On Tensor Stable Operator Ideals
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A quasi-Banach ideal [®, A] of operators is said to be tensor stable with re-
spect to a tensor norm « if, for all Se Q(E, G) and Te Q(F, H),

S®.Te UER,F, GR, H);
in this case there is an @ =1 such that
AS®,T)<aA(S)A(T)

(in all concrete cases the constant @ is obtained free of charge within the
proof of tensor stability). Recently, Pietsch [15] has successfully exploited
the tensor stability of certain Banach ideals to improve constants in the eigen-
value estimates of operators in them. In [2] tensor stability techniques were
very useful to improve constants in the ideal norm estimates of certain oper-
ators. The earliest examples of tensor stable ideals with respect to e are those
of compact operators and of absolutely p-summing operators; these results
are due to Vala [18] and Holub [6], respectively.

In Section 1 we prove that every nonproper ideal [®, 4] (i.e., there is at
least one infinite-dimensional Banach space E such that the identity operator
on F is in @) with

sup A(idgz) = - (resp., sup A(idgiz) = 00)
n n

cannot be tensor stable with respect to an injective (resp., a projective) ten-
sor norm. (Recall that € is injective and = is projective.) In Section 2 we
completely identify which of the ideals £, , of (p, g)-factorable operators as
well as their injective, surjective, and minimal hulls are e- or w-tensor stable.
This is done by using some preliminary lemmas which are broadly of the
type of permanence properties. The last section contains some applications.

Each section includes the relevant definitions; for notions and notations
not explicitly defined here, we refer the reader to Pietsch [14].
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0. Preliminaries

First we recall the basic notion of Grothendieck’s metric theory of tensor
products (see, e.g., [3], [4], [5], [12]). A mapping which assigns to each pair
(E, F) of Banach spaces a reasonable norm «(-; E, F), e <« <, on the al-
gebraic tensor product EQF is called a tensor norm if it satisfies the metric
mapping property; namely, for Se £(F, G) and Te £(F, H),

|S®T: EQqF > G, H|=<|S||T|

(note that this definition differs from the original one given in [5]). The Ba-
nach space E ®, F is obtained by completing E ®,, F, and the continuous ex-
tension S®,Te€ L(EQR,F, GR,H) of SQT is called the a-tensor product
of the operators S and 7. The most important examples are the injective ten-
sor norm ¢, which is the smallest, and the projective tensor norm #, which is
the largest. For other basic examples we refer to [3], [4], or [12].

A quasi-Banach ideal [®, A] of operators is said to be tensor stable with
respect to the tensor norm « if, for all Se Q(E, G) and Te Q(F, H), S®,Te
QRER®,F, G®,H). Then it is also easy to show that there exists a constant
a =1 so that, for all S, T as above,

A(S®,T)<aA(S)A(T).

In this case we say [@, A] is a-tensor stable with constant a; if a =1 we
merely say [@, 4] is a-tensor stable.

The metric mapping property of tensor norms implies that [£, |-|] is a-
tensor stable for each tensor norm «. The same holds also for the ideal
[9T, N] of nuclear operators and the ideal [9, 7] of integral operators. The
first result on the tensor products of compact operators goes back to Vala
[18], who proved that [X, |-|] is e-tensor stable; the same holds for =, but
it seems to be unknown whether this is valid for an arbitrary tensor norm.
Holub ([6], [7]) proved the important result that the ideal [®,,P,] of all
absolutely p-summing operators is e-tensor stable (but is not tensor stable
with respect to 7). Moreover, it can be easily seen that the ideal [£,, L,]
of all Hilbertian operators is not tensor stable with respect to € or , since
£, &, 1, and £, X, £, are not reflexive. We finally remark that Pietsch [15] and
Konig [9] have studied the tensor stability of quasi-Banach ideals defined by
s-numbers.

