Complemented Ideals in Weighted
Algebras of Analytic Functions on the Disc

SIEGFRIED MOMM

Introduction

Weighted algebras of analytic functions introduced in a more general setting
by Hormander [2] have been investigated for many years with different aims.
During the last years in the case of entire functions, several authors have
considered the question of whether closed ideals are complemented sub-
spaces of the algebra regarded as a locally convex space (see e.g. Taylor [14];
Meise [7]; Meise and Taylor [9], [10]; Meise and Vogt [11]; Meise, Momm,
and Taylor [8]). We deal with the case of analytic functions on the disc and
give a criterion to decide whether an arbitrary given ideal is complemented.

Let (Y1)« en be an increasing sequence of continuous, nonnegative, strict-
ly increasing, unbounded functions on x =1. By Ap, we denote the locally
convex space of all analytic functions f on the open unit disc satisfying some
estimate

1
| f(z)] =Cexp \//k(l—_m), |z| <1.

We require conditions on the weight functions to guarantee that Ap becomes
an algebra of analytic functions in which division is possible. We charac-
terize the complemented closed ideals in Ap by their distribution of zeros:
A nonzero closed ideal I is complemented in Ap if and only if there exists
me N such that for each ke N there is ne N with

() (=)= o)

for almost all zeros a of I.

We also obtain a corresponding result for another (dual) type of weighted
algebras which can be defined similarly to Ap.

Via duality theory, our results can be regarded as results on the existence
of continuous linear right inverses for Toeplitz operators, or (more gener-
ally) on the complementation of shift invariant subspaces in certain locally
convex spaces of analytic functions on the disc which are smooth up to the
boundary (see Momm [12]).
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If I is a nonzero closed ideal, note that I is complemented in Ap if and
only if the quotient map w: Ap — Ap /I has a continuous linear right inverse.
The crucial point of our investigation is a decomposition of the quotient
Ap /I in finite dimensional Banach algebras E;, /€ N. If R is a continuous
linear right inverse for w, by applying R to the identities of E; we obtain a
sequence of certain subharmonic functions on |z|<1 which, by the con-
tinuity of R, satisfy a set of growth estimates. This necessary condition for
I to be complemented is equivalent to the announced one. In fact, using an
idea of Taylor [14, Thm. 5.2] and Meise, Momm, and Taylor [8, 3.3], we can
prove that it is sufficient, too: First, on each part E; of the finite-dimensional
decomposition of Ap /I there are right inverses R, for the quotient map = .
such that the operators (dim E;) ~'R,, /e N, are equicontinuous. From the
subharmonic functions of the hypothesis, using Hérmander’s L? technique
to get solutions for the d equation, we construct analytic functions g;, /€N,
satisfying corresponding growth estimates and which are preimages of the
identities of E; with respect to w. Then a continuous linear right inverse R
for 7 can be defined by

R: Ap/1— Ap, R<121x1>:= lngz(xz)-

]

Proving our main theorem, by the way, we obtain division and localiza-
tion results for the algebras described above.

1. (DFN) Algebras
By D, we denote the open unit disc {ze€ C||z|<1}.

1.1. DEFINITION. Let ¥ =(y;);en be asequence of continuous, nonneg-
ative, strictly increasing, unbounded functions on x=1. ¥ will be called a
weight system if for each k€ N there are ne N and x,=1 such that, for all
X = X,

(a) Yp(x) < ¢p41(x), (B) 2¢p(x) =¥, (x),
(7) ¥(2x) < ¥,(x), (8) x(I¥ V(8)/13 dt)> <y, (x).

Two weight systems ¥ = (Y;) N and ® = (¢;) N Will be called equivalent
if for each ke N there are ne N and xy=1 such that ¥,(x) < ¢,(x) and
o (x) < ¢,(x) for all x = x,.

