditions (Theorems 2, 3, and 4 herein) were found with the help of some geometric construction and received rather long but straightforward proofs; see [M3]. Then a very short proof of Theorem 2 was presented to the author by G. Perelman, who suggested the possibility of finding a similar short and analytic proof for Theorem 4 also. That is done at the end of Section 2.

THEOREM 2. For every point p on S and every 2-dimensional direction σ that is normal to S at this point (i.e., $\sigma \subset \nu_p S$), if

$$K_{\sigma}=0$$

then $I_{\omega} = \mathrm{id}$ for every contractible curve ω on S and the universal cover \tilde{V}^n of V^n is isometric to the direct product.

Received June 19, 1995. Partially supported by CNP_q. Michigan Math. J. 43 (1996). If S is flat, then the universal cover \tilde{V}^n of V^n is isometric to the direct product and the holonomy along any contractible curve in S vanishes. The next theorem is a local version of this statement.

THEOREM 3. For every closed curve ω contractible in some flat domain D in S, the holonomy along ω vanishes. That is, for every point p of ω and every v of ν_n S,

$$I_{\omega}v=v.$$

One of the most important examples of an open manifold of nonegative curvature is the total space TS^n of the tangent bundle of the sphere S^n ; see [CG]. When O(n+1) has a bi-invariant metric of nonnegative curvature and O(n) acts on flat Euclidean space R^n by rotation, the map

$$\pi: O(n+1) \times \mathbb{R}^n \to O(n+1) \times \mathbb{R}^n / O(n) = TS^n$$

is a Riemannian submersion. Therefore, according to [O], TS^n admits a metric of nonnegative curvature. It turns out that the soul S of TS^n is unique, the holonomy of the soul's normal bundle is nontrivial, and all mixed curvatures vanish. It was shown in [M2] that for n=4 these are the only directions of zero curvature. For instance, let $\sigma(p,v,e)$ be the 2-dimensional direction at the point p generated by the vector e tangent to S, v being normal to S, and let $l_w(\rho)$ be the geodesic issuing from p in a direction $w \neq v$ normal to S. Then for the 2-dimensional direction $\sigma(p,e,v,w,\rho)$ obtained by the parallel translation of $\sigma(p,e,v)$ along $l_w(\rho)$ we have

$$K_{\sigma(p,e,v,w,\rho)} \ge k\rho^2$$

for some k > 0. For arbitrary open manifold V^n of nonnegative curvature, according to [CG, Thm. 3.1] we have

$$K_{\sigma(p,e,v,w,0)}=0.$$

Thus, in general

$$K_{\sigma(p,\rho,v,w,\rho)} = O(\rho^2).$$

Is it possible for an arbitrary manifold that the curvatures of this type be of greater order in ρ ? The next theorem shows that, in some sense, this is impossible.

THEOREM 4. If for every point p on S and every e, v, and w

$$K_{\sigma(p,\,e,\,v,\,w,\,\rho)}=o(\rho^2)$$

as $\rho \to 0$, then $I_{\omega} = \operatorname{id}$ for every contractible curve ω on S, the universal cover \tilde{V}^n of V^n is isometric to the direct product, and

$$K_{\sigma(p,\,e,\,v,\,w,\,\rho)}\equiv 0.$$

1. The Holonomy Operator and Short Maps on the Soul S

Recall that the soul S of the open manifold V^n of nonnegative sectional curvature is the limit of an equidistant family of compact totally convex sets C_t , $0 \le t \le T$, with the following properties:

- (1) int $C_T \neq \emptyset$;
- (2) for some $0 = t_0 < t_1 < \dots < t_m = T$ and every $t_{i-1} \le t < t_i$, $C_t = \{ p \in C_{t_i} | \rho(p, \partial C_{t_i}) \ge t_i t \};$
- (3) $\dim C_{t_{i-1}} < \dim C_{t_i}$; and
- (4) $S = C_{t_0}$.

From the fact that every C_t is totally convex one can deduce the existence of short maps, that is, of distance-nonincreasing maps $\phi_t \colon C_t \to S$; see [S]. With the help of these maps we can prove the following theorem.

THEOREM 1. If vS has trivial holonomy then V^n is isometric to the direct product $V^n = S \times W$, where W is an open manifold diffeomorphic to the Euclidean space of the corresponding dimension.

