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1. Introduction

A rectifiable arc A4 in the complex plane is usually assumed to be parameter-
ized by arc length along A. The geometric properties of 4 are then described
in terms of the arc-length measure on A. A basic result of the theory is the
well-known fact that a rectifiable arc has a tangent almost everywhere with
respect to arc-length measure. Our purpose in this paper is to characterize
those arcs that have a tangent almost everywhere with respect to Hausdorff
linear measure. To this end we introduce a dyadic parameterization of curves,
applicable to nonrectifiable Jordan arcs, and our characterization is in terms
of this parameterization.

There are many ways of defining a tangent at a point (see Section 3, for
example). We shall say that a curve has a tangent at a point when the follow-
ing definition holds.

DEFINITION 1. Suppose that A={A(x); 0=<x<L} is a Jordan arc in the
plane. For 0 < xo < L we say that the real axis is tangent to A at 0 = A(x,) if
for each 6 >0 there exists » > 0 such that for z=A(x) with |z|<r, x < xg
implies that |arg z — | < § and x > x, implies that |arg z| < §, for appropriate
choice of the argument. The arc A has tangent line 7 at arbitrary z,=A(x;)
if, after a translation of z,to 0 and rotation about the origin taking 7 to the
real axis, the real axis is tangent to the transformed curve at 0.

The connection between rectifiability of curves and function theory is the
theorem of F. and M. Riesz, which states that for rectifiable Jordan curves,
harmonic measure and arc length are mutually absolutely continuous: If
f is a conformal mapping of the interior of the rectifiable curve C onto the
interior of the unit disk, extended continuously to a homeomorphism of the
boundaries, then sets of Lebesgue measure zero on the unit circle correspond
to sets of arc-length measure zero on C, and conversely.

In the following, the word “curve” shall always denote a closed Jordan
curve; otherwise we use the word “arc”.
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If an arc A4 is not rectifiable, then the geometry of A is often described in
terms of Hausdorff measures [F1]. (If A is rectifiable then arc-length measure
is the same as the Hausdorff A; measure, which is also known as linear mea-
sure.) However, there is apparently no general “canonjcal” parameterization
of nonrectifiable curves which provides geometric information, although
there are parameterizations that are useful for special purposes. For exam-
ple, quasi-self-similar curves may be parameterized in terms of the Hausdorff
measure of their dimension [F2, Thm. 14.17]. Also, Morse [Mo] has devel-
oped a general parameterization known as p-length with applications to the
calculus of variations.

In this paper, our approach is in the spirit of the book of Alexandroff and
Reshetnyak on irregular curves [AR], in that polygonal approximations to a
curve are used. As background we cite the following results of Besicovitch
and McMillan, respectively:

(1) If the arc 4 has a tangent at each point except for a set of linear mea-
sure zero (which we write as a.e. (A)), then A has o-finite A; measure,
and in particular is of Hausdorff dimension 1.

(2) If T is the set of points on a closed Jordan curve at which there is a
tangent, then harmonic measure and linear measure are mutually ab-
solutely continuous on 7.

The problem of characterizing the tangent set of an arc is related to the
problem of characterizing the set where a function of a real variable is dif-
ferentiable. The result in this direction which interests us is the following
theorem of Stein and Zygmund [SZ], the important point of which is that
there is no uniformity in either of conditions (a) or (b).

THEOREM A. Let f(x) be a real-valued function defined on R'. Then f has
a derivative at almost every point on a set E if and only if both

(@) f(x+1)=2f(x)+f(x—1t)=0(t) as |t| 0, and
(b) (26| f(x+8)=2f(x)+f(x—1)|*dt/|t}| < oo

Sfor almost every x in E.

Motivated by Theorem A and by work of Beurling and Carleson, Bishop
and Jones [BJ] have obtained the following result, of which we will make
use. We write D(z, t) to denote the disk of radius ¢ centered at z.
DeriNiTION 2. For z on a Jordan arc A4, let

. dist(¢, L
B(z,t) = lnf{sup # teAND(z, 4:)}.
L
where the infimum is taken over all lines L passing through D(z, ¢).