1.2. LEMMA. Let ¥ be as in Definition 1.1. There is an equivalent weight
system ® = () ren Of convex functions ¢, such that x — ¢i(x)/x is in-
Proof. We put

creasing.
X ’ 2
<2§k(x):=x(j1 1’0’;(3’) dt> , x=1, keN.
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4(\5—-1)2%(;)5 x(S:/z ‘b’f) dt>

using 1.1(8), (v), and (8), we get that & = (¢) N is an equivalent weight
system. If we repeat this procedure with ¥ replaced by ®, we again get an
equivalent weight system ® = (¢x) e n. Since x = ¢ (x)/x increases, differ-
entiation shows that the functions ¢, are convex. ]

Since

1.3. LEMMA. Let Y be a continuous, nonnegative, strictly increasing, un-
bounded function on x = 1 with Y(2x) = O(Y(x)). Then (ky) ;N is a weight
system if and only if there exists C > 1 such that

. . - ¥(Cx)
1 f
v

Proof. To prove sufficiency, the only thing to show is 1.1(8). If x is the /th
power of C, then this can easily be done by dividing the range of integration
into intervals [C"~L, C"], 0<n =</, and estimating straight forward using
the following consequence of the hypothesis /—» times: There are ¢ > 0 and
Xo=1 with

> 1.

Y(x)=C~U+9y(Cx), x=x,.
To get the necessity, note that 1.1(8) is equivalent to

Sli’i‘—)dr—ow(x», $(x)i= ‘b(xx’ , x=1.

By 1.2, we may assume that ¢ is increasing. As in 1.2, we get that there are
Xg=1and K =1 such that

o =" 2 <Ko, xz=x,.
Choose C >exp(K>—K). Then for x = x,, we get
2 9(CX) Six¢(t)t“dt _y Fewitat | é(x)logC Ly
o(x) — [Fe()tldt ¥ o(e)t—1dt K¢(x)
Hence
2
- R CTE )

1.4. DEFINITION. Let y be a weight system as in Definition 1.1, and let
A(D) denote the algebra of all analytic functions on D. We put

P=(Piken: Pu(2)i= ( II) zeD, keN,

and define
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| fx=sup| f(z)|e Px¥) < oo for some keN} .

zeD

Ap= {fe A(D)

Endowed with the topology induced by (| |+)xen, Ap is a (DFN) algebra;
that is, Ap is the strong dual of a nuclear Fréchet space. In view of Lemma
1.2, by Hérmander [3, Thm. 1.6.7] we may assume that the functions p,
k e N, are subharmonic.

1.5. EXAMPLES. V¥ =(yY;)ren is a weight system if:
@) ¥r(x)=kx", p>1;
(b) ¥i(x)=x"% pp>1, (pr)ren strictly increasing;
(©) ¥i(x)=x(log x)¥.

CONVENTION. In the sequel, ¥ and P will always be as in Definition 1.4.

1.6. PROPOSITION. For each Fe Ap\{0} there are Jordan curves T'; in
1-27'<]z|<1=27'"Y IeN, around the origin such that there are keN
and C > 0 with

log|F(z)|=—pp(z)—C, zeTly, [eN.

Proof. Apply the Corollary in Momm [13] with e = % to the function cF(z)/z",
c# 0 and ne N appropriate, and use 1.1(8), (y), and (6). 1

From Matsaev and Mogul’skii [6] or Proposition 1.6, we have the next prop-
osition.

1.7. PROPOSITION. In Ap division is possible; that is, if f and g are in Ap
and f/g is analytic on D, then f/g is in Ap. In particular, each principal
ideal in Ap is closed.

1.8. REMARK. If ¥=(ky);cn, then each closed ideal in Ap is principal
(see Lemma 1.3 and Momm [12, 3.13}).

1.9. PROPOSITION. Each closed ideal in Ap is localized and generated by
two functions; that is, there are F,, Fy€ Ap such that I = I,,.(F,, F,), where
1. (Fy, F,) consists of all functions f € Ap which vanish at all common zeros
of F, and F, (with respect to multiplicities).

Proof. By Proposition 1.6, this follows from Kelleher and Taylor [4, 4.6]
and the “jiggling of zeros” argument indicated in Berenstein and Taylor [I,
p. 120].

1.10. REMARK. With the notion of the associated functions
wi(t):= inf (pg(r)y—tlogr), t=0, keN,

0<r<i
we get
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| fx= sup |xj|le ") < o for some ke N},
jENO

Ap= {f= > xjz/

jENO

as (DFN) spaces. Furthermore, for each k€ N, w; is a continuous, strictly
increasing, unbounded function.