Proof. Let p be some point of S. Choose any vector v(p) of $v_p S$ and define the vector field v on S in the following way:

$$v(q) = I_{\omega_q}(v(p)),$$

where $\omega_q \subset S$ is any curve from the point p to the point q, and I_{ω_q} is the parallel translation along ω_q . Since the holonomy is trivial it follows that the field v is well-defined. Let $\psi_\theta \colon S \to V^n$ be the family of maps:

$$\psi_{\theta}(q) = \exp(\theta v(q)).$$

The vector field v is parallel along every curve on S. Therefore, from the Berger version of the Rauch comparison theorem (see [B]), it follows that there exists a θ_0 such that for all $0 < \theta < \theta_0$ the maps ψ_θ are short (i.e., distance-nonincreasing) maps, and that ψ_θ is an isometry if and only if for every geodesic $\gamma(t) \subset S$ the Synge film $\pi(s,t) = \psi_s(\gamma(t))$ is totally geodesic and flat. We reformulate the last property in the following way: Let p be a point on S, $e \in T_p S$, $v \in v_p S$, and $l_v(\theta) = \exp(\theta v)$. Let $e(\theta)$, $v(\theta)$ be two parallel vector fields along $l_v(\theta)$ such that e(0) = e and v(0) = v. Moreover, let $\sigma(p,v,e,\theta)$ be a 2-dimensional plane generated by $v(\theta)$ and $e(\theta)$. Then it is not difficult to prove that the map ψ_θ is an isometry if and only if

$$K_{\sigma(p,v,e,\theta)} = 0$$
 for all $0 \le \theta \le \theta_0$. (1.1)

LEMMA 1.1. If the holonomy of vS is trivial then, for all v and θ , all ψ_{θ} are isometries and (1.1) holds for all p, v, e, s.

Proof. For any given $\theta < \theta_0$, choose t such that $\psi_\theta \subset C_t$. Then the map $\phi_t \circ \psi_\theta \colon S \to S$ is the short one and is homotopic to the identity map. Hence we can conclude that ψ_θ is an isometry and that (1.1) holds for all $\theta < \theta_0$. But in this case the claim of the Berger theorem (stating that ψ_θ is a short map) is also true for $\theta_0 < \theta < \theta_1$, and we see (repeating the above arguments) that (1.1) holds for all $\theta < \theta_1$. Therefore the set of all θ such that (1.1) is true is an open set. Obviously, this set is also closed, and therefore (1.1) holds for all θ .

Lemma 1.2. All submanifolds $S_{\theta} = \psi(S)$ are totally geodesic.

Proof. The proof is obvious. If we have two points $p' = \psi_{\theta}(p)$ and $q' = \psi_{\theta}(q)$ on S_{θ} such that p and q are from S, then for $\gamma(t)$, which is the minimal geodesic from p to q lying on S, the upper edge of the Synge film $\pi(s, t) = \psi_{s}(\gamma(t))$ is the geodesic $\gamma_{\theta}(t) = \psi_{\theta}(\gamma(t))$ lying on S_{θ} . Therefore S_{θ} is totally geodesic. Lemma 1.2 is proved.

Consider the family of the submanifolds

$$W_p = \exp(\nu_p S),$$

which we will call *fibers*; W_p is the fiber over p. Let us arbitrarily choose two vectors, e from $T_p S$ and v from $v_p S$, and let $\rho > 0$. Construct the geodesic

$$\gamma(t) = \exp_p(te) \subset S$$

and the curve

$$q(t) = \psi_o(\gamma(t)).$$

Then $q(t) \in W_{\gamma(t)}$, and it is not difficult to verify that the vector $\dot{q}(t)$ is normal to the submanifold $W_{\gamma(t)}$ at point q(t). Denote by $A_{\rho}(t)$ the second fundamental form of $W_{\gamma(t)}$ corresponding to the normal $\dot{q}(t)$, and by $G_{\rho}(t)$ its trace:

$$G_{\rho}(t) = \sum_{i=1}^{d-1} (A_{\rho}(t)\bar{e}_i(t), \bar{e}_i(t)),$$

where $\bar{e}_i(t)$ is an orthonormal basis of $T_{q(t)}W_{\gamma(t)}$ consisting of the eigenvectors of the form $A_{\rho}(t)$,

$$A_{\rho}(t)\bar{e}_{i}(t) = \frac{D}{\partial e_{i}(t)}\dot{q}(t) = \lambda_{i}(t)\bar{e}_{i}(t)$$