THEOREM B. Except for a set of A| measure 0, z € A is a tangent point of A
if and only if

1
S B%(z, t)ﬁ < oo,
0 t
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In [AP, Thm 3.10], a “dyadic” version of Theorem A was proved, and in
[AL] results were established for curves using a geometric version of the
second difference which is uniform for the curve. In Section 2 of the present
work we shall define the aforementioned dyadic parameterization z(x) for a
Jordan arc. In Section 3 we shall define the notion of an approximate tan-
gent and establish a condition that an approximate tangent be a tangent. In
Section 4, we show that a geometric “square-function condition” which is
expressed in terms of the parameterization implies the existence a.e. (A;) of
an approximate tangent. We also show that if A is a quasi-arc then the con-
dition is sufficient for having a tangent a.e. (A;). In this case the condition
also implies that the parameterization is absolutely continuous - that is, that
sets of measure zero on the parameter domain [0, 1] correspond to sets of
linear measure zero on the arc, and conversely. (This terminology is not stan-
dard; some prefer to say that the parameterization has the Luzin property.
See for example [Sa, p. 224].) In Section 5 we relate the square-function con-
dition at a point in the tangent set to Definition 2, and use Theorem B to show
that the condition is necessary a.e. (A;) on the tangent set. We also derive
absolute continuity properties of z(x) with respect to harmonic measure.

We thank the referee for his perceptive comments on the first version of
this paper.

2. A Dyadic Parameterization

Suppose that C is a closed Jordan curve in the plane. We select two points
on C and thus divide C into two subarcs. The following procedure will yield
a (dyadic) parameterization of each of the two subarcs, and thus a parame-
terization of C. Many properties of this parameterization will depend on
the choice of the two starting points. However, we shall see that the prop-
erties relevant to having a tangent almost everywhere (A;) will not depend
on the choice of endpoints. The situation is similar to that of dyadic BMO
[GJ], where the advantages greatly outweigh the drawbacks.

Now let A={A(¢); 0<t =<1} be a Jordan arc in the plane given by some
parameterization A(¢). This parameterization determines a direction along
A, and we say that A(¢;) is to the left of A(#,) if ¢, <?,. We use a bisection
procedure in order to define a new parameterization z(x) for A. We shall
first approximate A by a certain sequence of polygonal paths {P, = {P,(x),
O0<x=<1}, n=0,1,2,3,...}. The points {a(n, k), 0 < k <2"} will be the cor-
ners and endpoints of P,. Define these points inductively as follows. Let
a(0,0) =A(0) and a(0,1) =.A4(1) (we are assuming that these points are dis-
tinct). If a(n, k) and a(n, k+1) are defined, let a(n+1,2k)=a(n, k) and
a(n+1,2k+2)=a(n,k+1). Let L be the perpendicular bisector of the chord
C(n, k) from a(n, k) to a(n, k+1), and define a(n+1, 2k+1) to be the first
point of intersection of 4 with L when moving along A from a(n, k) to
a(n, k+1). Now define P, = UZ_4 C(n, k) and P,(x) to be the piecewise lin-
ear parameterization of P, such that P,(k/2") = a(n, k). Next we define z(x)
at the dyadic points by z(k/2")=a(n,k) for 0<k=<2", n=0,1,2,3,....
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Note that, for dyadic points, z(x) is monotone along A in that x; < x, im-
plies that z(x;) is to the left of z(x;).
We need the following simple observations:

If |a(n,k)—a(n,k+1)|>46 then
la(n+1,2k+1)—a(n+1, 2k)| (2.1)
=|a(n+1,2k+1)—a(n+1,2k+2)|>6/2.

Given e > 0, there exists § > 0 such that for z, z’ on A with
|z—2z’| <8, the subarc of 4 between z and z’ has diameter (2.2)
less than e.

For x € [0, 1] and for integer n =1, define the integer «,(x) by x € [,,(x)/2",
(kn(x)+1)/2"). Similarly, for z on A4, define the integer k,(z) as that value
for which z is on the arc of A between z(k,(z)/2") and z((k,(z)+1)/27),
including the left but not the right endpoint.

We now extend the function z(x) to all of [0, 1]. Fix xe [0, 1], x not dy-
adic. For each integer n=1, let ¢, be such that A(z,) =z(x,(x)/2"). The
sequence {Z,} is monotone increasing with limit #, and we define

z=A(t)= lim A(¢,) = lim z(%) = z(x), (2.3)
the existence of the second limit following from that of the first.