Proof. Use straightforward estimation of the integral representation for
the coeflicients of the power series. To prove the unboundedness of w;, for
given L >0 choose 0 <ry<1 with p;(ry) =L and choose fo5=L/log(1/ry).
Then w;(ty) = L. O

CONVENTION. In the sequel let (w;);en be as in Remark 1.10.

1.11. LEMMA. For each k€N there exists t,=0 such that, for all t = t,,
W () =ty () = 2071 (20).

Proof. We omit the index k. Considering the cases r<s and s<r sepa-
rately, we get

log(1/s)

—— 0 ,$<1.
og(i/r)’ ~0F

p(ry=p(s)+p(r)

Hence, for each 0 <r <1 we have

p(r) \_ . p(r)
p(r)5w<-log(—1/r)>—oirlf;l<p(s)+Wlog(l/s))sZp(r).

Thus, for ¢ > p(0) we obtain

t
)< <0 1(2¢).
T O= g@py =03
Since 1/p~1(t) =1+1/(¢ ~!(¢)—1), this implies the assertion. C

2. Characterization of Complemented Ideals

Following the proof of Meise [7, 3.7], we get the following description of
the quotients of Ap modulo closed ideals which is crucial for our investiga-
tions (see also Berenstein and Taylor [1, Thm. 7]).

2.1. REPRESENTATION OF Ap/I. Let I be a nonzero closed ideal in Ap.
According to Proposition 1.9, we choose Fy, F, € Ap\ {0} with I = I, .(F}, F5).
Let V(1) denote the zero set of 7, that is, the set of all joint zeros of F; and
F,. Let (I')), <~ be the Jordan curves which we get applying Proposition 1.6
to the function F;. Put I'y:=0@ and define
S,:=intI‘,+1\intF1, IENO and 8:= U SI=D\ U Fl'
leNg le Ny

For /€ Ny, by A; we denote the Banach algebra of all bounded analytic func-
tions on S,. By I;, we denote the closed ideal in A; which has the same zeros
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in S; (with respect to multiplicities) as the ideal 7. Now, let E, be the quotient
E;=A,;/I, endowed with the quotient norm | |;.

We consider the following (LB) space which, with componentwise multi-
plication, is an algebra with identity element:

[xe II E;

[ENO

which, by 1.1(«y), equals the (LF) space

Ilx Il = sup | x|, exp(—¥x(2')) < o for some ke N},
IENO

Ap(8)/I:= [xe II E,

| [x= sup | x| < oo for some ke N},
[ENO

[ENO

| x| p:= inf sup|&(z)| exp(—pi(z)), Xx,€E,;, €Ny, keN.

fex; ze§y

Now, consider the map
p: Ap > Ap(8)/I, ()= (0i(fNien,=(fIS1+1)en,

Obviously, p is a continuous homomorphism of algebras with identity, and
ker p=1. We show that p is onto.

Let xe Ap(8)/I, x#0. Then there are k€ N and functions € x;, /eN,,
with

sup sup |£,(z)] exp(—pr(2)) < 2| x| < oo.
leNg ze 8

Define an analytic function £(z):=£,(z), z€ S;, /€ Ny. Then

|£(z)| = 2| x| exp pr(z), z€S8.

More generally, for further application let # be any subharmonic function
on D with

|£(z)| =expu(z), zeS.

We have to repeat the proof of the semi-local interpolation theorem of
Berenstein and Taylor [1, p. 120]. Choose &, and C,; =1 with

|Fi(z)| = Crexp py(z), zeD, i=1,2.

As in [1], we get a neighborhood § C 8 of V([) such that there are k, and

|F(2)| == VIF1(2)]2+|F(2)]2 = (Cyexp pi(2)) ™!, 2 D\§;
dist(z, D\ 8) = (Cyexp pi,(2)) ™, z€8.

Hence, as in [1], there exists x€ C*(D) with0<x <1, x|S§=1, and supp xC$
such that there are £; and C;=1 with

|0x(2)| = Cy exp py,(z), ze€D.
If we put
__Fia(x$)

o= T =0 2 =1,2’
o GEE
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then v;e C*(D), i=1, 2, and

1/2
<SD(|v,o|exp(—pk1~2pk2—pk3—u))2dm2> <\ C,C3C;, i=1,2.

