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An annulus properly embedded in a 3-manifold is said to be essential if it is
incompressible and not boundary parallel. An incompressible surface F in
a 3-manifold M is acylindrical if the closure of its complement contains no
essential annuli. Acylindrical surfaces play a special rule in 3-dimensional
hyperbolic geometry. For example, it is a consequence of Thurston’s work
that an acylindrical surface in a compact irreducible 3-manifold has a com-
plement that admits a hyperbolic metric with totally geodesic boundary [T1].

In this paper we will show that if M is a closed hyperbolic manifold and
F is an incompressible acylindrical surface that has large genus, then M has
large volume. An immediate topological consequence of this is that any 3-
manifold contains only finitely many acylindrical surfaces. This extends the
result, implicit in the theory of normal surfaces as developed by Haken, that
there are only finitely many incompressible surfaces of fixed genus in a closed
atoroidal 3-manifold [Ha]. Haken’s result is false without the atoroidal as-
sumption, since there are many 3-manifolds that contain infinitely many
nonisotopic incompressible surfaces. The simplest of these is the 3-torus,
with its many nonisotopic tori. Examples can also be constructed that are
hyperbolic 3-manifolds, such as those that fiber over the circle and have non-
cyclic second homology groups [T2]. These have incompressible surfaces of
unbounded genus, though only finitely many of any given genus.

Acylindrical surfaces also arise naturally in the study of finitely generated
groups. Recent work of Rips and Sela shows that the structures of arbitrary
finitely generated groups have parallels with the structure of 3-manifold fun-
damental groups. An acylindrical surface in a 3-manifold gives a splitting of
the fundamental group of the 3-manifold along a malnormal surface sub-
group. Sela has recently generalized the finiteness results obtained here to
obtain bounds on the number of malnormal splittings for a much larger class
of groups, including freely indecomposable groups with no 2-torsion [Se].
Sela’s methods are completely different.

DEerFiNITIONS. In a Riemannian manifold M we let d(x, y) denote the dis-
tance between two points x and y and B(x, r), the open ball of radius r
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around x. A surface is minimal if its mean curvature is zero. A minimal sur-
face is stable if its second variation of area is = 0. An embedded surface in
a 3-manifold M is incompressible if its fundamental group injects into the
fundamental group of M under the inclusion map. A properly embedded
annulus in a 3-manifold with boundary is essential if it is incompressible and
not boundary parallel. By a minimal plane we mean a complete simply con-
nected minimal surface. Hyperbolic 3-space is denoted H?>.

The following result, which follows from a theorem of Schoen [Sc], plays a
central role in the estimates we will obtain.

LEMMA 1. The principal curvatures of all complete stable minimal surfaces
in H3 are uniformly bounded in absolute value.

Lemma 1 applies more generally in a manifold whose sectional curvatures
are uniformly bounded above and below.

CoROLLARY 2. There is a constant s, > 0 such that a sphere of radius r < s
in H? has principal curvatures larger than that of any stable minimal sur-
face in H3.

The next lemma states that two disjoint stable minimal surfaces in H? that
are close at one point stay close in a large ball around that point.

LEMMA 3. Let P and Q be two disjoint complete stable minimal surfaces
in H3, and let x be a point on P. Given constants r >0 and ¢ > 0, there is a
6> 0 such that if d(x, Q)< é and y is a point on the component of PN B(x,r)
that contains x, then d(y, Q) < e. Moreover, 6 can be chosen so that P is Ccl-
close to Q at any such y in B(x,r).

Proof. If the first assertion fails, we can find an » > 0and e > 0, as well as a
sequence of stable minimal surfaces P;, Q; and points x;, y; on the same com-
ponent of P;NB(x;, r) such that lim;_,, d(x;, @;) =0 and d(y;, Q;) > e.