 $(\bar{e}_i(t))$ is not necessarily continuous in t). We see that $D\dot{q}(t)/\partial\rho\equiv 0$, so we may assume that $\bar{e}_1(t)$ equals the vector $\partial/\partial\rho\equiv -\overline{q(t)}\gamma(t)$ and that $\lambda_1(t)\equiv 0$, where \overline{pq} denotes the unit vector (in the direction of the minimal geodesic pq at point p) connecting points p and q. To compute $\partial G_p(t)/\partial t$, let us introduce the special system of the Fermi coordinates in the following way: Let codim S=d-1, let the axis of the coordinate system be the geodesic $\gamma(t)$ on S that is simultaneously the dth coordinate line, and let the geodesic pq(0) be the first coordinate line. In this coordinate system all points q(t) have the following coordinates: $q^i(t)=\rho\delta_{1i}+t\delta_{id}$. By $e_i(\rho,t)$ we denote the coordinate vectors of this system at the point q(t) and choose $e_i(0,0)$ so that $e_i(\rho,0)$ coincides with $\bar{e}_i(0)$ for i < d, while $e_j(0,0)$ for $j \ge d$ generate $T_p S$. It is not difficult to prove that $e_i(0,0)$, i < d, generate $v_p S$. By definition $e_i(0,t)=I_{p\gamma(t)}(e_i(0,0))$. Therefore, $e_i(0,t)$, i < d, generate $v_{q(t)}S$, and $v_{q(t)}S$, and $v_{q(t)}S$, while $v_{q(t)}S$, and $v_{q(t)}S$, and

$$(e_i(\rho, t), e_i(\rho, t)) \equiv 0, \quad i < d \le j. \tag{1.2}$$

All S_{ρ} are totally geodesic submanifolds, so we have

$$\left(\frac{D}{\partial e_d(\rho,t)}e_i(\rho,t),e_j(\rho,t)\right) \equiv 0; \tag{1.3}$$

 $e_i(\rho, t)$ are coordinate vectors, so they commute. Therefore, from (1.3) it follows that

$$\frac{D}{\partial e_d(\rho, t)} e_i(\rho, t) \bigg|_{t=0} = \frac{D}{\partial e_i(\rho, t)} e_d(\rho, t) \bigg|_{t=0}$$

$$= \frac{D}{\partial e_i(\rho, 0)} \dot{q}(0) = A_\rho(0) e_i(0) = \lambda_i(0) \bar{e}_i(0). \tag{1.4}$$

LEMMA 1.3.

$$\frac{\partial}{\partial t}G_{\rho}(t) = -\sum_{i=2}^{d-1} (R[e_d(\rho, t), e_i(\rho, t)] + \lambda_i^2(t)), \tag{1.5}$$

where R[v, w] is the sectional curvature of the plane spanned by v and w.

Proof. Without loss of generality we may assume that t = 0. By definition,

$$G_{\rho}(t) = \sum_{i=1}^{d-i} (A_{\rho}(t)\bar{e}_i(t), \bar{e}_i(t))$$

and, if t = 0, then $\bar{e}_i(0) = e_i(\rho, 0)$, i < d, and $e_i(\rho, 0)$ is the orthonormal basis. Since $A_o(t)$ is symmetric, we have

$$\frac{\partial}{\partial t}G_{\rho}(t) = \frac{\partial}{\partial t} \sum_{i=1}^{d-1} (A_{\rho}(t)\bar{e}_{i}(t), \bar{e}_{i}(t))$$

$$= \sum_{i=1}^{d-1} \left(\frac{D}{\partial t}A_{\rho}(t)\Big|_{t=0} \bar{e}_{i}(0), \bar{e}_{i}(0)\right) = \sum_{i=1}^{d-1} \left(\frac{D}{\partial t}A_{\rho}(t)\Big|_{t=0} e_{i}(0), e_{i}(0)\right)$$

$$= \frac{\partial}{\partial t} \sum_{i=1}^{d-1} (A_{\rho}(t)e_{i}(\rho, t), e_{i}(\rho, t))\Big|_{t=0}$$

$$-2 \sum_{i=1}^{d-1} \left(A_{\rho}(t)e_{i}(\rho, t), \frac{D}{\partial t}e_{i}(\rho, t)\right)\Big|_{t=0}.$$