By Hormander’s theorem (see [1, Thm. 1]), we obtain functions u; € C*(D)
with du; = v; and

1/2
(SD(|u,-| exp(——pkl——Zpkz—pks—u))zdm2> <27 C;C3C;, i=1,2.
Defining
g= X£+ u1F1+ U2F2,
we have dg =0, hence ge A(D). With p:= 2pk1+2pk2+pk3, we get

1/2
(Snlglzexp(—z(pw»dmz) <3/2r C2CIC,,

Using the averaging property of analytic functions we get (with r(z):=

La-1z)y)

|8(2)] = (xr(2)%) ! gdmy| =< (J;r(z))—l<s

1/2
|g|2 dmz)

“Slz—wl =<r(z)

lz—w|=r(z)

56\/§C12C22C3exp( sup p(w)+log + sup u(w)),

|z—w|=r(z) 1-|z| lz—w|<r(z)
zeD.

By 1.1(B), (v), and (6), there are k,€ N and C,=1 with

|g(z)|$C4exp(pk4(z)+ sup u(w)), zeD.

lz—w|=r(z)
Applying this result with u = p,+log(2|x|,), we obtain that g€ Ap. Since
x =1 in a neighbourhood of V(I), by the definition of g we get p(g)=x.
Hence p is onto. By the open mapping theorem for (LF) spaces, p is an open
mapping and
AP/IEAP(S)/I.

As in [1, Lemma 4], in addition we have that there are ks N and Cs> 0
such that

dimE;= ¥ n(a)=Csexp ¥, (2), [eN,,
acs V(NS

where n(a) denotes the multiplicity of a.

2.2. REMARK. If in the situation of 2.1 the ideal I has the zeros (a;);cn
(counted with respect to multiplicities), then
Ap/l = {xeCN | x|« = sup|x;| exp(—pi(a;)) <o for some ke N} ,
JeEN
as (DFN) spaces (see Meise [7, 3.7]).
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2.3. LEMMA. Let!leNgand let u be a radial subharmonic function on D.
Ifu(z)=0on |z|=1-27/ then, with the notation of 2.1, there exists g € Ap
such that p,(g) is the identity element of E;, and there are ke N and C >0
(not depending on | or u) with

log|g(z)| < pr(z)+ sup u(w)+C, zeD.
[w—z|=(1/2)(1—|z|)

Proof. In 2.1, consider the function

1 if ZESI,
Z)= .
E( ) {O if zer¢ISj-

By the hypothesis, we have u#(z) =0 on S;, hence |£(z)| <exp u(z) with z=
U jeN, Sj- Checking the proof of 2.1, we get the assertion. 0

2.4. LEMMA. Let (a));jcN be a sequence in D with lim; _, ,|a;| =1. Then
the following assertions are equivalent:

(i) There exists me N such that for each k € N there are ne N and jye N
with

.pm(Qﬂ

1— lajl ’

w,; '(pr(ay) < JEN, j=Jj.

(i1) There exists a sequence (d;)jeN of nonnegative numbers such that
Jor each ke N there are ne N and j,e N with

exp p(a;) <|a;|%exp w,(d)), jeN, j= j,.

Proof. By Definition 1.1(8), (i) is equivalent to: There exists m e N such

that for each k€ N there are ne N and j;e N with

pm(aj)
log(1/]aj])’
(i)=(ii): Let m be chosen according to (1). For je N, put

(D w; (pr(a) < JeN, j=jo.

o Pm(a))
7 log(1/a;])
Now, let £ € N be given. Choose k€ N with

if a;#0 and d;:=0 if a;=0.

Pmla;)+pila;) < pp(a))
for almost all je N. From (1) we get #e€ N such that, for almost all je N,
w7 (pe(a)) <dj,
hence
Pi(a))=w,(d;)= inf (p,(r)—d;logr);

o0<r«i
that is,

d;logr =p.(r)—pi(a;)), 0<r<l.
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By the definition of d;, we conclude that
(r/|a;))% < exp(p(r) — pe(a;) + Pmla;))
sexp(pn(r)_pk(aj))a O<r<13

for almost all j e N. From this we get (ii).