The function z maps [0,1] onto A. To see this, let z on A4 be given and
consider the sequences {#,} and {s,} defined by

kn(z) k,(z) +I)

n— oo n— oo

2" 27

These sequences are monotone increasing and decreasing with limits # and
s, respectively. Suppose there exists e >0 with |A(#) —z|>e. Then by (2.2)
there exists 6 > 0 with

A(tn)=z< ) and A(s,,)=z<

|A(2,)—A(s,)|>6 forall n. (2.4)
Now choose N such that for all n= N,
|A(t,) —A(2)|<8/10 and |A(s,)—A(s)| < 6/10. (2.5)

By (2.1) and (2.4), either |A(#n41) —A(fn)| > 6/2 or |A(sn41) — A(sn)| > 6/2.
Assume that the first inequality holds. Then

|A(tn41) =AW = | Altns1) — A(ty)| — |Atn) — A(1)| > 6/2— 5/10 = 45/10,

which contradicts (2.5). Thus we have

z=A(t)= lim A(Z,) = lim z(m) =z(x) (2.6)

21’1

n— o0 n— oo

for x= 1imn_,m(kn(z)/2”). Equation (2.3) and (2.6) define a strictly mono-
tone function 7 = #(x) from [0, 1] onto [0, 1], which must then be a homeo-
morphism. Then z(x) = A(¢(x)) is a homeomorphism of [0, 1] onto 4. Using
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(2.2), it may be seen that the functions P,(x) converge uniformly to z(x)
on [0, 1].

Example 1: Suppose that A4 is the standard von Koch snowflake, which is
constructed from the interval [0, 1] by replacing the middle third of the inter-
val by a “tent” with sides of length 1/3 and iterating the procedure [F1, Chap.
9]. Then z(x) is the parameterization of the snowflake in which the digits in
the base-4 expansion of x locate the sequence of self-similar pieces of the
snowflake which contain the point z(x). This parameterization is Holder
continuous with exponent (log3)/(log4). It is not absolutely continuous.
Note, of course, that the standard snowflake has a tangent at no point.

Example 2: Let A consist of two line segments of length 1 and V3, meeting
at a right angle. The corner on A will correspond to the point x, which has
binary expansion 0.101010... . The parameterization z(x) is Lipschitz con-
tinuous on each closed interval not containing x,, and is Holder continuous
at xo with exponent (log 3)/(log4). The parameterization is absolutely con-
tinuous on [0, 1].

These examples show that the absolute continuity of z(x) and of x(z) de-
pend on the geometry of A, as we shall see in Section 3.

The parameterization z(x) is related to the geometry of A as follows. Recall
that C(n, k) is the chord from a(n, k) =z(k/2")to a(n, k+1)=z((k+1)/2").
We inductively assign arguments S(n, k) to the segment C(n, k) in such a
way that for n=0,1,2,3,... and 0<k =<2"—1,

_ k+1\ [k
S(n,k)—arg(z( X ) z(z,,)),

|S(n+1,2k)—S(n, k)| < /2,

and
S(n+1,2k)+S(n+1,2k+1)
2

=S(n, k). 2.7

DEerFINITION 3. Given z on A, for n=1 define

Hn(z) =S(n, kn(z)) —-S(n—1, kn_l(Z))-
Then

S(n, kn(2) = 3 6,(2)+S(0,0).
i=1

J=

One may consider the values of S(n, k,(z)) as values in a random walk with
differences 8,,(z); the behavior of these differences will reflect the geometry
of A.

3. Tangents to Curves

For an arc C and points z; and z, on C we write a-(z;, 2,) to denote the arc
of C between z; and z,. We define two weak forms of a tangent to a curve 4
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at a point z on A. (Compare these to the case when A is the graph of a func-
tion considered in [AP].)

DEFINITION 4. A has a dyadic tangent 7;(z) at z on A4 if
lim S(n, k,(2)) =T4(z)

n—00

exists.

Using the dyadic parameterization z(x), one may (as mentioned in the pre-
vious section) consider the values S(n, k,(z(x))) to be values of a random
walk. Then the following proposition, which we state without proof, will
follow from a theorem of Gundy [Gul].