Therefore, from (1.4) we see that

$$\frac{\partial}{\partial t}G_{\rho}(t) = \frac{\partial}{\partial t}\sum_{i=1}^{d-1}(A_{\rho}(t)e_{i}(\rho,t),e_{i}(\rho,t))\Big|_{t=0} -2\sum_{i\leq 1}\lambda_{i}^{2}.$$

But

$$\frac{\partial}{\partial t} \sum_{i=1}^{d-1} (A_{\rho}(t)e_{i}(\rho, t), e_{i}(\rho, t)) \Big|_{t=0}$$

$$= \sum_{i=1}^{d-1} \left(\frac{D^{2}}{\partial t^{2}} e_{i}(\rho, t), e_{i}(\rho, t) \right) \Big|_{t=0} + \left(\frac{D}{\partial t} e_{i}(\rho, t), \frac{D}{\partial t} e_{i}(\rho, t) \right) \Big|_{t=0}. \quad (1.6)$$

The vector fields $e_i(\rho, t)$ along q(t) are the variation fields of d-coordinate lines:

$$e_i(\rho, t) = \frac{\partial}{\partial \theta} \psi_{v(\theta), \rho}(\gamma(t)),$$

where $v(\theta) = v + \theta e_i(0, 0)$. But all lines $\psi_{v(\theta), \rho}(\gamma(t))$ are geodesics. Therefore the vector fields $e_i(\rho, t)$ are Jacobi fields along q(t) and

$$\frac{D^2}{\partial t^2}e_i(\rho,t) = -R(e_i(\rho,t),e_d(\rho,t))e_d(\rho,t),$$

where R is the curvature tensor of V^n . Inserting (1.4) and the last equality into (1.6), we obtain the claim of the lemma.

Lemma 1.4. All submanifolds W_n are totally geodesic.

Proof. All values in (1.5) do not depend on the particular choice of the basis $\bar{e}_i(t)$, but only on the point $\gamma(t)$ and the vector $\dot{\gamma}(t)$ (if v from $v_p S$ and $\rho > 0$ are given). Let us assign

$$\sum_{i=2}^{d-1} (R[e_d(\rho, t), \bar{e}_i(t)] = K(\gamma(t), \dot{\gamma}(t))$$

and

$$\sum_{i=2}^{d-1} \lambda_i^2(t) = \Lambda(\gamma(t), \dot{\gamma}(t)).$$

Using the compactness of S, we see that the function $G_{\rho}(t)$ is bounded: There exists some constant K such that

$$|G_o(t)| \le K$$
 for all $-\infty < t < \infty$.

Therefore, for arbitrary T > 0, from Lemma 1.3 we have

$$\left| \frac{1}{2T} \int_{-T}^{T} K(\gamma(t), \dot{\gamma}(t)) dt \right| \le \frac{K}{T}, \tag{1.7}$$

$$\left| \frac{1}{2T} \int_{-T}^{T} \Lambda(\gamma(t), \dot{\gamma}(t)) dt \right| \le \frac{K}{T}. \tag{1.8}$$

A geodesic flow—that is, the map sending (p, e) to $(\gamma(t), \dot{\gamma}(t))$ —preserves the volume form of the bundle T^1S of the unit vectors tangent to S. So, from the Birkhoff-Khintchine theorem, we see that the left-hand sides of (1.7) and (1.8) under the constraint $T \to \infty$ tend to the mean values of the functions K and Λ on T^1S , which equal zero according to (1.7) and (1.8). Hence the nonnegativity of K and Λ implies $K \equiv 0$ and $\Lambda \equiv 0$. Since ρ and v were chosen arbitrarily, W_p is totally geodesic for every p. Lemma 1.4 is proved.

Now we can complete the proof of Theorem 1.

