On the Coefficients of the Mapping to the Exterior of the Mandelbrot Set

JOHN H. EWING & GLENN SCHOBER

Introduction

The Mandelbrot set M arises in the dynamics of complex quadratic polynomials $q_w(z) = z^2 + w$. It consists of those parameter values w such that the Julia set obtained from q_w is connected. The complement \tilde{M} of M in the Riemann sphere is known [1] to be simply connected and to have mapping radius equal to 1. Thus we may consider the analytic homeomorphism

(1)
$$\psi(z) = z + \sum_{m=0}^{\infty} b_m z^{-m}$$

of $\Delta = \{z : 1 < |z| \le \infty\}$ onto \tilde{M} . It is our purpose to give a useful formula for the coefficients b_m and to show that many of these coefficients are zero. We also determine infinitely many nonzero coefficients, and conclude with a description of the Faber polynomials of the Mandelbrot set. Our work is motivated by an article by Jungreis [2].

Background

Define recursively the polynomials $p_1(w) = w^2 + w$ and

(2)
$$p_n(w) = p_{n-1}(w)^2 + w$$

for n > 1. Evidently, p_n is a monic polynomial of degree 2^n . It is known [2] that the zeros of p_n all lie in M, and so it is possible to define in \tilde{M} a single-valued branch of $p_n(w)^{1/2^n} = w + O(1)$ as $w \to \infty$. In what follows we shall also have use for $p_n^{m/2^n} \equiv [p_n^{1/2^n}]^m$ for positive integers m.

It turns out [2] that the functions $\phi_n = p_n^{1/2^n}$ converge locally uniformly in \tilde{M} to $\phi = \psi^{-1}$, the inverse of the mapping ψ . Near ∞ the functions ϕ_n are one-to-one, and their inverse functions $\psi_n = \phi_n^{-1}$ evidently satisfy

$$(3) p_n(\psi_n(z)) = z^{2^n}.$$

The functions ψ_n are defined in larger and larger subsets of Δ as $n \to \infty$, and converge locally uniformly in Δ to ψ . In fact, the following lemma shows that this convergence is remarkably strong.

Received January 12, 1990.

This work was supported in part by a grant from the National Science Foundation. Michigan Math. J. 37 (1990).

LEMMA 1.
$$\psi(z) = \psi_n(z) + O(1/z^{2^{n+1}-2})$$
 as $z \to \infty$.

This lemma is the corollary to Theorem 4 in [2]. For completeness, we include a proof since we do not understand the application of the integral in [2].

Proof of Lemma 1. It is sufficient to show that

$$\psi_{n+1}(z) - \psi_n(z) = O(1/z^{2^{n+1}-2})$$

as $z \to \infty$. Write

$$p_{n+1}(w) - p_{n+1}(\omega) = [w - \omega][w^{2^{n+1}-1} + w^{2^{n+1}-2}\omega + \dots + \omega^{2^{n+1}-1} + \text{lower powers of } w \text{ and } \omega]$$

to see that

(4)
$$p_{n+1}(\psi_{n+1}(z)) - p_{n+1}(\psi_n(z)) = [\psi_{n+1}(z) - \psi_n(z)] \times [2^{n+1}z^{2^{n+1}-1} + \text{lower powers of } z].$$

On the other hand, (2) and (3) imply that

(5)
$$p_{n+1}(\psi_{n+1}(z)) - p_{n+1}(\psi_n(z)) = p_{n+1}(\psi_{n+1}(z)) - p_n(\psi_n(z))^2 - \psi_n(z)$$

$$= z^{2^{n+1}} - z^{2^{n+1}} - \psi_n(z) = -z + O(1)$$

as $z \to \infty$. The result follows from comparing (4) and (5).

Coefficient Formula

A useful formula for the coefficients in (1) is contained in the following.