A standard argument shows that a subsequence of the surfaces {P;}, {Q;}
converges in H? to stable minimal surfaces Py and Q,. We present this argu-
ment briefly. After translating and rotating by a hyperbolic isometry, we can
assume that x; is a fixed point x in A3 and that the tangent planes of P; at x;
are constant. Lemma 1 implies that the principal curvatures of a complete
stable minimal surface in > are bounded in absolute value. Thus there is a
coordinate neighborhood V, of x with coordinates (!, 2, u?) in which x is
the origin and each P, is tangent at x to #> = 0. Each P; in some neighbor-
hood of x is a union of graphs over the u!-u? plane. We consider only the
component of {P;NV,} which meets x and one component of {Q;NV,} with
the property that lim;_, ., d(x;, Q;) = 0 for this component. The uniform cur-
vature bounds imply that the second derivatives of these graphs are uniformly
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bounded in V,, and that there is a neighborhood of x in the u'-u? plane over
which all P; are graphs tangent to the u'-u? plane with uniformly bounded
second derivatives. This implies that the graphs and their first derivatives are
uniformly bounded over a smaller neighborhood of x. The surfaces Q; sat-
isfy the same curvature bounds and, for / large enough, are also graphs with
uniformly bounded first derivatives over a neighborhood of x in the u'-u?2
plane. Ascoli’s theorem then implies the existence of convergent subsequences
of {P;UQ,} in a neighborhood U, of x that converge in U, to stable minimal
surfaces Py and Q. By repeating this argument in a collection of balls cover-
ing H? and taking a diagonal subsequence, we can arrange for {P;UQ;} to
converge in all of A3 to stable minimal surfaces Py and Q, (these surfaces
may not be properly embedded). Py and Q, intersect at x without crossing,
and the maximum principle for minimal surfaces then implies that P, and
O, have the same image everywhere in H°>.

All the points y; lie in a compact ball of radius r around x, so by passing
to a subsequence we can assume that the points y; are converging to a limit
point y on P. Since d(y;, Q;) = € for each i, it follows that d(y, Q) = €, a con-
tradiction since d(y, Q) =0. Thus 6 sufficiently small implies that d(y, Q) <e
at any point y on the component of PN B(x, r) that contains x, proving the
first assertion of the lemma. If the tangent plane of P; at y; is uniformly
bounded away from the tangent planes of Q; as i — o, then Lemma 1 im-
plies that P; and Q; must intersect near y; for large i, proving the second as-
sertion. O

The next lemma shows that two lifts P and Q of an acylindrical surface can-
not remain close on too large a set.

LEMMA 4. Let F be a closed, acylindrical, incompressible surface in a hy-
perbolic 3-manifold M, with e > 0 a constant. Then there is an r > 0 such
that if P and Q are two distinct lifts to H> of F and x € P, then for any y € P
withd(x,y)>r, d(y, Q) =e.

Proof. If the lemma is false, then there is a sequence of points {y;} in P with
d(x,y;) — o and d(y;, Q) < e. We will use these points to construct an essen-
tial annulus in the complement of F. Since F is compact, a subsequence of
{»;} has the property that «(y;) converges to a point y in F, where n: P— F
is the covering projection. We can assume, by passing to a subsequence and
moving the points y; slightly, that «(y;) =y for each i. Let a; denote the
shortest geodesic arc in H* which meets P at y; and whose other endpoint
lies in Q. Then the lengths of the arcs @; are uniformly bounded by ¢ and
their projections 7 (a;) converge to an arc @ in M with one endpoint at y and
the other endpoint also on F. By perturbing ¢; slightly, we can assume that
w(a;) is a fixed arc. For each pair of arcs g;, a; we can form a disk in H 3
bounded by a;, a; and arcs on P and Q connecting the endpoints of ¢; and a;.
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Projecting to M, we get an annulus in M, not necessarily embedded in or
missing F, whose boundary lies on F. This annulus is not homotopic into F
since its boundary components lift up to distinct components of the pre-
image of F. The annulus theorem [Ja] implies the existence of an essential
embedded annulus in the closure of (M — F), contradicting the assumption
that F is acylindrical. O

We now describe the local picture in A3 when two stable minimal planes lie
close together.