Let q and q' be arbitrary points in the r_{in} -neighborhood of S. Find p and p' so that $q \in W_p$ and $q' \in W_{p'}$. Connect p and p' by some minimal geodesic $\gamma(t)$, $0 \le t \le t_0$, on S, and define the map $\omega(t)$: $W_p \to W_{\gamma(t)}$ by

$$\omega(t)(\exp_p v) = \exp_{\gamma(t)}(I_{p\gamma(\tau)}(v)).$$

From (1.1) it follows that $\omega(t)(r)$, for fixed r, is the geodesic, and that $\omega(t)$ is an isometry if all $W_{\gamma(t)}$ are totally geodesic. Therefore, from Lemma 1.4 we

see that all maps $\omega(t)$ are isometries. Let us connect q' with $\omega(t)(q)$ by some minimal geodesic $l(\xi)$. The fiber $W_{q'}$ is totally geodesic, so $l(\xi) \subset W_{q'}$. Consider the film

$$\pi(\xi,t) = \omega(t)(\omega^{-1}(t_0)l(\xi)).$$

If ξ is fixed then $\pi(\xi, t)$ is geodesic, and from K = 0 we easily see that the vector field $\partial \pi(\xi, t)/\partial \xi$ is parallel along this geodesic. Therefore $\pi(\xi, t)$ is locally isometric to the Euclidean plane and, in fact, is totally geodesic, because $l(\xi)$ is geodesic. So

$$\rho(q, q') = \sqrt{\rho^2(p, p') + \rho^2(q', \omega(t_0))}$$

and $i: S \times W_p \to V^n$, where $i(p', \exp_p v) = \exp_{p'}(I_{pp'}(v))$ is an isometry in the considered r_{in} -neighborhood of S. We can extend the given consideration to a larger neighborhood of S, replacing S by some $S_{v,\rho}$ with $\rho < r_{\text{in}}$. Thus we can prove that the domain where V^n is a direct product is open. Obviously this region is closed. Therefore, from standard arguments we easily obtain the claim of the theorem: V^n is isometric to the direct product $S \times W_p$. \square

2. Proofs of Theorems 2, 3, and 4

According to Theorem 1, the claims of Theorems 2, 3, and 4 will follow from the vanishing of the holonomy, that is, $I_{\omega} \equiv \operatorname{id}$ for every contractible curve $\omega \subset S$ (or $\omega \subset D$ in Theorem 3). If $\omega = \partial \Omega$ for some surface Ω in S (or in D in Theorem 3) then, according to the Ambrose-Singer theorem, to prove this it is sufficient to check that

$$R(e_1, e_2)v \equiv 0 \tag{2.1}$$

at all points p on Ω and all e_1 and e_2 of $T_p\Omega \subset T_pS$ and v of v_pS .

To simplify the notation we choose a Fermi coordinate system in some neighborhood of an arbitrarily chosen p such that e_1 and e_2 are the first coordinate vectors at p, e_1 is the direction of the axis, and v is the third vector. Because S is totally geodesic for every e tangent to S at p, we have $(R(e_1, e_2)v, e) \equiv 0$. So, to prove (2.1) it is enough to check that, for every w normal to S,

$$(R(e_1, e_2)v, w) \equiv 0.$$
 (2.2)

Choose such a w and denote it by e_4 of our coordinate system.

Proof of Theorem 2 (due to G. Perelman). As explained above, to prove Theorem 2 it is sufficient to verify (2.2) under the conditions of the theorem. According to these conditions $R_{34,34} = 0$, and nonnegativity of the curvature leads to $R_{s4,34} = 0$ and $R_{3s,34} = 0$ for all s. By direct computation one gets $(R(e_1+e_3,e_4)(e_1+e_3),e_4) = 0$ which, again because of the nonnegativity of the curvature, leads to

$$(R(e_1 + e_3, e_2)(e_1 + e_3), e_4) = 0 (2.3)$$

or, if we take into account that by the same reasoning $R_{12,14} = R_{32,34} = 0$, to $R_{12,34} = R_{23,14}$. In the same way, considering $(R(e_1 + e_4, e_3)(e_1 + e_4), e_3) = 0$ we have $R_{12,34} = R_{13,24}$, and from the first Bianchi identity

$$R_{12,34} + R_{14,23} + R_{13,42} = 0$$

we obtain the claim of the theorem:

$$R_{12,34}=0.$$

Theorem 2 is proved.

Proof of Theorem 3. In the same way as above, it is easy to see that $R_{12,12} = 0$ also leads to the vanishing of (2.3), which yields $R_{12,34} = 0$ and the claim of the theorem.