THEOREM 1. If $1 \le m \le 2^{n+1} - 3$ and R is sufficiently large, then

(6)
$$-mb_m = \frac{1}{2\pi i} \int_{|w|=R} p_n(w)^{m/2^n} dw.$$

REMARKS. To use formula (6) for a particular coefficient b_m , one may choose any n sufficiently large that $m \le 2^{n+1}-3$. Of course, the circle |w|=R can be replaced by any simple closed rectifiable curve that surrounds the Mandelbrot set once in the positive sense. Furthermore, the right side is just the coefficient of 1/w in the Laurent expansion of $p_n(w)^{m/2^n}$ about ∞ . As a result, this formula is particularly well-suited to precise computation by any of the symbolic manipulation programs now available on computers.

Proof of Theorem 1. If $1 \le m \le 2^{n+1} - 3$ and R is sufficiently large, then Lemma 1 and a change of variables imply that

$$-mb_{m} = \frac{1}{2\pi i} \int_{|z|=R} z^{m} \psi'_{n}(z) dz = \frac{1}{2\pi i} \int_{|w|=R} \phi_{n}(w)^{m} dw$$
$$= \frac{1}{2\pi i} \int_{|w|=R} p_{n}(w)^{m/2^{n}} dw. \qquad \Box$$

Zero Coefficients

If $m = 2^n$, then $2^n \le 2^{n+1} - 3$ is valid for $n \ge 2$. In this case, the integrand in (6) is a polynomial and so the integral is zero. This conclusion was first observed with a different proof in [2].

THEOREM 2 (Jungreis). $b_{2^n} = 0$ for $n \ge 2$.

We shall now show that many more coefficients are zero.

THEOREM 3. For any integers k and ν satisfying $k \ge 1$ and $2^{\nu} \ge k+3$, let $m = (2k+1)2^{\nu}$. Then $b_m = 0$.

Proof. We shall use the (generalized) binomial coefficients defined for real α and |x| < 1 by $(1+x)^{\alpha} = \sum_{j=0}^{\infty} C_j(\alpha) x^j$. Then for |w| sufficiently large the recursion (2) leads to the expansions

$$p_{n}(w)^{m/2^{n}} = [p_{n-1}(w)^{2} + w]^{m/2^{n}} = p_{n-1}(w)^{m/2^{n-1}} \left[1 + \frac{w}{p_{n-1}(w)^{2}} \right]^{m/2^{n}}$$

$$= \sum_{j_{1}=0}^{\infty} C_{j_{1}}(m/2^{n})w^{j_{1}}p_{n-1}(w)^{m/2^{n-1}-2j_{1}}$$

$$= \sum_{j_{1}=0}^{\infty} C_{j_{1}}(m/2^{n})w^{j_{1}}p_{n-2}(w)^{m/2^{n-2}-2^{2}j_{1}} \left[1 + \frac{w}{p_{n-2}(w)^{2}} \right]^{m/2^{n-1}-2j_{1}}$$

$$= \sum_{j_{1}=0}^{\infty} \sum_{j_{2}=0}^{\infty} C_{j_{1}}(m/2^{n})C_{j_{2}}(m/2^{n-1}-2j_{1}) \times w^{j_{1}+j_{2}}p_{n-2}(w)^{m/2^{n-2}-2^{2}j_{1}-2j_{2}} = \cdots$$

$$= \sum_{j_{1}=0}^{\infty} \cdots \sum_{j_{N}=0}^{\infty} C_{j_{1}}(m/2^{n}) \cdots C_{j_{N}}(m/2^{n-N+1}-2^{N-1}j_{1}-\cdots-2j_{N-1}) \times w^{j_{1}+\cdots+j_{N}}p_{n-N}(w)^{m/2^{n-N}-2^{N}j_{1}-\cdots-2j_{N}}.$$

Now let $m = (2k+1)2^{\nu}$, where k and ν are any fixed integers satisfying $k \ge 1$ and $2^{\nu} \ge k+3$. Choose n larger than ν and sufficiently large that $m \le 2^{n+1}-3$. Let $N = n - \nu$ so that $n - N = \nu$. Then the final factors in (7) reduce to