LEMMA 5. Let P, Q be disjoint complete stable minimal planes in H?, with
Xx a point in P. Given r > 0, there is a 6; > 0 (depending only on r) such that
ifd(x, Q) <, then:

(1) the component C, of PN B(x, r) containing x is homeomorphic to a
disk;

(2) the component C, of QN B(x,r) nearest to x is homeomorphic to a
disk; and

(3) if a complete stable minimal surface R in H?, disjoint from P and Q,
intersects the region between C, and C, in B(x,r), then it does so in
disks that are parallel in B(x,r) to C; and C,.

Proof. Since P and Q are minimal, they have nonpositive normal curva-
tures in H3. Morse theory implies that the restriction to P and Q of the dis-
tance function from any point has no critical points of index 2. Since P and
Q are simply connected, each component of the intersection of P and Q with
any geodesic ball in H3 is simply connected. Lemma 1 and Lemma 3 imply
that for 6, small, Q is C'-close to P in B(x, r). If R intersects the region be-
tween C; and C, in a component C3, then P and R also satisfy the conditions
of Lemma 3 and the lemma follows. O

The next lemma gives a lower bound for the area of an incompressible sur-
face in a hyperbolic 3-manifold in terms of its genus, and in addition an
upper bound for a least-area surface. It works equally well for immersed,
w-injective surfaces. This lemma was originally observed in an unpublished
work of Uhlenbeck [Uh].

LEMMA 6. The area of any closed incompressible surface of genus g in a
hyperbolic 3-manifold is greater than or equal to 2w (g —1). Furthermore, if
the surface is chosen to have least area in its homotopy class, then its area is
at most 4w (g—1). Thus the area of a least-area surface F satisfies

2w(g—1) < area(F)<4=n(g—1).

Proof. By [SY] or [SU] there is an immersed minimal surface F that mini-
mizes area among all homotopic surfaces. Let A;; denote the components of
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the second fundamental form of F, and let R;; denote the components of the
sectional curvature of M. Using (as in [SY]) the formula for the second vari-
ation of area for a stable minimal surface in a 3-manifold implies that, for
any normal variation,

f(R13+R23+h%1+h§2+2h122)f2dusf Vf 2 dv,
F F

where f- N gives a normal variation if N is a unit normal.
Setting f =1 and noting that R;3 = R,3 = —1 in a hyperbolic 3-manifold,
we have:

f 2+ hy+2h—2 dv < 0.
F
Since hy; + hy; = 0 for a minimal surface, we have

f 2h% +2hd dv < f 2 dv =2 area(F).

F F
The Gauss-Bonnet theorem and the Gauss formula give
f R12+h11h22'—h122 dv = ZWX(F)
F
R, = —1and hy; = —h,,, so for a minimal surface in a hyperbolic manifold:
f h2 4+ b dy = f —1dv—2mx(F) = —area(F)— 2 (F).
F F

Hence
area(F) = —area(F)—2xx(F),

=> —7mx(F).
Since x(F) =2—2g, where g = genus(F),
area(F)=2n(g—1).

Furthermore, the Gauss-Bonnet theorem implies that for any minimal sur-
face F in a hyperbolic manifold,

f“hfl“hfz—ldv=2WX(F),
which implies that '
area(F) = L—hﬁ —h} dv—2ax(F) < —27x(F) = 4w (g —1).
Thus, any least-area surface of genus g has area between 27(g—1) and

47(g—1). Any homotopic surface has area no less than the minimizing rep-
resentative in its homotopy class, and the lemma follows. 0
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Note that the area of a totally geodesic hyperbolic surface F is 47(g—1).
Totally geodesic surfaces are always least-area in their homotopy classes, as
can be seen by considering the covering space corresponding to their funda-
mental group. Thus the second inequality is sharp.

We now proceed to relate the volume of a closed hyperbolic 3-manifold
to the genus of an incompressible surface embedded in it.

