Moduli Spaces of
Polynomial Minimal Immersions
between Complex Projective Spaces

G. TOTH

1. Introduction and Preliminaries

In [1; 6] Do Carmo and Wallach showed that the space of full k-homoge-
neous polynomial minimal immersions of the m-sphere $” into any n-sphere
S" (for various n) can be parametrized by a compact convex body lying
in a finite-dimensional vector space. They also gave a lower bound for the
dimension in terms of m and k. The objective of this note is to construct
Do Carmo-Wallach type moduli spaces of (homotopically nontrivial) min-
imal immersions between complex projective spaces. More precisely, for
m=2 and p>q =0, we consider JC”"7=3C/-7,, the complex vector space
of harmonic polynomials on C”*! of degree p in zy, ..., 2,, € C and degree
q in Zg, ..., Z,€C. An element of 3C”9 is completely determined by its re-
striction to the unit sphere S2"*!c C™*!, A map f: $*"*! - §2"*1 between
the unit spheres of C”*! and C"*! is said to be a polynomial map of bi-
degree (p, q) if the coordinates of f belong to JC”*9. In this case, as JC” 9
consists of (complex-valued) spherical harmonics, f is a harmonic map in
the sense of Eells and Sampson [2; 3]. There are three immediate conse-
quences of homogeneity:

(1) f factors through the Hopf bundle maps = : §?”*! - CP"™ and
w: §2"*! » CP" inducing a map F: CP™ - CP";

(2) F pulls back the canonical line bundle of CP” to the (p —qg)th power
of that of CP", in particular, F has degree p —q >0 (on second co-
homology) and, consequently, m <n;

(3) the induced map F: CP" — CP”" is harmonic if and only if f is hori-
zontal with respect to the Hopf fibrations (i.e., if the differential of f
maps (ker m,)* C T(S*"*1) into (ker 7 )* C T(S?"*1)). (This follows
from the reduction theorem of Smith [2].)

If, in addition to f being horizontal, F is homothetic then it is minimal
[2], and we call F: CP™ — CP" the polynomial minimal immersion of bi-
degree (p,q) induced by f. To formulate our main result we recall that a
map F: CP"” — CP" is said to be full if the image of F is not contained in a
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proper complex linear subspace of CP”. For a full polynomial minimal im-
mersion F: CP™— CP" of bidegree (p, ¢) we then have n<n(p, q), where
n(p, q)+1=dim¢ 3”9, Finally, recall that two maps F,F’: CP™ - CP"
are said to be equivalent if there exists a unitary transformation U € U(n+1)
such that F’=U-F.

THEOREM 1. For fixed m =2 and p > q =0, the equivalence classes of full
polynomial minimal immersions F: CP™— CP" (for various n<n(p,q))
can be parametrized by a compact convex body £*°? lying in a finite-dimen-
sional vector space &P 9. The interior of £P9 corresponds to those maps
with maximal n=n(p, q). For m=3 and q =2, we have
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For m =3 and q = 2, the same estimate holds with the last summaiion
absent.

EXAMPLE. Enumerating, we find that the space of equivalence classes of
full quintic minimal immersions F: CP2— CP", n <42, of bidegree (3, 2) is
of dimension = 887.

To prove Theorem 1, in Section 2 we realize £”9 as a (real) submodule of
JCP 9 3JC% P, Frobenius reciprocity is then used, in Section 3, to give an
estimable lower bound §7°9C &§7:9®C. Furthermore, in Theorem 2 we give
a complete decomposition of JC”*9® JC?? into irreducible components; this
is also a result of independent interest. Theorem 2 is then used to give a de-
composition of 77 and to compute dim¢ 79 <dim £79. Finally, Sec-
tion 4 is devoted to the proof of Theorem 2.

ACKNOWLEDGMENT. The author is indebted to D. Barbasch for numer-
ous discussions on representation theory and for pointing out how to prove
Theorem 2.

2. Construction of the Moduli Space

We endow JC”9=3C2 9, (m=2, p>q=0) with a normalized Hermitian L
scalar product and choose the normalization constant as m!(n(p, q)+1)/
27+ where 27 ™*!/m! is the total volume of $"*+!c C”*! and
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) m+p\/m+q m+p—1\/m+qg—1
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Precomposition by unitary transformations (of C”*!) induces a unitary
U(m + 1)-module structure on JC”7 given by p, ,: U(m + 1) —» U(3C"9),
Pp,q(U)p =pou~!, for ue U(m+1), pe 379 [5]. The central subgroup S!C
U(m+1) (consisting of diagonal matrices and inducing the fibres of the
Hopf bundle map) acts on JC”>? by the single weight p—q > 0.