ProposiTION 1.  Suppose that A is a Jordan arc with dyadic parameteriza-
tion z(x), and that {0,(z)} is as in Definition 3. Then, except for a set of
Lebesgue measure zero on [0,1], A has a dyadic tangent at 7 =z(x) if and
only if

S 62(z(x)) < oo.
n=1

The goal of this paper is to prove a version of this result involving linear
measure on A and tangents as defined in Definition 1.

Given two arcs A and I', we shall say that I" preserves order on A if for
each pair z’ and z” on I'N A, each point of I'N A4 between z’ and z” on I'' is
between z’ and z” on A.

DEFINITION 5. A4 has an approximate tangent 7;,(z) at z on A if there exists
a rectifiable curve I" that preserves order on A4, that has a tangent 7" at z on
I', and that satisfies
A(TNAND(z,r))
A(T'ND(z, 1))

-1 as r—-0.

We note that on I', A, coincides with arc length. If 4 has a tangent at z then
it also has a dyadic tangent at z, although the converse is false (see [AP]).
On the other hand, the existence of a tangent does not imply that of an ap-
proximate tangent, and the existence of an approximate tangent does not
imply that of a tangent. However, if A is a quasi-arc and if I" satisfies a
certain regularity condition at z, then the existence of an approximate tan-
gent does imply that of a tangent. We recall that A is a quasi-arc if there
exists a constant ¢ > 0 such that, for z separating z’ and z” on A4,

|z’ —z|+|z—2"|
lzt_zlrI

<c. 3.1

A closed Jordan curve is a quasi-circle if (3.1) holds for z on the arc of
smaller diameter between z’ and z”. A rectifiable arc I' is Ahlfors regular if
there exists a constant ¢’ > 0 such that, for each disk D(z, r),
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A(I'ND(z,
i : 2, _ .

We need a local version of this notion.

DEFINITION 6. A rectifiable arc I' is locally Ahlfors regular at z € I" if there
exists a constant M(z) > 0 such that, for all r >0,

A('NDz, 7)) _
r

M(z).

LemmMma 1. A rectifiable arc T is locally Ahlfors regular at almost every
point.

Proof. Let
E= [zel‘: im A,('N Dz, 1) =°°},
r—0 r
and for C >0 let
— A(I'ND(z,
EC={zerlim 1 p (2 r)) >C},
r—-0

so that EC E¢ for all C > 0.
Suppose that ze E- and that n is a positive integer. Then there exists
r(n,z) <1/n such that

A(I'ND(z,r(n,z))
r(n,z)
The collection of all of these D(z, r(n,z)) is a Vitali class for E.. Thus,

by the Vitali covering theorem [F1, p. 11], for any e > 0 there is a disjoint
sequence of these disks {D(zg, ry)} with

AI(EC) < (Ek Zrk) + €.

>C.

Thus
A(E) < Ay(Ee) < (Sx 2 +e< 2 (S AT N D2y ) +e < -2 Ay(T) e

Since C and ¢ are arbitrarily large and small respectively, the lemma is
proved. O

THEOREM 1. Suppose that A is a quasi-arc with approximate tangent
1,,(z) at z, and that the corresponding rectifiable curve I' is locally Ahlfors
regular at z. Then A has a tangent at z.

Proof. Suppose that z=0, and let M = M(0) be as in Definition 6. Suppose
that A does not have a tangent at 0. We may assume that the tangent to the
rectifiable I" at O is the real axis. Since the real axis is not tangent to A4 at
0, there exists 6 > 0 such that for any r > 0 there exists { on 4 with |{|<r,
but for which the requirement in Definition 1 fails. Fix e with 0 <e<1/2M.
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Choose R> 0 to be so small that, for z on I' with |z|<R, |argz|<8/2 or
|arg z—m| < 8/2, according as Re z is positive or negative, and such that for
S<R
A (T'NAND(O0, s))
A (T'"ND(0, 5))
Now we may choose { on A with |{|<r<R/2cM and |arg {|> 8, where c
is as in (3.1). Let R’=cMr and let z’ and z” be (respectively) the rightmast

and leftmost points of I'N A which are separated by {. We may assume that
z'e a,(0, ). Then, by (3.1),

2’| <clt|=R/M < R'<R/2.