(8)
$$w^{j_1+\cdots+j_N}p_{\nu}(w)^{2k+1-2N}j_1-\cdots-2j_N.$$

To show that

$$-mb_m = \frac{1}{2\pi i} \int_{|w|=R} p_n(w)^{m/2^n} dw = 0,$$

we divide the indices $j_1, ..., j_N$ into two sets. Let

(9)
$$u = 2k + 1 - 2^{N} j_{1} - \dots - 2j_{N}.$$

If $u \ge 0$, then we are integrating a polynomial in (8) and the integral is zero. So it remains to consider the case $u \le -1$. In this case the factors (8) are of the form

(10)
$$w^{j_1 + \dots + j_N + 2^{\nu} u} [1 + O(1/w)]$$

as $w \to \infty$. We shall show that the exponent satisfies $j_1 + \cdots + j_N + 2^{\nu} u \le -2$, so that the integrals of these terms are also zero.

It follows from (9) that

$$j_N = \frac{1}{2}[2k+1-u]-2^{N-1}j_1-\cdots-2j_{N-1}$$

and

(11)
$$j_1 + \dots + j_N = \frac{1}{2} [2k+1-u] - (2^{N-1}-1)j_1 - \dots - j_{N-1} \le \frac{1}{2} [2k+1-u].$$

Therefore we have

(12)
$$j_1 + \dots + j_N + 2^{\nu} u \le \frac{1}{2} [2k+1-u] + 2^{\nu} u = \frac{1}{2} [2k+1+(2^{\nu+1}-1)u]$$

$$\le \frac{1}{2} [2k+1-(2^{\nu+1}-1)] = k+1-2^{\nu}.$$

Since $2^{\nu} \ge k + 3$, this is at most -2.

Some Nonzero Coefficients

On the basis of Theorems 2 and 3, the coefficients b_m are zero with indices $m = 4, 8, 16, 32, ..., 12, 24, 48, 96, ..., 40, 80, 160, 320, ..., 56, 112, 224, 448, ..., etc. So far, computations have not produced a zero coefficient besides those indicated in Theorems 2 and 3. The following theorem shows that the condition <math>2^{\nu} \ge k + 3$ in Theorem 3 is in some sense necessary and, more importantly, provides explicit values for infinitely many nonzero coefficients.

THEOREM 4. For $v \ge 1$, let $m = (2^{v+1} - 3)2^v$. Then

$$b_m = -\frac{(2^{\nu+1}-4)!}{2^{2^{\nu+1}-3}2^{\nu}! (2^{\nu}-2)!}.$$

Proof. We proceed as in the proof of Theorem 3. Write $m = (2k+1)2^r$, where $k = 2^{\nu} - 2$, so that $2^{\nu} = k + 2$. Fix n and N as before. For the same reasons, the indices that satisfy $u \ge 0$ contribute zero to the integral of (7). Therefore assume $u \le -1$.

In this case (12) implies that the exponent in (10) satisfies

(13)
$$j_1 + \dots + j_N + 2^{\nu} u \le -1.$$

Because of the estimate (11), equality in (13) occurs precisely when $j_1 = \cdots = j_{N-1} = 0$, u = -1, and $j_N = k+1$. Thus the integral of (7) becomes $-mb_m = C_{k+1}(m/2^{\nu+1})$. In other words, we have

$$b_{m} = \frac{-1}{m} C_{k+1} \left(k + \frac{1}{2} \right)$$

$$= \frac{-1}{m} \frac{(2k+1)!}{2^{2k+1} k! (k+1)!} = -\frac{(2^{\nu+1} - 4)!}{2^{2^{\nu+1} - 3} 2^{\nu}! (2^{\nu} - 2)!}.$$

REMARKS. One hopes that formula (6) can be used to provide estimates for all nonzero coefficients b_m . If one could show that the series (1) converges

uniformly on $\vec{\Delta}$, then the mapping ψ would extend continuously to |z|=1. In this case it would follow that the boundary of the Mandelbrot set is locally connected—a well-known open problem.