Fixing an orthonormal base { f,{q]?(qu) C 3CP-9 which, at the same time,
identifies 3¢9 with C"»9P+! we define

So.a=pgs s Jog @) SHMH o CHP DL

Then fp,4 is equivariant with respect to p, ,. As U(m+1) acts transitively
on S2m+1 by the choice of the normalizing constant above, f,,4 maps into
the unit sphere of C"#>9*1, We obtain that f, ,: §27+! - §2n(p. ) +1is g full

polynomial harmonic map of bidegree (p, q).

REMARK. For g =0, as an easy calculation shows, f, o is the only full
polynomial harmonic map of bidegree (p, 0), and it induces the classical
Veronese mapping F,, o: CP" - CP"?9, From here on we may therefore
assume that g > 0.

PROPOSITION 1. The map F, ,: CP™ - CP" "% jnduced by f, ,: S*"+! -
S2P- D+ is homothetic. Moreover, f, , is horizontal; in particular, F, , is
a minimal immersion.

Proof. Consider the (complex-valued) Hermitian symmetric 2-tensor w =
E;?(:(’)q) df3 ,®df} , on T(S*"*'). Clearly,  is U(m+1)-invariant; in par-
ticular, it projects down yielding a Hermitian symmetric 2-tensor Q on CP™.
Denoting by U(m) = [11®U(m) Cc U(m+1) the isotropy subgroup corre-
sponding to 0=(1,0,...,0)e C"*!, U(m) acts irreducibly on T,(CP™),
7(0) =0, so that Qg is a (real) constant multiple of the standard metric
at 0. By U(m +1)-invariance, this is valid throughout CP" so that F), , is
homotbhetic.

The isotropy representation decomposes as
T,(S*™*y =ker 7., @ (ker m,,)*,

where the first term on the right-hand side is the trivial U(m)-module and
the second is isomorphic with C"” with U(m) acting by ordinary matrix mul-
tiplication. Schur’s lemma implies that (f, ;)« ker 7, and (f,, ;) (ker 'zr,.‘o)l
are orthogonal. By equivariance of f, ,, we obtain that (f, ,)«ker 7, and
(fp,q)«(ker w,)* are orthogonal everywhere on $2"*1.

For any full polynomial harmonic map f:S*"*! —» §27*+1 of bidegree
(p,q) we have f=A-f, ,, where A is a complex (n+1) X (n(p, g)+1) ma-
trix of maximal rank. We associate to f the Hermitian symmetric matrix
(f)=A*A—TIehom(3CP 9, 3P 9) =3P 9R IC? P, where I =identity.
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To reformulate the condition that the image of f is contained in S***!
in terms of (f), we endow JC”*9® JC?? with the Hermitian scalar product
(C, C"y=trace(C'*-C), C,C’e 3”9® 3C?P, Then the condition im(f) C
S2m+1 can be translated into the condition that (f) is perpendicular to the
projections

proj[ £y, ,(z)1=projgr.al f, ,(z)1 € P IQICTP, zeS2m+,

(For a Hermitian vector space V and a unit vector v € V we define proj[v] =
projy[v] e VQV* by proj[v](w) = (w, v)v, we V.) Indeed, for z € S+, we
have
|f@))=1=|A-f,,o(2) P =|Fp,4(2)
= ((A*'A—I)fp,q(z)’ fp,q(z)>
= trace(proj [fp,q(z)]‘ )
=), projlfp,4(z)D.

Assume now that the map F: CP™” - CP”, induced by f, is homothetic
with the same homothety constant as that of F, ,: CP™—CP"79, We
claim that this is equivalent to the condition that { f) is perpendicular to the
projections

proj [(fp, q)*(Xz)] ’ Xz € (ker W*z)l,

for all z e S*"*!, where (as usual) the vector (f,, ,)+(X?) at f,, ,(z) is shifted
to the origin of C*?®*1 Indeed, we have
| S (X)) = (S, (XD =AU, ) (X)) P = (S, (XD
= (A" A1) (S, )+ (X7) s (fp, ) (X))
=trace(proj[(fp, ¢)+(X;)1-{f))
= ), Proj[(fp, = X 1.