Recall that a tensor norm « is said to be injective if, for all Banach spaces
E and F and all subspaces G of E and H of F, the canonical embedding

JERJf: GRyH—>E®,F

is a metric injection; it is called projective if, for E, F, G, H as above, the
canonical surjection

Q(®0f: EQ,F— (E/G)®,(F/H)

is a metric surjection; standard arguments show that e is injective and = is
projective.
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If « is a tensor norm then the dual tensor norm o’ for pairs (M, N) of
finite-dimensional Banach spaces is defined by

o'(z; M, N)=sup{|{z, u)|: ue M'QN’, a(u; M',N’') <1},
and for pairs (E, F) of arbitrary Banach spaces by
«'(z; E,F)=inf o'(z; M, N),

where the infimum is taken over all finite-dimensional subspaces M of E and
N of F with ze M@N. It can be easily seen that ¢/=7 and 7’ =¢. More-
over, the dual of an injective (resp., projective) tensor norm is projective
(resp., injective); see for example [3].

1. Nonproper Tensor Stable Ideals

A quasi-Banach ideal [®, 4] is called nonproper if Space(®) contains an
infinite-dimensional Banach space (a Banach space E belongs to Space(Q) if
the identity on E is in ®). In this section we prove some general results from
which it follows that every nonproper maximal Banach ideal which is e-ten-
sor stable (resp., w-tensor stable) contains £, (resp., £;). The proofs are
based on essentially finite-dimensional arguments and therefore also are rel-
evant in providing a partial answer to a question of Pelczynski ([13, p. 136]).

A Banach space E is said to be finitely representable in F, written briefly
as E 5 F, if for each ¢ > 0 and each finite-dimensional subspace M of E there
is a finite-dimensional subspace N of F and a bijective operator Te £L(M,N)
such that |T'| |7 ~1| =1+ e. Every Banach space is finitely representable in £,,.
Dvoretzky’s theorem states that £, is finitely representable in every infinite-
dimensional Banach space.

If @ is a property defined for Banach spaces (i.e., if @ is a subclass of the
class of all Banach spaces) then a Banach space E has property “super ®” if
every Banach space finitely representable in E also has @. A property @ is
called a super property if ® = super ®. For more information on this impor-
tant notion we refer to [16].

We start with the following.

1.1. PROPOSITION. Let o be an injective tensor norm and ® a property of
Banach spaces which is nontrivial (i.e., there is at least one Banach space
without ®). Then the o-tensor product E®, F of two infinite-dimensional
Banach spaces E and F cannot have property super @.

Proof. Let E and F be two infinite-dimensional Banach spaces. We prove
that
fo 5 EQq F,

since then E &), F cannot have super ® (otherwise every Banach space would
have @).

We will need Grothendieck’s fundamental theorem of the metric theory
of tensor products (see, €.g., [4] or [S]). There is a universal constant K5 >0
such that, for arbitrary Banach spaces G and H,
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wo(+; G, H) < /n\(-; G, H) = Kw,(-; G, H);

here /=\ denotes the largest injective tensor norm and w, the tensor norm
defined by

n 1/2 n 1/2
w,(z; G, H)==inf[ sup ( )) I(x,-,x’>l2> sup ( % I<y,-,y’>|2) ]
Ixf=<t1\i=1 i=i\i=1

where the infimum is taken over all finite representations z =X7_; x;®y;.

First we prove that E ®,, F contains all spaces 7, (1+ ¢)Kg-uniformly; that
is, for all # and e there is a finite-dimensional subspace G of E®, F and
a bijection R: £y, — G such that |R||R ~!| =(1+¢€)Kg. This then completes
the proof, since by a result of James [8] a Banach space contains all ¢%,
A-uniformly for all A > 1if it does this for some A > 1, and by the fact that ¢,
is an £, )-space for all A >1. Fix n e N and e > 0. Define the metric injection

3L -5 05
n
E— 2 ¢ie®e;.
i=1

By Dvoretzky’s theorem we can find a finite-dimensional subspace M of E
and a bijection S: £5 - M such that |S| <1and |S—1| =1+¢, and similarly a
finite-dimensional subspace N of F and a bijection 7T': 5 — N with |T]| =<1
and |T~1| <1+e. Now consider the subspace G:= (S®,T)3I (%) of EQ,F
and the bijection

R: (2 -G

£ (S®,T)3I(E).