>1—e. (3.2)

Now I'" preserves order on A, so that ap(z’,z”) CI'\ 4 and we have
A (T\NA)YND(0,2R")) <eA{(I'ND(0,2R")) <2eMR’<R’. (3.3)

If [z”| =2 2R’ then A;((I'\ A)N D(0,2R’)) = 2R’'—|z’|= R/, Wthh contradicts
(3.3). Thus |z”|<2R’, and using (3.3) again,

|z'—z"| < Ay(ap(z’, 7)) < A ((T\ A)N D(0, 2R")) < e2MR’ = e2M ?cr.

Since |z’| <R and |z”|<R, we also have |{ —z’|>rsin(6/2) and |{—z"|>
r sin(6/2), so that

|¢— z|+|g“ z”| 2rsin(6/2)__sin(6/2)

|z’ — e2M2cr ~ eM?c
Since € may be arbltrarlly small, this contradicts the fact that A is a quasi-
arc, and so the theorem is proved. O

The proof of Theorem 1 requires only that (3.1) holds when z’ and z” are
points at which I" and A4 diverge, so that the condition that 4 be a quasi-arc
may be weakened.

We now turn to the question of absolute continuity. From the construc-

tion above we have
. k k+1 1
dlam(aA(z(F), z( o ))) = o 34)

which suggests that x(z) is absolutely continuous on 4. However, (3.4) itself
does not ensure this. One may construct a homeomorphism z(x) of [0,1]
onto an arc A for which a Cantor set of positive measure in [0, 1] corre-
sponds to a standard Cantor 1/3-set of measure zero on AN[0, 1], but for
which (3.4) still holds. (We thank D. G. Larman for this example.) How-
ever, if A is a quasi-arc we have the following proposition, the proof of
which follows a suggestion of C. A. Rogers.

PROPOSITION 2. Suppose that z(x) is a homeomorphism of [0,1] onto a
quasi-arc A for which (3.4) holds. Then x(z) is absolutely continuous on
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A. That is, sets of linear measure zero on A correspond to sets of Lebesgue
measure zero on [0,1].

Proof. Given z and z’ on A, let p=k/2" and g=(k+1)/2" be such that
[ p, q] is a maximal dyadic interval contained in [x(z), x(z’)]. Then

|x(z) —x(z)| < 3| p—q| =3 diam(a,(z(p), 2(q))) = 3 diam(a,(z, z')).

Suppose now that EC A with A;(E)=0. Let {B;};~, be a collection of
closed sets in the plane which cover E with X72 ; diam(B;) <e. Using the
parameterization of A, let z; and z;,, be the first and last points of A con-
tained in B;. Since A is a quasi-arc, there is a constant X =1 such that for
each i

diam(a4(z;, z; +1)) < K|z;— 2i 41| =< K diam(B;).
Then we have

S| x(zi) —x(z; +1)| = 3K 3 diam(B;) < 3Ke.
i=1 i=1

Since x(E) C Ui~ [x(z;), x(z;+1)], it follows that x(E) has Lebesgue mea-
sure zero, as required. Ll

4. A Sufficient Condition for Tangents a.e.

THEOREM 2. Suppose that A is a Jordan arc with dyadic parameterization
z(x), and that for all ze€ E C A and for 0,(z) as in Definition 3,
07(z) < .
n=1

Then:

(a) E has o-finite A; measure;

(b) for almost every (A)z € E, A has an approximate tangent at z;

(¢) x(z) is absolutely continuous on E; and

(d) z(x) is absolutely continuous on B=z"Y(E).

Proof. The proof uses a standard stopping argument similar to that em-
ployed in [AP]. We assume that the endpoints of 4 are 0 and 1. For integers
nand k, with n=0and 0 <k <2"—1, we write

k k+1
2" 2" )

I(n, k= [
Fix A=1 and let

L,= {xe[O,l]: i 03(z(x))</\ and |6j(x)|<7r/2—1//\ for alljzl}.

n=1
Next define
Ny(x)=min{n: I(n, k,(x)) N L),=0},
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so that T(Ny(x)—1, kx,(x—1(X)) contains a point x with 37 67(z(x)) <A
and |6;(z(x))| < w/2—1/A for all j. For each point y on the interval I(N,(x),
Kk, (X)), Ny(») =Ny(x), SN 62(y) is constant, and [6;(y)| < 7/2—1/A
for each j < N,(x). Referrmg to the polygonal paths used in constructing
the dyadic parameterization, for each x [0, 1] let

Fn,A(x) = PnAN,\(x)(x)

be the parameterization of a polygonal path T, . Roughly speaking, the
refinement of the sequence of paths P, stops on intervals where the arc Ais
rotating too much or where the curve turns too sharply. Note that I', ,(x) is
linear on I(N)(x), Kn,(x)), but not necessarily on I(N)(x) —1, kK, (x)—1), since
N,(x) is constant on the smaller interval.