Finally, we reformulate the condition of horizontality of f in terms of {f).
Using horizontality of f, 4, for V; e ker 7,, and X € (ker W*Z)“L,\WC compute

SulV2)s [(X)) = (A*A) (S, )= (VD) (S, )= (X))
= ((A*A—I)(fp,q)*(l/z)’ (fp,q)*(Xz)>
= ((f)y (fp,q)*(Vz)’(fp,q)*(Xz»,

where the dot stands for the Hermitian symmetric product. (In general, given
a Hermitian vector space V, we denote by u-v the Hermitian symmetric en-
domorphism defined by («-v)(w) = %(w, uyv+ %(w, v)u, we V. Clearly, for
v eV, we have v-v=proj[v].) We obtain that f is horizontal if and only if
(/) is orthogonal to the Hermitian symmetric endomorphism (£, ,)«(¥;)
(fp,q)+(X;) of 3P 7 for all V, € ker 7y, and X, € (ker m,,)*. To put this into
a representation-theoretical framework, denote by $79 the U(m +1)-sub-
module of Hermitian symmetric endomorphisms of 3C”:4. Clearly, $”*9isa
real form,of 3C”"9® 3C%?. Then
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WP 9= spang{proj[ f, ,(z)]|z € S*"+"}
and

(yp’q=spanR[(fp,q)*(I/z) * (fp,q)*(Xz) ' I/z € ker W*z’
X, € (ker m,,)*, z € 2"+
and

2P 9 = spang {proj[(f,, ;)«(X )11 X, € (ker my,)*, z€ S *1}

are U(m+1)-submodules of 879, Finally, let 8”7 be the orthogonal com-
plement of W# 94 Y» 94279 in §”9 and set

L£PI={Ce&’9|C+I=0},

where “>" means positive semidefinite. Clearly, £”°7C §”9is a U(m+1)-
invariant convex body containing the origin in its interior. Moreover, as
the orthogonal complement of “W#:7 in 8§79 consists of traceless endomor-
phisms of 3CP-9 (which follows by integrating over S?”*! the defining equal-
ity 277D ¢ £ 4(2) S (@) =0, (c;))] -9 = Ce (WP 9)*), we obtain that
£#:9 is compact.

Summarizing, we associated to each full polynomial minimal immersion
F:CP™ - CP" of bidegree (p, q) an endomorphism (f)=A*A—-ITe £’
via f=A-f, 5, where F is induced by f. By polar decomposition, the pa-
rametrization is injective on the equivalence classes of maps. Furthermore,
as the square root of a positive semidefinite endomorphism may be taken, the
parametrization is surjective. The first two statements of Theorem 1 follow.

3. The Module Structure of &9

First note that, as proj[f, ,(0)], 0 =(1,0,...,0) € Cm+l s left fixed by
U(m)CU(m+1), every irreducible U(m +1)-submodule of

WP 9 =spang{U(m+1)-projlf,, ,(0)]1}

is class 1 with respect to (U(m+1), U(m)); that is, it contains a U(m)-fixed
vector or (equivalently) a copy of 3¢%°. Denoting by “W#>9 the sum of those
complex irreducible U(m +1)-submodules of JC”9® JC? ¥ which, when re-
stricted to U(m), contain 3(3%0, after complexification we obtain that

WP IQC C WP,

Similarly, we define 3 = (f,, ,)«(ker m,,)" (shifted to the origin of 3C?9).
Clearly, 3 is a real irreducible U(m)-submodule of 3C:7, (by restriction).
Moreover,

dimg 3 =dimg(ker m, )t =2m
as F), , is an immersion. Introducing the U(m)-module

R =spang{projzr.¢[Y1|Y eI} C 8”9(C P IQ3CP),
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we have
ZP9=spang{U(m+1)-R}.

PROPOSITION 2. As U(m)-modules, we have
R®C =3, D ICs; .

Proof. Denote by 3. the complex closure of J in JC”*9. Then we can write
R= spanR{projgc[Y] |Y € 3}.
As 3 is irreducible, it is either a complex or a totally real U(m)-submodule
of 3¢~ 19,
Case 1, 3=3.: The branching rule

XnLlUm)= ¥ ¥5°

O<r=p

O0<s=g
implies that 3 = 3¢50 or 3¢%! as complex U(m)-modules. Hence ® consists
of all Hermitian symmetric endomorphisms of 3. Complexifying, we have

R®C =hom(3, J) = 3L°® 3% = 53¢%°@ 3k .
Case 2, 3 # 3.: Again by the branching rule, we have
3c= 30" @I

(Recall that ¢ >0 so that 3¢%! is a U(m)-component of Jce4..) Composi-
tion with the orthogonal projection P: J.— 3CL0 induces a U(m)-module
homomorphism

P*: ® > spang{projgLo[Y]|Y e 3C;;°}.