Because « is injective, M &, N is a subspace of E®, F and hence |R~!| <
(1+¢€)2. Moreover, by an easy calculation we have

wa (5 03, 03) = €(-; €3, £3),

so that by the injectivity of o and Grothendieck’s theorem

O{(' s eg, fg) = /W\('; fg, fg) SKGE(' s Ega fg)
This proves |R| < Kg. O
REMARK. Without the injectivity of o the above result need not hold; for
example, the g,-tensor product of two Hilbert spaces has the super prop-
erty of being a Hilbert space (for the definition of g, see [3] or [4]); also, the
above proposition does not hold for o = # since, for example, by [17] the

Schatten-von Neumann class @(f,) =¥¢, &, {, has the super property co-
type 2.

In order to apply the preceding result to our investigation of tensor stable
Banach ideals we need the following lemma.

1.2. LEMMA. Let [@, A] be a maximal quasi-Banach ideal of operators.
Then the following are equivalent:
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(i) Space(QN) is a nontrivial super property;,
(ii) f. ¢ Space(Q).

Proof. Assume (i) holds and that ¢, € Space(®). Then the maximality of @
implies that £., < @ and hence £ = £ = @™, which is a contradiction.
Conversely, assume /., ¢ Space(®). Let Fe Space(@™) and E &5 F. Let M
be a finite-dimensional subspace of E. Then there is a finite-dimensional sub-
space N of F and a bijection T'e £(M, N) with |T||T 1| <1+e. Hence

A (Jf7) = AN (idys) = AM(T-'idy T)
< (1+e)AMi(idy) < (1+€) AN (idf).

This implies E € Space(®i™) since [@M, A" ] is maximal. It only remains to
check that @ini = £, but this is true since ¢, as a complemented subspace of
¢ cannot be contained in Space(Q®iM). O

We are now ready to make some general statements on tensor stability of
Banach operator ideals.

1.3. THEOREM. Let [®, A] be a quasi-Banach ideal of operators and o a
tensor norm. If either

(i) « is injective and sup A(idgn) = o
or

(ii) « is projective and sup A(idgiz) = o0,
then E®, F ¢ Space(Q) for all infinite-dimensional E and F € Space(®). In
particular, every nonproper Banach ideal [®,A] cannot be a-tensor stable
in each of the above two cases.

Proof. (i) Since (., ¢ Space(@™2x), we have from the preceding lemma that
the property Space(@™axinj) js a nontrivial super property. Now the conclu-
sion on E®, F follows from 1.1, since Space(®) S Space (@™axinj),

(ii) If « is projective and ¢, ¢ Space(@™2*), then «’ is injective and

f. ¢ Space(@maxdualy = Space (@dualmax),

Note that an operator T belongs to a maximal ideal @ if and only if this
holds for its bi-adjoint. Assume that there are infinite-dimensional Banach
spaces E and F with E®, F € Space(®) S Space(®@™2*). Since « is projec-
tive, the canonical embedding E’®), F’ = (E®, F)’ is a metric injection (see,
e.g., [3, 3.4 and 9.1]), and (E ®, F)' € Space(@dualmax) we have E’®a'F'e
Space(@dualmaxinj) - Again, by 1.1 and 1.2 this is a contradiction. O

As an immediate consequence we have the following.