Proof of Theorem 4. Note that, since e_3 and e_4 are normal to S, we have

$$(R(e_1, e_3)e_s, e_3) = 0,$$
 $(R(e_1, e_4)e_s, e_4) = 0,$

and

$$(R(e_1, e_3 + e_4)e_s, e_3 + e_4) = 0,$$

or

$$R_{14,s3} = R_{13,4s}. (2.4)$$

Therefore, from the first Bianchi identity

$$R_{12,34} + R_{14,23} + R_{13,42} = 0$$

it follows that

$$R_{12,34} = -2R_{14,23} = -2R_{13,42}. (2.5)$$

Obviously the same is true for every s instead of 3, if the vector e_s is normal to S,

$$R_{12,s4} = -2R_{14,2s} = -2R_{1s,42}$$

and for every s instead of 2 if the vector e_s is tangent to S,

$$R_{1s,34} = -2R_{14,s3} = -2R_{13,4s}. (2.6)$$

According to the conditions of Theorem 3, we have

$$(R_{13,13})_{44}''=0.$$

These conditions also imply that

$$(R_{13,34})_{14}'' = (R_{13,41})_{34}'' = 0,$$

because from the nonnegativity of the sectional curvature of V^n we have

$$|R_{13,34}| \le \sqrt{|R_{13,31}||R_{43,34}|} = o(\rho)$$

and

$$|R_{13,41}| \le \sqrt{|R_{13,31}||R_{41,14}|} = o(\rho^2),$$

correspondingly. Taking the derivative of the second Bianchi identity,

$$(R_{13,13})_{4}' + (R_{13,34})_{1}' + (R_{13,41})_{3}'$$

$$= \Gamma_{14}^{s} R_{s3,13} + \Gamma_{11}^{s} R_{s3,34} + \Gamma_{13}^{s} R_{s3,41} + \Gamma_{34}^{s} R_{1s,13} + \Gamma_{31}^{s} R_{1s,34} + \Gamma_{33}^{s} R_{1s,41}$$

along the fourth coordinate we obtain at the point p (where all Christoffel symbols are zero) the following equality:

$$0 = (\Gamma_{11}^{s})_{4}' R_{s3,34} + (\Gamma_{31}^{s})_{4}' (R_{1s,34} + R_{s3,41}). \tag{2.7}$$

In the Fermi coordinate system with axis of direction e_1 we have

$$D^2/\partial e_1^2(e_4)=0,$$

because all coordinate vectors are parallel along the axis. Therefore, from $R_{14,1s} = 0$ we conclude that

$$(\Gamma_{11}^{s})_{4}'=0.$$

As above, for e_s normal to S, from

$$(R(e_1, e_4 + e_5)e_4 + e_5, e_1) = 0$$

we have

$$(R(e_1, e_4 + e_s)e_4 + e_s, e_3) = 0$$

and $R_{1s, 34} + R_{s3, 41} = 0$. For e_s tangent to S, from (2.5) we have

$$R_{1s,34} + R_{s3,41} = 3R_{s3,41}$$
.

Therefore (2.7) gives

$$(\Gamma_{31}^s)_4' R_{s3,41} = 0,$$

where summation is over all s such that e_s is tangent to S. Interchanging 3 and 4, we have

$$(\Gamma_{41}^s)_3' R_{s4,31} = 0,$$

which according to (2.4) and (2.5) gives

$$((\Gamma_{31}^s)_4' + (\Gamma_{41}^s)_3')R_{1s,34} = \sum_s (R_{1s,34})^2 = 0,$$

where summation is over all s such that e_s is tangent to S. In particular, $R_{12,34} = 0$. This completes the proof.

References

- [B] M. Berger, An extension of Rauch's metric comparison theorem and some applications, Illinois J. Math. 6 (1962), 700-712.
- [CG] J. Cheeger and D. Gromoll, On the structure of complete manifolds of non-negative curvature, Ann. of Math. (2) 96 (1972), 413-443.
- [M1] V. Marenich, The metric structure of open manifolds of nonnegative curvature, Soviet Math. Dokl. 24 (1981), 595-597.
- [M2] ——, A metric of nonnegative curvature on the tangent bundle of two-dimensional sphere, Sibirsk. Mat. Zh. 27 (1986), 127-138 (Russian).
- [M3] ——, The holonomy in open manifolds of nonnegative curvature, MSRI preprint no. 003-94.

- [O] B. O'Neill, *The fundamental equations of a submersion*, Michigan Math. J. 13 (1966), 459-469.
- [S] V. Sharafutdinov, Pogorelov-Klingenberg theorem for manifolds homeomorphic to Rⁿ, Sibirsk. Mat. Zh. 18 (1977), 915-925 (Russian).

IMECC-UNICAMP Campinas SP Brazil