LeMMA 2. For each A>0 there exists a constant c(A), independent of A
and n, such that A(T', ) <c(}).

Proof. The length of any segment C(m, k) is

1
2" TI7 cos(6;(z(k/2™)))

Letting B(n, k) = min(n, N)(k/2")), we then have
27—1 1

A =
1(In,2) k§=;0 2" TI7¢49 cos(9;(z(k/2"))

We must now estimate the products in the denominators. It is not difficult
to see that the product is minimized by taking as many 0; as p0531ble equal
to w/2—1/A=(wA—=2)/2A, subject to the condition Eﬂ(” k) 0 (z(k/2™)) <A.
Thus, taklng q=[M2A/(7A —2))%]+1, we have

o) fro{ZD)- ). o

which, when apphed to (4.1), proves the lemma. Il

A(C(m, k)) =

(4.1)

Now define
Ca(x) = lim T, x(x) = Lim Py, ny)(X).

n— 00 n-—ao
If N)(x)=o0 then I')(x)=z(x). If N)(xp)=ng then T)(x) =P, (x) for all
xe€I(nyg+1,k,,41(X0)). By the lower semicontinuity of arclength, we then
have A (T)) <c(A), where T') is the curve parameterized by I'y(x) for 0=
x =1. It is also worth noting that the proof shows that if 377, sz(z) <A for
some A >0 and for all z on E, then E is a subset of a rectifiable curve with
Iength not exceeding c(A) (cf. [BJ, Thm. 1}).

An important property of I’ is given by Lemma 3.

LEMMA 3. Foreach A =1, the correspondence of arc lengths under T')(x) is
a bi-Lipschitz mapping.
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Proof. Let z,=z(k/2™) and z,,=z((k+1)/2"™). From the above argument
we see that the chord length between these points is at most
1
2 TIRUK) cos(0;(z(k/2™)))’
where B(m, k) =min(m, N,(k/2™)). Note that if N,(k/2"™)=ny=<m, then
I',,  is not refined along this arc as n increases.

Now consider the refinement of C(m, k). There will possibly be corners
onT', , at z(k/2™+j/2"), 0=< j=<2"""—1. For each j, the connecting seg-
ments will have length

1 1
2 TI8UmK) cos(0;(z(k/2™))) 2"~ M TI8L 217"+ cos(0;(z(k/2™ + j/2™)))
_ 1
27 TIBUL K240 cos(0,(z(k/2"™ 4+ j/2™)))
The length of the part of I, ) from z,, to z,,, is
2n—m 1
>
j=1 2P IR R274D cos(B(z(k /2™ + jI27)))

and each product, as in (4.2), is at least (sin(1/A))?; the length of the arc is
then at most c(A)/2™. Thus the arc of T, ) from I', \(k/2™) to T', 5(j/2™),
J >k, has length at most
J—
2m
where x,;, = j/2" and x;, = k/2".
Now let n— o0, so that

Ar(ar(Ta(xm), Talxm))) < | xpm—xp| c(A).

Next, for any pair of points x’< x” on {0, 1], let x;,=k,,(x")/2" and x,, =
(k. (x")+1)/2". Letting m — oo, we have

Ay(ar(Ta(x"), Th(x"))) = |x"=x"|c(}).

Thus arc length on Ty is a Lipschitz function of length on [0, 1]. It is clear
that length on [0, 1] is a contraction of arc length on I'}, and the lemma is
proved. Cl

c(A) = | X —Xm| c(A),

To finish the proof of Theorem 2, recall again that x € L, implies that I'y(x) =
z(x). ForA=1,2,3,... let E)=2z(L))NE, so that £, CT', and

E= U E)\a (4'3)
A=1
where A (E)) <c(A). We see that E has o-finite linear measure, so that the
Hausdorff dimension of E is at most 1. If £ = A4 then 4 has dimension 1, and
part (a) of Theorem 2 is established.
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Since E,CT, T'y has a tangent at almost every point z of E,. At each
point of density gz, of E),, this is the approximate tangent to A, since such
Zo is a point of density of I'yN A4 on I}, so that

A (T\NAN D(zg, 1))
A((T\N D(zp, 1))
[F1, p. 20]. Part (b) of the theorem then follows from (4.3).