(Note that P* is well defined since, for Ye 3, C-YN 3% = {0} and so C-Y
projects down to a complex line in 3¢1°.) As easy computation shows, P* is
injective. It is also surjective as the range is the U(#2)-module of all Hermitian
symmetric endomorphisms of JC1° (which splits into R-7 and the (irreduc-
ible) traceless part). As in Case 1, we obtain that RQC =3%°@ackl. O

PROPOSITION 3. Let 279 denote the sum of those irreducible complex
U(m+1)-submodules of 3C”9® ICTP which, when restricted to U(m), con-
tain either 3¢%° or 3CL\. Then we have

ZP 1R C C Z71.

Proof. Let p: 3P 9®3C9P > R®C (= 3% °@ 3¢k denote the orthogonal
projection, and consider the induced representation
g =Indyim (R®C)
={Y: Um+1)-> RIC|Y(uv) =u-y(v), ue U(m),
ve U(m+1), ¢ continuous}.
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For o € 3C”9® 3C??, we define the map
¥Y(0):Um+1) - RRC

by ¥(o)(v)=p(v-0), ve U(m+1). Then ¥(o) € 9 so that we obtain a map
¥: JCP9R IC?P — g, which is actually a homomorphism of U(m +1)-mod-
ules. Clearly, ker ¥ =(2”9® C)* so that im¥ =ZP9®CC 9 as U(m+1)-
modules. Using Frobenius reciprocity [6], we have

dim homy 41, ((Z79)*, Z79® C) < dim hom 4 1) (27 9)*, 9)
=dim homg,, (2" 9)*, R C) =0,

and the proposition follows. L]

Finally, we turn to horizontality and rewrite Y ? as

YP9=spang{U(m+1)-Q},
where
Q =spang{(/fp,g)+Vo  (f5,0)+ X0 |V, € ker my,, X, € (ker my )t}

is a U(m)-module of $79. Since (f, ,)« is homothetic on (ker )", we have
Q = 3 as real U(m)-modules so that
Q®rC=3C;' @Iy

Now let Y#»? denote the sum of those irreducible complex U(m +1)-modules
of JCP 9® 3¢9 P which, when restricted to U(m), contain either 3¢1%or 3¢%!.
By the same argument as given in the proof of Proposition 3, we obtain that

YP9®Q C C Y9,

We now define §2:7=(Z#9)* C 3¢”9® 3C%? as the sum of those irreducible
complex U(m +1)-submodules which do not contain 3¢7;° and 3C;;'. By the
above (and since W#*9, Y»- 2 Z:9 (cf. the branching rule below)), we have

EPIC EPIRC.

To obtain the lower estimate on dimg £7'9 = dimg §7°? = dim¢ 79 of
Theorem 1, we decompose &7 into irreducible complex U(m +1)-submod-
ules. To do this, recall that an irreducible complex U(m+1)-module V*=
V> .1 is uniquely determined by its highest weight A which, with respect to
the standard (diagonal) maximal torus of U(m+1), is an element of Z™*!
(with nonincreasing entries). In particular, we have

Jcp,q —_ V(p’ 0’ seey 0’ '—Q).
The general branching rule states that

0. ST, A ) _
Vm-lfl m |U(m)"'E Vn(;s
g

where the summation runs through those o = (0, ..., g,,) for which

M=o =N 20,2 N0
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THEOREM 2. Let p>q>0 and a=p+q. Then, for m=3, we have

RP;Q@JC‘LP
a min{b, q,a—b) min{b,q, e}
=) > >  [min{b—c,b—d,q—c,q—d,b+c—2d,a—b—c}
b=0 c=0 d=0

+1] y (6,6,0,...,0,—d,d-b—c)

where e denotes the greatest integer < (b+c)/2. For m=2, we have

IPIRICHP= Y [min{b, q,a—b}+1]3C5°

b=0
q a—2c

@Y Y [min{b—c,g—c,a—b—2c}+1]
c=1b=0

X {V(b+c,c,—b—20)® V(b+2c, —c, —b—c)]

