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Introduction

The Mandelbrot set M arises in the dynamics of complex quadratic poly-
nomials g,,(z) = z2+w. It consists of those parameter values w such that the
Julia set obtained from g, is connected. The complement M of M in the
Riemann sphere is known [1] to be simply connected and to have mapping
radius equal to 1. Thus we may consider the analytic homeomorphism

M) V@) =2+ 3 bz

m=0
of A=(z:1<|z| <o} onto M. It is our purpose to give a useful formula for
the coefficients b,, and to show that many of these coefficients are zero. We
also determine infinitely many nonzero coefficients, and conclude with a de-
scription of the Faber polynomials of the Mandelbrot set. Our work is moti-
vated by an article by Jungreis [2].

Background

Define recursively the polynomials p;(w) =w?+w and

) W) =P, w) 4w

for n> 1. Evidently, p, is a monic polynomial of degree 2". It is known [2]
that the zeros of p, all lie in M, and so it is possible to define in M a single-
valued branch of p,(w)"/?"=w+0(1) as w— . In what follows we shall
also have use for p;”/?"=[pl/?"1" for positive integers m.

It turns out [2] that the functions ¢, = p/?" converge locally uniformly in
M to ¢ =y 1, the inverse of the mapping . Near oo the functions ¢, are

one-to-one, and their inverse functions ¥, = ¢, ! evidently satisfy

3) pn(\bn(z))zzzn-

The functions v, are defined in larger and larger subsets of A as n — o0, and
converge locally uniformly in A to ¢. In fact, the following lemma shows
that this convergence is remarkably strong.
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LEMMA 1. ¥(2)=v,(z)+O0(1/z¥""'~2) as z - .

This lemma is the corollary to Theorem 4 in [2]. For completeness, we include
a proof since we do not understand the application of the integral in [2].

Proof of Lemma 1. 1t is sufficient to show that

Yus1(2) —¥nl(z) = 01 /222

as z — oo. Write

n+l_ +1_ +1_
Pn+1(W)—Pn+1(w)=[w—w][w2 L w2 =2 e 42"

+lower powers of w and w]
to see that

Q) Pnt1($n11(2)) = Py 1(¥n(2)) = [V 41(2) — ¥ (2)]

1_
X [27F1z2"7 =1 4 jower powers of z].

On the other hand, (2) and (3) imply that

Pri1Wns1(2)) = Pt 1(¥0(2) = Ppi 1 (Wn+1(2)) = Pu (¥ (2)) > — ¥ (2)
=Zzn+l'—Z2n+l"'§[/"(Z) — —Z+O(1)

as z — . The result follows from comparing (4) and (5). ]

&)

Coefhicient Formula
A useful formula for the coefficients in (1) is contained in the following.

THEOREM 1. If 1=m=<2""'—3 and R is sufficiently large, then
1 n

(6) —mb,, = ol S pn(W)m/2 dw.
Tl J|w|=R

REMARKS. To use formula (6) for a particular coefficient b,,, one may
choose any r sufficiently large that m < 2"+1—3. Of course, the circle [w|=R
can be replaced by any simple closed rectifiable curve that surrounds the
Mandelbrot set once in the positive sense. Furthermore, the right side is just
the coefficient of 1/w in the Laurent expansion of p,,(w)”’/ 2" about 0. As a
result, this formula is particularly well-suited to precise computation by any
of the symbolic manipulation programs now available on computers.

Proof of Theorem 1. If 1 <=m <2"*'—3 and R is sufficiently large, then
Lemma 1 and a change of variables imply that

z2"Yn(z)dz = b, (W)™ dw

mbm:m&zl:R m§|w|=R

1 m/2n
- ' . O
2ni Siw|=an(W) dw



Coefficients of the Mapping to the Exterior of the Mandelbrot Set 317

Zero Coefficients

If m=2" then 2"<2"*1—3 is valid for n= 2. In this case, the integrand in
(6) is a polynomial and so the integral is zero. This conclusion was first ob-
served with a different proof in [2].

THEOREM 2 (Jungreis). b,,=0 for n=2.
We shall now show that many more coefficients are zero.

THEOREM 3. For any integers k and v satisfying k=1 and 2" = k+3, let
m=((2k+1)2°. Then b,,=0.

Proof. We shall use the (generalized) binomial coefficients defined for real
a and |x|<1by (14+x)*=3X7 C;(a)x’. Then for |w| sufficiently large the
recursion (2) leads to the expansions

w m/2n
pn—l(w)z]

PaW) 2 = [py_ (W) +W)"? = p, _ (w)™?>" [l "

= 3 Cj(m/2")Wwip,_y(w)™/*" " =%
J1=0
=X jl(m/2;’)wflpn_z(w)”’/z"‘z“zzf'l[1+
@) J1=0

= o] = o]

=X X Cj(m/2")Cj(m/2""'=2j))

w ]m/2"‘1—2j]

pn—Z(W)2

J1=0 j,=0 xwjl+j2pn—Z(W)m/zn—Z__szl_zjz=
0
_N+1__AN—1; :
=2 - E C;,(m/2")---C; (m/2" =277 1= = 2jn-1)
J1=0  jn=0 Xwjl+...+ijn_N(w)m/2n—N_2le_..._ZjN.