Finally, part (c) follows from Lemma 3 and (4.3), while part (d) follows
from Lemma 3 and the fact that B=U5Y_, L,. U

-1 as r—0

THEOREM 3. If A is a quasi-arc such that 3%_,02(z) < oo for all z€ E C A,
then A has a tangent a.e. (A) on E.

Proof. By Theorem 2, for each A=1,2,3,..., A has an approximate tan-
gent almost everywhere on AN E),. By Lemma 1 each I') is almost everywhere
locally Ahlfors regular, so that A has a tangent a.e. on ANE),, by Theorem
1. The theorem follows from (4.3). [N

In the spirit of Theorem A, it seems that the uniform condition in Theorem
1 and Theorem 3 that A be a quasi-arc might be replaced by a correspond-
ing local condition. Such conditions have been studied (see e.g. [RW]), but
these are inappropriate to our problem. However, these results are valid if
A is assumed to be a “dyadic quasi-arc”. This means that (3.1) holds, not for
all choices of z’ and z”, but merely when z’ and z” are dyadic points of the
same generation. The reason is that the curves I'y and A4 used in the applica-
tion of Theorem 1 to the proof of Theorem 3 diverge only at such points. It
can also be shown that each I') is a dyadic quasi-arc, with the constant c in
(3.1) dependent on A.

5. A Necessary Condition for Tangents a.e.

Suppose that x is a real number contained in the dyadic interval [k/27,
(k+1)/2"] =[x, x;]. Then for t,=max{|x—x,|,|x—x;|} we have 17, <
t,+1=73l,. If the arc A has a tangent at z then the next lemma shows that
dyadic intervals on 4 have a similar property.

LeEMMA 4. Suppose that the Jordan arc A has a tangent at 7 =0, and that
Zn=2(k,(2)/2") and z;,=z((k,(z)+1)/2") are the endpoints of a dyadic
interval on A which contains z=0. Let t,=max{|z,|,|z,|}. Then for any
€ >0 there exists N such that n> N implies that

t/T<tyir<(3+e)l,.

Proof. We may assume that A is tangent to the real axis at z=0, and we
take & as in Definition 1 to be small. Suppose that z, is in the left cone and
Z, is in the right cone with vertex at 0. Let z” be the dyadic point on A4 ob-
tained by “bisecting” a4(z,,, z;,). We may assume, without loss of generality,
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that 0is on a4(z’, 2;,), so that ¢, =|z,|, and we let z” be the next dyadic point,
obtained by bisecting a4(z’, z;,). The triangle with vertices z’, z” and z;, has
|z’—z"|=|z" —z}|, and for 7 = the angle with vertex at z’ we have 7 <24. By
the law of cosines,

2" =23 =|z"=2" P +|2'—z;]* 2|z’ = 2" ||z’ z;| cos 7,
so that
|2~z
2CcoST

7

|z’ —z

II[

=|z"—z|= <(3+¢€)|z’ -z} (5.1)
for n sufficiently large.

The proof of the lemma consists of two cases, which depend on the posi-
tion of z” relative to 0. We let K = (3 +¢), as in (5.1).

Case 1: Suppose that ze a4(z’,z"). Then t,,,=|z’| or |z”|. In either case,
by (5.1)

the2=<|2'—2"|=K|z2'—2;| =K|2'—z,| = Kt,.
Furthermore,

’

. I __ 7 ’r__
R 22 L 4an _Iz 4zn|,

so that
th<|z,—7'|+|z'| < tyi2(4+1).