On the basis of Theorem 4 we have some information about the growth of the coefficients b_m . It leaves open the possibility that $|b_m| \le A/m^{1+\epsilon}$ is true for some ϵ , $0 < \epsilon \le \frac{1}{4}$.

COROLLARY.
$$\limsup_{m\to\infty} m^{5/4} |b_m| \ge 2^{1/4} / \sqrt{\pi}$$
.

Proof. A lengthy (but straightforward) application of Stirling's formula to the coefficients in Theorem 4 leads to the asymptotics $-b_m \sim 1/(2^{1+5\nu/2}\sqrt{\pi})$ as $\nu \to \infty$. Since $2^{\nu} \sim \sqrt{m/2}$ as $\nu \to \infty$, we have $m^{5/4}|b_m| \sim 2^{1/4}/\sqrt{\pi}$ as $m \to \infty$ through the given sequence.

Faber Polynomials

Expand $p_n(w)^{m/2^n} = w^m + \sum_{k=-\infty}^{m-1} B_k w^k$ in a neighborhood of ∞ . Because of (3), each B_k is a polynomial in the coefficients b_j of ψ_n . Furthermore, B_k depends only on b_0, \ldots, b_{m-k-1} . Therefore, if we define \mathfrak{F}_m to be the polynomial part of $p_n^{m/2^n}$ at ∞ , namely,

(14)
$$\mathfrak{F}_{m}(w) = w^{m} + \sum_{k=0}^{m-1} B_{k} w^{k},$$

then \mathfrak{F}_m depends only on b_0, \ldots, b_{m-1} . It is a consequence of Lemma 1 that \mathfrak{F}_m is independent of n whenever $m \le 2^{n+1} - 2$. In this case, we shall see that \mathfrak{F}_m is the mth Faber polynomial of the Mandelbrot set M.

We shall show that $\mathfrak{F}_m(\psi(z)) = z^m + o(1)$ as $z \to \infty$, which is a characterization of the *m*th Faber polynomial of *M* (cf. [3, p. 131]). Since $\mathfrak{F}_m(w) - p_n(w)^{m/2^n} = o(1)$ as $w \to \infty$, it is clear that

(15)
$$\mathfrak{F}_{m}(\psi(z)) - p_{n}(\psi(z))^{m/2^{n}} = o(1)$$

as $z \to \infty$. Next, observe that

$$p_n(w)^{m/2^n} - p_n(\omega)^{m/2^n} = [w - \omega][w^{m-1} + w^{m-2}\omega + \dots + \omega^{m-1} + \text{lower powers of } w \text{ and } \omega],$$

so that

$$p_n(\psi(z))^{m/2^n} - p_n(\psi_n(z))^{m/2^n} = [\psi(z) - \psi_n(z)][mz^{m-1} + \text{lower powers of } z].$$

For $m \le 2^{n+1} - 2$, the latter is o(1) as $z \to \infty$, by Lemma 1. Combining this with (15) and (3), we see that

$$\mathfrak{F}_m(\psi(z)) = p_n(\psi_n(z))^{m/2^n} + o(1) = z^m + o(1)$$

as $z \to \infty$. This shows that (14) defines the Faber polynomials of the Mandelbrot set whenever $m \le 2^{n+1} - 2$. Note that they are easily constructed by symbolic manipulation programs on computers.

References

- 1. A. Douady and J. Hubbard, *Itération des polynômes quadratiques complexes*, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), 123–126.
- 2. I. Jungreis, *The uniformization of the complement of the Mandelbrot set*, Duke Math. J. 52 (1985), 935–938.
- 3. V. I. Smirnov and N. A. Lebedev, *Functions of a Complex Variable: Constructive Theory*, MIT Press, Cambridge, Mass., 1968.

Department of Mathematics Indiana University Bloomington, IN 47405