(ii) = (i): Since |a;| <1, by (ii) there is ne N for each ke N such that, for
almost all jeN,
(2) wy (pilay)) <d;,

and, since p(a;) =0,

d;log(1/|a;]) = w,(d;) < p,(\/]a;] ) —d; log+/|a;|

d. < 2pn( V Iajl )
77 log(1/]ay])
By Definition 1.1(8) and (v), there exists m € N with
pm(laj')
3 di<———7I1—
® 7= Tog(1/]as])
for almost all j € N. Now (2) and (3) yield (1), so the proof is finished. [

and hence

REMARK. If (g;);cn are the zeros of an ideal in Ap, then by applying
Jensen’s formula one can prove that (d;); <y can be chosen as a subsequence
of (/);jen (see Momm [12, 4.4]).

2.5. PROPOSITION. Let I be a nonzero closed ideal in Ap with infinitely
many zeros (a;);cn. If 1is complemented, then there exists me N such that
for each k€N there are ne N and joe N with

pm(aj)

’ jENs ijO'
1-]aj|

wy ' (pr(ay)) =

Proof. We use the notation of 2.1. Let R be a continuous linear right inverse
for the quotient map Ap — Ap/I. For jeN, choose /e Ny with a;e N;=
V(I)NS,. Let 1, denote the identity element of E; and define '

u;(z):= max log|R[1,](w)|, zeD.

[wl=1z|
Then from the continuity of R we get (see Meise and Taylor [10, 2.13]): For
each ke N there are ne N and j,e N with

1) u;(2) < p,(z)—pi(a;), zeD, jeN, j=j,.

Since u; is subharmonic, x = u;(e”) is a convex and increasing function of
x <0. Thus, since #;(a;) =0, there exists d; =0 with

d;log(r/|a;|) <u;(r), 0<r<1, jeN.

Then, from (1) and Lemma 2.4, we get the assertion. ]
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2.6. PROPOSITION. Let I be a nonzero closed ideal in Ap with infinitely
many zeros which satisfies the following condition: There exists m € N such
that for each k€ N there is ne N with

DPma)

1-|a|

Sor almost all zeros a of 1. Then I is complemented in Ap.

wp (pr(@) =

Proof. Let the ideal 7 be given. Let 7 be the quotient map Ap — Ap/I. We
shall construct a continuous linear right inverse for 7 using an idea of proof
from Taylor [14, Thm. 5.2] and Meise, Momm, and Taylor [8, 3.3].

We will use the notation of 2.1. In fact, we will construct a continuous
linear right inverse for p=(p;),; eNp* Occasionally, we will identify the alge-
bras E; with subalgebras of Ap /1. First, choose right inverses R, for p; such
that there exist k;€ N and C;> 0 with

ey R/ [x:1lx, < C1dim E|x;;, x,€ E}, 1€ Ny,

This can be done choosing an Auerbach basis (€ ;)1<i<dimg, In (£}, 11D,
[e N (see Meise [7, 1.3]). Since {e; ;|/, i} is bounded in Ap /I, there are func-
tions f; ;€ Ap with 7(f; ;) =¢; ; such that {f; ;|/, i} is bounded in Ap. Then,
put R,(X; Nje; ;)= 2; N\ f1.;» | € Ng. Another way to get such operators is to
use interpolation formulas like Berenstein and Taylor [1, formula (44), p. 132].

Now we construct “good” preimages g; of the identity elements 1, of E,,
l e Ny, with respect to #: If E;=0, put g;:=0. If /e N, with E;50 then
N;:=V(I)NS,;# 0. We define r;:=1—2"", Since N, is contained in r; < |z| <
r;+ }‘(1 —r;), by Definition 1.1(+y), the hypothesis is also valid with the zeros
of I replaced by {r;| E;# 0}. Hence, from Lemma 2.4 we get that there are
nonnegative numbers (d)) E;#0 such that for each k€ N there are ne N and
10 eN With

(2) u)(z):=d;log(|z|/r)) = p.(2)—pr(r), z€D, =1y, E#0.