Case 2: Suppose that z€ a,(z”, z;). Then t,,,=|z"| or |z,|. In either case,
by (5.1)

thv2=|2"— 25| < K|z'— 23| = K|z, — 2’| < Ki,.
We also have

L A O 4 W S A W P

t = = =
nt2 2 2 4 4
and
|2y —2'| 4|2 —2"|+|2"| = 1 2(4+2+1),
and the lemma is proved. O

Now recall from Definition 2 that

tB(z,t) =infsup{dist({, L), e AND(z,4t)},
L

where the infimum is taken over all lines passing through D(z, f). Thus
AND(z,4t) lies inside a strip of width 2¢8(z, ). If A has a tangent at z
then 8(z,¢) — 0 as £ — 0. Furthermore, it follows from this that 13(z, f) — 0
monotonically as £ — 0, for ¢ sufficiently small, for the following reason.

Fix ¢, and suppose that L is a line minimizing ¢,8(z, ;). Then L is the
centerline of a strip of width 2¢,8(z, ;) which also contains z. Then for ¢, <
t,, with 1, >1,8(z,t;), we see that LN D(z,t,) is not empty, and that for
e AN D(z,4t,) we have dist({, L) <¢,8(z, t;). Thus
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Sup{diSt(fs L)s (eAﬂD(z, 4t2)} = tlﬁ(z, Illl)-

From this we conclude that #,3(z, t;) < ¢,68(z, t;). The reasoning is valid for
¢t so small that 3(#) <1.

We next compare the quantity 3(z, #) to 6,(z) at a point z at which A has
a tangent. Assume that z=0 and let z,,, z,, and 7, be as in Lemma 4. Again
let z’ be the dyadic point obtained by “bisecting” a,4(z,, z;). Clearly z,, and
z, are in D(0, ¢,), and since A has a tangent at 0 it follows that, for #, suffi-
ciently small, z’ is also in D(z, ¢,). Thus, each of z,,, z},, and z’ is in a strip
of width 2(¢,/4)3(¢,/4). Consequently, again for 8(¢,) sufficiently small,
we have

2 2
6,<tanf, < (t./ )13(1‘:1/4) - (¢,/2)B(t,/4) —18(t,/4),
|zn_znl Iy

that is,
0, =< 1B(1,/4). (5.2)

We can now prove the following theorem.

THEOREM 4. Suppose that A is a Jordan arc with dyadic parameterization
z(x) and that A has a tangent at eachze€ TC A. Then a.e. (A)z € T belongs
to E={ze A: 3%_,0%(z) < ). Furthermore, z(x) is absolutely continuous
on B=z"NE) and x(z) is absolutely continuous on E.

Proof. The second assertion will follow from the first and from Theorem
2(c). By Theorem B, we have

1
S 8z, 0) Y <o
o !

for a.e. (A()z in E. By (5.2) it suffices to show that this implies that

® t
BZ<Z, —") < oo,
n=1 4
We break this sum into two sums, with odd and even indices respectively.

Using Lemma 4, it suffices to show that for a function f defined on [0, 1]
with xf(x) — 0 monotonically as x — 0, and for a sequence {x,} in [0, 1] with

X 3x
7” SXp41= Tn,
we have
1
dx ad
| PO E2k S 200
0 X n=1

for some K > 0.
Let x =e ™% Then, since e *f(e ") is monotone decreasing as u — oo, we
have
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1 oo (o)
[ P =" e du={" e rie ) du
0 X 0

0

o0
= 3 e?Un(e U fe T 1)) (U — Up)
n=1

o0
— 2 ez(un—un+l)(un+l_.un)fz(e—'un+l)
n=1

l 4/3
ng1 )Ef2 (%),

and the proof of Theorem 4 is complete. [
The following Corollary summarizes some of the above results.

COROLLARY. Suppose that C is a quasi-circle and that T is the set of points
on C at which there is a tangent. Then:

(a) except for a set of A; measure zero, ze Tifandonly ifze E={z€ A:
m=107(z) <oo};
(b) the set E is almost everywhere (A,) independent of the choice of end-
points at which the parameterization is begun;
(c) if SC T with harmonic measure »w(S) = 0 then Lebesgue measure
m(x(S))=0; and
(d) if SCz7Y(E)=B with m(S)=0 then »(z(S))=0

Proof. Part (a) follows from Theorems 3 and 4. For part (b), given one
dyadic parameterization, the convergence of the sum corresponding to that
parameterization implies a.e. existence of the tangent which implies a.e. con-
vergence of the sum for the second parameterization. Parts (c) and (d) fol-
low from McMiillan’s theorem, Proposition 2 and Theorem 2(d).
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