LEMMA 7. There is an upper bound to the genus of an acylindrical surface
in a hyperbolic manifold M. The bound depends only on the volume of M.

Proof. Let M be a hyperbolic manifold of finite volume. Suppose that F;is
a sequence of closed acylindrical surfaces in M with genus(F;) — c. We can
minimize in the homotopy class of each F; to obtain a sequence of least-area
surfaces, which we continue to denote by {F;}. These least-area surfaces are
embedded [FHS], and by Lemma 6, area(F;)— o as i — . Since F; is in-
compressible and acylindrical, the intersection of F; with a horocyclic torus
T cutting off a cusp of M is a collection of simple curves bounding disks on
F;and on 7. A null-homotopic simple closed curve on 7 bounds a disk on T
of area less than area(7"). Any least-area disk with boundary on T and area
less than area(7") must remain within a fixed neighborhood of T, the radius
of this neighborhood being determined by the monotonicity formula for
least-area surfaces in hyperbolic space. Thus the geometry of a hyperbolic
cusp implies that an area-minimizing sequence of surfaces in the homotopy
class of F; remains in a fixed compact submanifold of M.

Because all of the surfaces {F;} lie in a fixed compact submanifold of M,
area(F;) is unbounded in an open ball U in M around some point x. Let U’
be a lift of U to the universal cover H?> of M. The pre-images of the surfaces
{F;} have unbounded area in U’ as i — . Let P, be a lift of F; to H3. P;isa
least-area plane [FHS]. The monotonicity formula for least-area surfaces,
as in [HS, Lemma 2.3], implies that there is an upper bound to the area of
the intersection of P; with U’, so that there is a bound on the number of
components of P; in U’, independent of i. Thus for each i we can pick a pair
of lifts P; and Q; of F; to H? such that d(P,NU’,Q;NU’)=0. Let p,; be a
point in P;NU’ such that lim;_,, d(p;, Q;) = 0 and Q; is the closest to p; of
all the distinct pre-images of F; in H>. Given any constant 6, > 0, Lemma 3
implies that there is a sequence of constants r; with lim;_, ,, r; = o such that
P; and Q; are within distance 6, on a ball B(p;, r;) of radius r;. After pass-
ing to a subsequence, we can assume also that d(p;, Q;) is sufficiently small
so that Lemma 5 applies to P; and Q; on a ball of radius ;. Lemma 4 im-
plies that there are constants R; such that, at each point outside a larger ball
B(pi, R)), the two lifts P; and Q; have distance > 6;. As in Lemma 5, let C;;
denote the component of P;N B( p;, R;) containing p;, and let C; , denote the
component of Q;NB(p;, R;) closest to p;.

Define the set I'; C P; to be the set of points {ye C; ;: d(y, Q;) = 6,}. The
set T} lies in the ball of radius R; in H? around p; and outside the ball of
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radius r;. Let s, = min{6,/4, 5o}, where s, is the constant in Corollary 2. For
yeT}let TB(y,s;) denote the ball of radius s; in M that is tangent to P; at y
and lies between P; and Q;. The ball TB(y, s,) is disjoint from Q; because
d(y, Q;) > 6, > 2s,, and it intersects P; only at y since the curvature of P; is
less than that of aTB(y, s;). Since Q; is closest to P; at y, TB(y, s;) is also
disjoint from all other lifts of F.

Let {y;;} be a maximal collection of points on I; such that the balls
TB(y;,j,s)) have centers that are spaced at least 25, apart and are thus dis-
joint. The diameters of the sets I'; are unbounded as i — oo, since if they were
uniformly bounded there would exist minimal surfaces in A3 with bound-
aries inside a fixed diameter ball but with interiors protruding outside that
ball; such surfaces would contradict the maximum principle for minimal
surfaces. It follows that the number of points {y; ;} goes to infinity with 7,

CLamM 8. The balls TB(y; j, 51) project to disjoint balls in M.