Since u,(z) =0o0on |z|=1-—27/, for /e N, with E; 0, we can apply Lemma
2.3 to get functions g; such that p(g,) is the identity element of E;.

By (2), 1.2(«), and 2.3, the functions g, satisfy the following condition:
For each k€N there are neN and C > 0 with

(3) log|g/(2)| = pp(z)—pi(r)+C, zeD, leN,.

Now, identifying Ap /I with Ap(8)/I and using the nuclearity of Ap(8)/[
(or just applying Jensen’s formula to get j = O(py,(a;)) for an appropriate
k,e N), by standard arguments, from (1) and (3) we get that a continuous
linear right inverse R for « is given by

xIHIEOgIRl[xl]- O

R:AP/I—)AP’

Lo

i

2.7. THEOREM. Let ¥ be a weight system and let P be as in Definition 1.4.
A nongzero closed ideal I is complemented in Ap if and only if its zeros satisfy
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the following condition: There exists me€ N such that for each k€ N thereis
neN with

G ey

Jor almost all zeros a of I.

Proof. For a closed ideal with finitely many zeros, the codimension is finite
and hence the ideal is complemented. For I having infinitely many zeros,
from Propositions 2.5 and 2.6 we get that I is complemented if and only if
there exists m € N such that, for each k€N, there is ne N with

-1 pm( a)
wn (pk(a))< |a|

for almost all zeros a of I. By Lemma 1.11 and Definition 1.1(8) and (),
this is equivalent to the above condition. O

2.8. COROLLARY. Let¥Y=(ky¢)rcnbeasinlLemmal.3. Then each closed
ideal is complemented in Ap.

Proof. Using 1.1(y), it is easy to verify the criterion of Theorem 2.7. Just
put m=1 and, for given ke N, choose ne N with y(kx)=<(n/k)y(x) for
sufficiently large x = 1. Ll

2.9. EXAMPLE. Let p>1and define ¥ = (y;);n as follows:

Yi(x)=xfi(x), x=1,
where
Si(x)= a(x)*B(x)VE, x=1,

with continuous, increasing, unbounded functions « and 8 on x =1 with
values in x =1 which have the properties

a(x?) . B(x?)

lim sup <oo and limsup
x-w0  0(X xow  B(X)

Then ¥ is a weight system. We put g(x):=loga(x)/logB(x), x=1, and
consider three cases.

< 00

I. liminf, _, . g(x)>0. Then each closed ideal is complemented in Ap.

2. lim,_, . q(x)=0. Then only those closed ideals are complemented in
Ap which are generated by a polynomial, that is, only the closed ideals
with finitely many zeros and the null ideal.

3. 0=liminf,_ . g(x)<limsup,_ . g(x). Then there are noncomple-
mented closed ideals as well as complemented nonzero ideals with infi-
nitely many zeros.

Proof. Condition 1.1(+y) can be verified as in the proof of Lemma 1.3, since
liminf, _, o Yx(2x)/2¢x(x) =2°"!>1, ke N. Hence ¥ is a weight system.
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If (a;)jen are the zeros of a closed ideal I of Ap, put x;:=1/(1—|a;|),
J € N. Note that the hypotheses imply that a(x)= O((log x)¢) and 8(x) =
O((log x)¢) for some ¢ > 0. Using the hypothesis, from Theorem 2.7 we get
that 7 is complemented in Ap if and only if there exists 72 € N such that for
each k€ N there are ne N and j,e N with

Je(xj) >" Jn(Xx)) N, =
<fm(x,-) ka(xj)’ JEN J=Jo,

which is equivalent to

1

1 1 ' 1
ae)e=mp+ (= 7 ) atey =i+ = ). JeN, izdo

Obviously, this is true if lim inf; _,  g(x;) > 0 and false in the other case.
U]

2.10. EXAMPLES. The assertion of Example 2.9(1) is also true for the
weight systems 1.5(a) and (c). The assertion of Example 2.9(2) is also true
for the weight systems 1.5(b).