1.4. COROLLARY. Let [®, A] be maximal and nonproper. If [®, A] is ten-
sor stable with respect to an injective (resp., a projective) tensor norm o,
then £, S Q (resp., £, S Q). In particular, if a is an injective (resp., a pro-
Jective) tensor norm then [ £, |-|] is the only a-tensor stable ideal which is
injective (resp., surjective), maximal, and nonproper.
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This last remark follows from £ = £ and £{* = £.

1.5. COROLLARY. For a maximal quasi-Banach ideal [®, A] the following
are equivalent:
(1) { & Space(Q) (resp., {; ¢ Space(Q));
(2) E®. F ¢ Space(Q) (resp., E®., F ¢ Space(Q)) for all infinite-
dimensional E, F € Space(Q®).

Proof. Obviously the theorem shows that (1) implies (2). Conversely, if {, €
Space(®) then £, < @, and hence in particular

0o ®. L € Space(Q),

but this contradicts (2). The argument for 7 is analogous. tJ

2. Tensor Stability of the Ideals £, , and X, ,

We shall in this section completely identify which of the Banach ideals
[£p,4:Lp,q] and [X, ;, K, ,], as well as their injective and surjective hulls,
are e- or w-tensor stable. The ideal £, , of (p, q)-factorable operators is
related to the ideal X, , of (p, g)-compact operators by £},‘}i§= Xp,, and
Xpax= £, ,. Moreover, 9, := £, is the class of all p-integral operators,
£,:= £, p the class of all p-factorable operators, 9 ,:= X, ; the class of
all p-nuclear operators, and ¥X,:=X, ;- the class of all p-compact oper-
ators. We recall that £3val=¢, , and 9," = ®,. For definitions and vari-
ous properties and relationships with other ideals, the reader is referred to
Pietsch [14], especially Chapters 18 and 19.

2.1. THEOREM. Let 1=p,gq=<o and 1/p+1/q=1. The following tables
characterize which of the Banach ideals on the first column of each of the
tables are e- or w-tensor stable, respectively.

€ T € T

£p,q | Ip ggual Kp.q | Np Xy, p

o e lole @ g lal| x
Log | £ | @ Kpg | K| Kip

[For example, £, =49, is e-tensor stable (with constant 1) and £, 4, for
g #1, is not tensor stable with respect to e.]

Before giving a proof of this statement, we shall collect together some ele-
mentary basic results on how far tensor stability of an ideal with respect to a
tensor norm is inherited by the ideals @s¥, @in, @max, @min, gand @dval,

2.2. LEMMA. Let [®@, A] be a quasi-Banach ideal which is a-tensor stable
with constant a. Then so are

(1) [@M, AN, if o is injective;

(2) [@sur, Asvr], if o is projective.
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Proof. (2) Let Se @Y (E, G) and T € @ (F, H). Then
(S®aT)(QE®a QF) =SQE®QTQFG Q(Esur®anur’ G®aH)

and A(S®,T)(Qr®. QF)) =aA(SQp)A(TQr). Since (E®,F)™ has the
metric lifting property and Oz ®, QF: ES* ®, Fs'r - E ®),, F is a metric sur-
jection, there is R € L((E ®, F)*, Es &, F) such that |R| =1+ € and
Qre,r=(Qr&®,Qr)R. Hence S®, T € @ (EQ, F, G®, H) and

A (S®,T)=A(S®uT)Qrg, F)
< (1+4+¢€)aAsv (S)AW(T).
The proof of (1) is similar. ]

REMARK. By Holub [6], the ideal [9T, N] of nuclear operators is w-tensor
stable while its injective hull (all quasi-nuclear operators) is not. As men-
tioned earlier, [9, 1] and hence also [9iM, I 1M ] are e-tensor stable; since £,=
(gimi)sur (by Grothendieck’s theorem every operator from a Banach space
¢£,(T") into a Hilbert space is absolutely summing [14, 22.4.4] and hence £,=
L5 € @3 = (9iM)r < £,), we see that the surjective hull of an e-tensor
stable Banach ideal need not be tensor stable with respect to e.