We prove Theorem 2 in the next section. We now show how to compute
dim¢ €79 from this decomposition to get the lower bound for dim £79 of
Theorem 1. By the branching rule, V%90 ~4.d=0=¢) qoes not contain
3¢%0 or 3ck! (and consequently does not contain 3¢L0 or 3¢%Y) if and only

if c=2 or d =2. Thus we have

- pP+q
(8""’)l’=°b2 [min{b, g, p+q—b}+1]3c>?
=0

p+q
@bzl min{b, q, p+q—b}{V 100 -0-D@p(b+10,...,-1, by

ptaq
® Y min{b, g, p+q—b}V&:10,.0,-1,-b)
b=1

Computing the dimensions by the Weyl degree formula [5], we arrive at the
lower estimate given in Theorem 1.

4. Decomposition of JC1R JC?
We have the following.

THEOREM 3. Let p>q>0 and m=3. Then, for b=c=d >0, the mul-
tiplicity
m[V 64 ): 5eP @ §e2P] = 0.
Moreover, for bj=zc; =0, j=1,2, by+c¢;=by+c,, we have
m[V(bl,Cl,O,...,O,—C2,—bz): ch,(]@scq,p]
=min{(b;—c))*, (g—c1)*, (b2—c2)*, (g—c2)™,
(by—c)™, (b1—c)t, (p+q—by—c)t}+1,

where * denotes the positive part.
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Once these multiplicity formulas are proved, Theorem 2 follows easily. For
m =2, the computation is elementary and the decomposition follows from
Steinberg’s formula. For m = 3, the first multiplicity formula combined with
self-duality of JC”> 9@ JC? P imply that the only irreducible components are
of the form V¥ (%1:¢1:9,-.0,=¢2.=02) - AJ50, the center S! C U(m + 1) acts on
JCP 9 JC P trivially, so that b;+c;=b,+c,. The rest is a simple compu-
tation.

To determine the multiplicities we apply the Littlewood-Richardson rule
[4] together with Weyl’s duality [7] between representations of GL(V) and
the symmetric group S,, on X"V for a vector space V.

To prove the second multiplicity formula first, in the initial step of the
Littlewood-Richardson rule, we add suitable elements of Z - (1, ..., 1) to the
highest weight vectors of 3C”°? and JC%# to make the components descend
to zero. We also add the sum of these elements to the highest weight of the
representation whose multiplicity is to be computed. We obtain

(bl’cl,o’ "',O’ —Ca, _b2)+(p+Qa ---,p+Q)
=(p+q+blsp+q+clsp+qs'“’p+q:p+q_c2,p+q_b2)s
(p,0,...,0,—q)+(q,...,q)=(p+4q,q,...,4,0),
(¢,0,...,—p)+(p,...,P)=(P+4q,p,...,0,0).

Each vector represents a tableau consisting of #+1 rows; the coordinates
representing the length of the respective row. We superimpose the two larg-
est tableaux, which in this case correspond to the first and third vectors, to
obtain Figure 1.

p q by
—
€1
¢3
l ba
Figure 1

In the second step, we fill in the complementary space with the numbers
1,2,...,mand from each of these use the amount given by the respective co-
ordinate of the second vector; that is, we use p+q I's, g 2’s, ..., q m’s.
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The rules for filling are as follows.

(1) In each row the numbers are nondecreasing.
(2) In each column the numbers are (strictly) increasing.
(3) When reading the sequence of numbers from right to left:
(a) the I’s are always O.K.; and
(b) given i+1 in the sequence, the number of previous i’s is greater
than the number of previous (i +1)’s.

The required multiplicity is the number of possible ways of filling in.

We denote by R; (i=1,...,m+1) the ith row of the complementary tab-
leau. By (3) there can only be I’s in R;. In particular, b; < p+ q. By duality,
we also have b, < p +¢. By (1)-(3), the last ¢, entries of R, are filled with 2’s.
(Proof: There cannot be I’s there by (2). If there were an entry i = 3 then the
same would be true for the last entry of R,, by (1). Now, apply (3) to that
entry to get a contradiction.) There are at most g 2’s, so that we obtain ¢;<¢q
(since otherwise the multiplicity is zero). By duality, we also have ¢, < g;in
particular, the smaller tableau is entirely contained in the larger tableau. By
(1), there can only be I’'s and 2’s in R,, the former preceding the latter.

From R; to R,,_, there are m —1 column entries. Thus, by (2), in R; there
can only be 2’s, 3’s and 4’s. However 4 cannot occur in R, since in that case
the last entry of R; would be 4 and applying (3) would yield a contradiction.
Thus, in R; there are only 2’s and 3’s. Below the 2’s of R, there must be 3’s,
by (2).