Proof. If not, two balls TB(y; 1, ;) and TB(y; », 51), disjoint in H?3, project
to overlapping balls in M. Then there is a covering translation = of A3 with
7-TB(y; 1, 51)NTB(y;, 2, 51) # 0. Since d(P;, Q;) = 6, > 25, at y; yand y; ,, and
since Q; is the closest plane to P; at any y; ;, 7 must preserve both P; and
Q;, so that 7estab(P;)Nstab(Q;). A disk can be constructed in H> whose
boundary is a geodesic connecting y; ; to y; , on P;, two geodesic arcs from
P; to Q; of length é,, and a geodesic arc on Q;. The two edges of this disk are
identified by 7, so that it projects to an essential annulus in A whose bound-
ary lies on F but which cannot be homotoped into F (rel boundary). This
contradicts the assumption that F is acylindrical. O

Lemma 7 now follows, since as i — oo there is an increasing number of dis-
joint radius-s; balls in M, eventually having volume exceeding the volume
of M. O

If one considers only incompressible surfaces of a fixed genus, then it is im-
plicit in the theory of normal surfaces (as developed by Haken) that there
are finitely many such surfaces in a closed atoroidal 3-manifold [Ha; Sch].
This result does not assume the acylindrical property. We give a short geo-
metric proof of this result here.

LEMMA 9. Let M be a finite-volume hyperbolic 3-manifold. Then M con-
tains finitely many closed incompressible surfaces of a given genus, up to
isotopy.

Proof. If not, let {F;} be an infinite sequence of nonisotopic closed incom-
pressible surfaces of a fixed genus. If M is compact, then we can isotope
each F; to be area-minimizing in its isotopy class using the results of [FHS].
If M has cusps, an area-minimizing sequence of surfaces in the homotopy
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class of F; remains in a fixed compact submanifold of M, as in the proof of
Lemma 7.

Now let xe M be a limit point of the sequence of surfaces. Passing to a
subsequence, we can assume that the tangent planes of the {F;} are converg-
ing to a tangent plane at x. Since the area and curvatures of {F;} are both
uniformly bounded, an application of Ascoli’s theorem (as in Lemma 3)
shows that there is a convergent subsequence in a neighborhood of x. Re-
peating this process in a sequence of neighborhoods and taking a diagonal
subsequence gives a subsequence that converges smoothly everywhere in M.
Surfaces far out in this sequence are C*-close and therefore isotopic, a con-
tradiction. O

We can obtain a stronger result, applying to incompressible surfaces of any
genus, if we add the acylindrical assumption.

THEOREM 10. Let M be a compact, orientable 3-manifold. Then M con-
tains finitely many acylindrical incompressible surfaces, up to isotopy.

Proof. If M is reducible, then any incompressible surface can be isotoped
off the reducing spheres, so it suffices to prove the result for each irreducible
part. Similarly, if M has boundary we can assume that the boundary is in-
compressible, as otherwise we can do compressions and any incompressible
surface can be isotoped off of the compressing disks. If M is irreducible and
non-Haken then it contains no incompressible surfaces. For Haken mani-
folds with a trivial torus—annulus decomposition, we apply Thurston’s geom-
itrization theorem and consider the cases of the various geometries. If M is
hyperbolic, the theorem follows from Lemma 9. If M is Seifert fibered, has
the SOL geometry, or is an /-bundle, then incompressible closed surfaces are
either vertical or horizontal [Wa] and are never acylindrical. If M has a non-
trivial torus-annulus decomposition and an incompressible surface inter-
sects an essential torus or annulus, then it does so in essential curves and is
not acylindrical. So the theorem reduces to searching for acylindrical sur-
faces in finite-volume hyperbolic manifolds, and then follows from Lemmas
7 and 9. O

REMARKS. The results obtained for hyperbolic manifolds can be extended
in a straightforward manner from hyperbolic manifolds to compact nega-
tively curved 3-manifolds. D. Gabai has pointed out that Theorem 10 can
also be obtained using techniques of branched surface theory, though the
result had not previously been observed.
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