2.11. APPLICATION. We will sketch how, via duality theory, Theorem 2.7
applies to (FN) spaces of analytic functions on the disc being smooth up to
the boundary.
Let
M= (Mp,k)pe Ng,keN

be a matrix of positive numbers such that (M, ,/(pM,,_, i)),en is increas-
ing and unbounded for each ke N. Assume that for each ke N there are
neN and py= 0 such that, for all p= p,,

2
My ii=Mp ey My, n=Mp e, Mo, . <My, M, ,2°P<M,,

(e.g., M, = p!5/kP, where 1<s). Consider the Fréchet space

8y ={feC(D)| fe AD), fe C*(R), f(t):= f(e"), t€R,

|flx=sup sup | fP(£)|/M, ;<o for all keNj.
teR peNy

By the Cauchy-Fantappi¢ transform “: &y, — Ap,

o) . 1
A(z) = Nzl = py | —— D
Mz) J_gouw(w )z uw<1_zw>, zeD,

we can identify the strong dual &}, with Ap, where ¥ = ()N and

x¥Pp!
Yi(x):= sup log( p ), x=1,
PENy Mp,k

has all the properties of a weight system, with the exception of 1.1(8) (see
Momm [12, §6] and Koérner [5]; in our example, the weight functions ¢ are
equivalent to i (x) = kx/6—1),
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By this identification, a closed linear subspace W C &,, is S-invariant,

S: 8y -8y, Sf(z)= M,

if and only if W*C Apis a closed ideal. In this case, z € D is a zero of W+if
and only if the function e,: w—1/(1—2zw) belongs to W.

Now, in addition assuming 1.1(6) (i.e., s <2 in our example), from The-
orem 2.7 we obtain: A proper S-invariant subspace W of &,, is comple-
mented if and only if there exists me N such that, for each k€ N, there is
neN with

(v o (velan)) = = o)

Jor almost all ae D with e,e W.
If we apply this result to particular S-invariant subspaces, that is, to ker-
nels of Toeplitz operators 7, € &), where

Tp: 8M_)SM’ Tp,f= 2 ;uw(wn)Snfa
n=0

since T#=MP{, M;: Ap—~ Ap, and M f = jif, we have: A nonzero Toeplitz
operator T,, p€ 8y, admits a continuous linear right inverse if and only if
the zeros of the characteristic function ji satisfy the condition of Theorem 2.7.

3. (FN) Algebras

The results of the previous sections concerning (DFN) algebras have an ex-
tension to another type of weighted algebras. Hereafter, a weight system as
in Definition 1.1 will be called an inductive weight system, in contrast to
those defined next.

3.1. DEFINITION. Let ¥ = ()N be a sequence of continuous, nonneg-
ative, strictly increasing, unbounded functions on x=1. ¥ will be called a
projective weight system if for each ne N there are ke N and xy=1 such
that, for all x= x,,

(@) Yppi(X)=vp(x),  (B) 2¢p(x) = ¥,(x),
(7) ¥r(2x) = dp(x), (&) x(J V¥u(0)/13 dt)? < ¢, (x).

3.2. DEFINITION. Let ¥ be a projective weight system as in Definition 3.1.
We put

1
P=(pP)ken, pk(Z)==¢k<l—:’—z—l—>, zeD, keN,
and define

A= {feA(D) | f]=sup|f(z)|e Px¥ < oo for each ke N}.

zeD
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Endowed with the topology induced by the norms (| [;)ren, A% is an (FN)
algebra; that is, A% is a nuclear Fréchet space.

CONVENTION. In the sequel let ¥ and P be as in Definition 3.2.

3.3. REMARK. Most of the results of the first and second section are valid
also for the (FN) algebra 4%, only making minor changes in the assertions.
Thus 1.2, 1.7, 1.9, and 1.11 are valid without further changes. 1.3 and 1.§
are valid with (k)N replaced by ((1/k)¢¥)xen. In 1.6, 1.10, 2.1, 2.2, 2.3,
2.4, 2.5, 2.6, and 2.7 we have to make a systematic change of the quanti-
fiers which are combined with positive integers k, m, n: So, replace “3k” by
“vk”, “vkan” by “vnak”, “a9mvkan” by “vn3k vm”, and replace “(DFN)”
by “(FN)”.