We are interested in how many 3’s are in R; under the I’s in R,. We call
these “jumps” since the respective column in R, and R; will be ( ; ). We claim
that there are exactly c, jumps.

First of all, if there were fewer than c; jumps then we would run out of
the 2’s which are g in number. (We used up ¢; 2’s in the last ¢, entries of R,
and, by (2), under the 2’s in R, there must be 3’s.) Secondly, if there were
more than ¢; jumps then we would apply (3) to the 3 occurring in the very
first jump. The number of 3’s then would exceed the number of 2’s; thisisa
contradiction.

As a byproduct we also obtained that we used up all 2’s. We call the space
occupied by the first ¢; 3’s in R; the critical box. We show below that any
(allowed) location of the critical box determines the rest of the filling-ins.

In R, there can only be 3’s and 4’s, by repeating the argument above. Be-
low the 3’s of R, there must be 4’s and below the 2’s of R; there must be 3%,
because otherwise the 4’s in R, would exceed the 3’s in R;, violating (3). This
argument can be carried out until R,,_; is filled up. It also follows that we
would use up all numbers between 2 and m—2.

We now consider R,,,; which, at this point, can only be filled up by 1%,
(m—1)’s, and m’s. We claim that there can only be 1’s and m’s in R, , .

Assume the contrary. If there are no m’s in R, ; then R, is filled up by
I’s and (m—1)’s. We then take the first m in R,, (which certainly exists) and
apply (3) to get a contradiction. If there is an m in R, . ; we take the first one
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and again apply (3) to get a contradiction. As a byproduct we also obtained
that the (m —1)’s must be used upin R,,_, and R,,,. Thus, below the (m—2)’s
in R,,_; there must be (m—1)’s of R,,, and the filling-in is unique.

Summarizing, we showed that: Once the location of the critical box is
fixed, there is only one way to fill in.

To obtain the exact constraints on the location of the critical box, denote
by d the distance of the critical box from the right wall (i.e., there are exactly
d+c;2’s in R,). The critical box occupies R3, whose length is g, so that d <
q—c,. There are at least (g— b,)" (m—1)’sin R,, (by (2)) so that there are at
least (g—b,)* 2’s in R;. This means that d < g—c;—(g—b,)*. Taking into
account the previous estimate, we can replace this by d < b, — ¢,. In particu-
lar, ¢; < b, is a general constraint on the tableaux (i.e., otherwise the multi-
plicity is zero). By duality, we also have ¢, < b;. Summarizing, we obtain

d =min{b,—c;,q—c;, b, —c,}.

For the lower bound, first note that the critical box cannot occupy the last
¢, —1 entries of R; only because in that case the g (7 —1)’s cannot be filled
in R,,_; and R,,. Thus, d =c,—c,. Moreover, in R, there are p+q—b,
places for the m’s, so R, ends with at least (g—(p+qg—50,))"=(b,—p)*
m’s. Thus, d =c,—c;+(b,—p)*. By the previous estimate, we can replace
this by d = b; — p. Summarizing, we obtain

d =zmax{c,—cy, b;—p].

Comparing the upper and lower bounds, we obtain that b;+c;<p+q is
a constraint on the tableaux. Finally we obtain that the multiplicity —11is the
minimum of the following numbers:

bi—c1, g—cy, by—cy
and

bi—ci—(ca—cy))=b1—c,, qg—c—(by—p)=p+q—b;—c,
by—c,—(by—p)=p—cy, by—ci—(c2—c))=by—c,,
g—ci—(ca—c))=q—cy, by—ci—(by—p)=p—c,.

Two of the numbers do not contribute in the minimum as p > g. The second
multiplicity formula of Theorem 3 follows.
To prove the first we apply a similar argument. In the tableaux corre-
sponding to
m[V b:6:ds-). JCr IR 309 P],

R, is filled up by I’s as before. The last ¢ entries of R, are again filled up by
2’s, and there can only be I’s and 2’s in R,. Similarly, by (3) the last d entries
of Rj are filled up by 3’s, and there can only be 2’s and 3’s in R;. Denote by
J the number of jumps (; ) in R, and R;. Then, by (3) we have J<c—d. On
the other hand, J = ¢ since otherwise we would run out of the ¢ 2’s. Thisis a
contradiction, so the multiplicity is zero.
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