Now let m = (2k+1)2”, where k and » are any fixed integers satisfying k >1
and 2” = k+ 3. Choose n larger than v and sufficiently large that m < 27*+1—3.
Let N=n—v» so that n— N =v. Then the final factors in (7) reduce to

8) Wj1+"'+ij,,(w)2"+1_2Nf1—"'—2J'N_

To show that

_ b b= - § ’n/znd = O’
we divide the indices j,, ..., jy into two sets. Let
9 u=2k+1-2Nj—-.. =2jy.

If u =0, then we are integrating a polynomial in (8) and the integral is zero.
So it remains to consider the case # < —1. In this case the factors (8) are of
the form

(10) witt RN L O(1/w)]
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as w — oo, We shall show that the exponent satisfies j;+--- + jy +2"u < —2,
so that the integrals of these terms are also zero.
It follows from (9) that

2k+1—ul=2N"1j — oo =25,
and

A1) it iy =2k +1—u] =@V 1)y — e — iy < L2k +1—u].
Therefore we have

Jit e Hint2u=<i2k+1—u]l+2"u =12k +14+ 2" - u]
<;Rk+1-(2" "' -1)]=k+1-2"

Since 2” = k + 3, this is at most —2. N

(12)

Some Nonzero Coefficients

On the basis of Theorems 2 and 3, the coefficients b,,, are zero with indices
m=4,8,16, 32, ..., 12, 24, 48, 96, ..., 40, 80, 160, 320, ..., 56, 112, 224, 448,

., etc. So far, computations have not produced a zero coefficient besides
those indicated in Theorems 2 and 3. The following theorem shows that the
condition 2” = k+ 3 in Theorem 3 is in some sense necessary and, more im-
portantly, provides explicit values for infinitely many nonzero coefficients.

THEOREM 4. Forv=1, let m=(2"+1—3)2". Then
(2v+1_4)!
22%1-3r (v =2

bm=""

Proof. We proceed as in the proof of Theorem 3. Write m = (2k + 1)2’,
where k =2"—2, so that 2° = k+ 2. Fix n and N as before. For the same
reasons, the indices that satisfy # =0 contribute zero to the integral of (7).
Therefore assume u < —1.

In this case (12) implies that the exponent in (10) satisfies

(13) Jid i +2u=—1.

Because of the estimate (11), equality in (13) occurs precisely when j;=---
Jn—-1=0, u= -1, and jy =k +1. Thus the integral of (7) becomes —mb,,
Ci+1(m/2"*1). In other words, we have

—1 1
bm=70k+1(k+5>

=1 Qk+1! 27+l —4)!
Com 2% (k1) T 22F-3pvr (vt

O]

REMARKS. One hopes that formula (6) can be used to provide estimates
for all nonzero coefficients b,,. If one could show that the series (1) converges
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!
uniformly on Z, then the mapping ¥ would extend continuously to |z|=1.
In this case it would follow that the boundary of the Mandelbrot set is lo-
cally connected —a well-known open problem.
On the basis of Theorem 4 we have some information about the growth
of the coefficients b,,. It leaves open the possibility that |b,,|<A/m'*¢ s
true for some e, 0<e< %.

COROLLARY. lim sup,,_, o m>4|b,,| = 2"4/yx.

Proof. A lengthy (but straightforward) application of Stirling’s formula to
the coefficients in Theorem 4 leads to the asymptotics —b,, ~ 1/(21+3/2\/x)
as v — 0. Since 2" ~ \/m/2 as v — o, we have m*¥4|b,,| ~ 2"/4/zw as m—
through the given sequence. O

Faber Polynomials

Expand p, (W)™ =w™+3 %=1 _ B, w¥ in a neighborhood of . Because of
(3), each By is a polynomial iu the coefficients b; of y,,. Furthermore, By de-
pends only on by, ..., b,,_;_;. Therefore, if we define &,, to be the polyno-
mial part of p/*/2" at oo, namely,

m—1

(14) S:m(w)zwm—}- E Bkwk9
k=0

then &, depends only on by, ..., b,,_;. It is a consequence of Lemma 1 that
F,, is independent of » whenever m <2"+!—2. In this case, we shall see that
&, is the mth Faber polynomial of the Mandelbrot set M.

We shall show that &,,(¥(z)) =z"+0(1) as z — o, which is a character-
ization of the mth Faber polynomial of M (cf. [3, p. 131]). Since &,,(w)—
P,(w)"?¥ =0(1) as w— oo, it is clear that

(15) Fu(¥(2)) = Da(¥(2))™*" = 0(1)
as z — . Next, observe that
pn(w)m/zn_pn(w)mlznz [w_w][wzrl—l+wr;1—2w+ +wm—l

+lower powers of w and w],
so that

Pn(P2)™ = Py (@)™ = [Y(2) — ¥ (2)] [mz™ ' +lower powers of z].

For m=<2"*1—-2, the latter is o(1) as z — o, by Lemma 1. Combining this
with (15) and (3), we see that

Fn(¥(2)) = 2y (Y 2N +0(1) = 2"+ 0(1)

as z — oo, This shows that (14) defines the Faber polynomials of the Man-
delbrot set whenever m <2"+!—2. Note that they are easily constructed by
symbolic manipulation programs on computers.
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