Let us state the main result for (FN) algebras:

3.4. THEOREM. Let ¥ be a projective weight system and let P be defined
as in Definition 3.2. A nonzero ideal I is complemented in AY if and only
if its zeros satisfy the following condition: For each ne N there exists ke N
such that for each meN

(g ) (e (=)= g o )

Sfor almost all zeros a of I.

Proof. Let I be a nonzero closed ideal in A$ with infinitely many zeros.
First, we must prove the analogue of Proposition 1.9.

To prove the localization result of 1.9, we use a modified version of the
proof of Kelleher and Taylor [4, 4.6]: If F e I\{0}, then we define the fol-
lowing associated inductive weight system ® = (¢;);n: Put

1
¢<T—_r)= max log|F(z)|, 0=<r<l1,

lz|=r
and define inductively

. 2
do(x):=max{¢(x), 1], qS,,{(x):=4x(S;1 ¢—k;—iﬂdl‘>, x=1, keN.

With the arguments of the proof of Lemma 1.2, we get that & is an induc-

tive weight system such that the corresponding (DFN) algebra Ag contains
the function F. Furthermore,

¢k(X)=O(\[/n(X)), k,nGN.

Now we repeat the proof of Kelleher and Taylor [4, 4.6], with A instead
of A, and with I* replaced by {fe€ Ag| fI},c C1}, to obtain that this ideal
(in Ap) equals 4,. Hence it contains the identity and I = I;,.. By the “jig-
gling of zeros” argument (see 1.9), we conclude that I=1,,.(Fy, F,) with
appropriate Fy, F,e A\ {0}.
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To prove the analogue of 2.1, proceed as in Meise and Taylor [9, 2.7}, but
use the inductive weight system & constructed above, with F replaced by
(|Fy|? + | Fo| )2

The remaining parts of the proof of Theorem 3.4 are analogous to those
of Theorem 2.7. For more details, we refer to Momm [12]. O

3.5. COROLLARY. Let ¥Y=((1/k)Y)ren With  asin Lemma 1.3 (see Re-
mark 3.3). Then only those closed ideals are complemented in A} which are
generated by a polynomial.

Proof. By Lemma 1.2, we may assume that x — {(x)/x is increasing. Hence
we have (1/k) ¢ (x) = ¢((1/k)x) for all k€ N and x = 1. For this reason there
exists ne N (take n=1) such that for each k€ N there is me N (choose m >
k?) with

1 /N 1
Vv (Fom)>x g, x=1,
Thus, from Theorem 3.4, we get the assertion. [

3.6. EXAMPLE. Let p>1and define ¥ = (), n as follows:

Vi(x)=xPfi(x), x=1,
where
Fie(x) = a(x)*p(x)+Vk x=1,

with o and 3 as in 2.9. In addition, let the function x ~ x ¢/ a(x) be increasing
for each e > 0 and for sufficiently large x=1. Then ¥ is a projective weight
system (after a suitable change of the functions y; for small x =1). With g
as in 2.9, we again consider three cases.

1. liminf, _,  q(x)>0. Then only those closed ideals are complemented
in A$ which are generated by a polynomial.

2. lim, _, - g(x) = 0. Then each closed ideal is complemented in A4%.

3. 0=liminf,_ ., g(x)<limsup,_ . g(x). Then there are noncomple-
mented closed ideals as well as complemented nonzero ideals with in-
finitely many zeros.

Proof. If (a;);¢n are the zeros of a closed ideal I of AR, put x;:=1/(1—|a;|),
j€eN. Asin 2.9, we get that I is complemented if and only if for each ne N
there is £ € N such that, for each m e N, there exists j,€ N with

1 1 1 1
Q(xj)(m_k)p_*_(;_Z)Sq(xj)(k_n)_’_(Z—E)’ JeN, j=Jj,.

Obviously, this is true if lim;_, , g(x;) = 0 and false in the other case. H

3.7. EXAMPLES. The assertion of Example 3.6(1) is also true for ¢ (x)=

(1/k)x?, p>1. The assertion of Example 3.6(2) is also true for y,(x)=
xPFI/k p=1.
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3.8. APPLICATION. Changing the quantifiers, analogous to 2.11, we get an
application of Theorem 3.4 to shift invariant subspaces of (DFN) spaces of
analytic functions on the disc being smooth up to the boundary (see Momm

[12]).
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