We call a quasi-Banach ideal [®, A] right accessible if for each ¢ >0 and
each Te £(M, F), where M is a finite-dimensional Banach space and F'is an
arbitrary Banach space, there is a finite-dimensional subspace N of F and
T, € £(M, N) such that T=J5T, and A(T;) < (14€)A(T). All Banach ideals
mentioned in 2.1(1) and 2.1(2) have this property (see [3] or [4]). We remark
that no ideal without this property is known.

2.3. LEMMA. Let [}, A] be a Banach ideal and o a tensor norm.

(1) If [@, A] is a-tensor stable with constant a, then so is [@™in, 4min],
(2) Assume that o is injective and that there is a =1 such that

AS®,T)<aA(S)A(T)

for all operators S, T between finite-dimensional Banach spaces. Then
[@mex, Amax] js o-tensor stable with constant a, provided it is right
accessible.

Proof. (1) By definition [@™in, AMin]| =[G |-|1¢[®@, A][G, |-|]1, where [G, |-|]
denotes the ideal of all approximable operators. Obviously the product of
an a-tensor stable ideal with constant a by an a-tensor stable ideal with con-
stant b is a-tensor stable with constant ab. This implies (1), since an easy
argument using the metric mapping property of « shows that [G, |-]] is -
tensor stable.

(2) Let Se @m&(E, G) and Te @™ (F, H). In order to prove that S®_ Te
@, it suffices to check that

A(S®aT) (17 Pa IN)) < GA™(S) A™(T)
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for all finite-dimensional subspaces M of E and N of F; this follows by an
argument based on the principle of local reflexivity, since the union of all
subspaces M ®, N of E &, F is dense (cf. [12, p. 38]). For M, N as above, by
the right accessibility of [@™ax, Amax] we have M, Sy, N;, T; such that SJ =
Jiz, St and TJG=J§ Ty, with

A(S) =(1+e)Am™*(S) and A(T))=(1+¢€)A™X(T).
Now the desired inequality follows from
A(S®aT) (31 Ru 7)) = A7, B0 J5) (51 T1))
= aA($)A(TY)
<a(l+e)24Amax(§)4max(T), ]

As an easy consequence we have the following.

2.4. LEMMA. Let o be a projective tensor norm and [®,A] a Banach ideal
that is o-tensor stable with constant a. Then [@maxdual gmaxdual] js ' tensor
stable with constant a provided it is right accessible.

PI’OOf: This follows by [@maxdual’ Amaxdual] — [@dualmax’ Adualmax] and part
(2) of the preceding lemma because, for operators S, T between finite-dimen-
sional spaces,

A®(S®,T)=A(S X T)')
=A(S’'®,T’) < aAdual(S)4dual(T), O

We are now ready to give the following.

Proof of 2.1 Theorem. We start with the table (1).

(A) First, we consider the column under = and prove the positive results
for £, ,.

(Al) In the case p =1, g =1, Holub [6] has proved that £, ; = 9 is w-tensor
stable. For p=1, 1<g<o and Se £, ,(E, G), Te £, ,(F, H), we obtain
the following commuting diagram, using the “if” part of the factorization
theorem for £, , ([14, 19.4.4]):

E®1r G®WHC—MI—>G”®WH”
N USLV _ A X®. Y
- I -
Lq'(ﬂ)@qu’(V) £ Ll(ﬂ:) ®7‘-L1(V),

where |U||X|=(1+€)L,,,(S) and |V||Y]|=(1+e€)L,,,(T); here the maps
I, and I, are the canonical embeddings. Moreover, it can be seen easily that
I, &, I, factorizes in a canonical way through

1

K
and that there is a metric injection Re £(G"®, H”, (G&, H)") such that

Koo n=R(Kc®:Kp)

xv+ Lg(pXv) = Li(pXv),
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(because each ¢ € (G&, H)' has a canonical extension ¢ € (G®, H”)’ with
le] =|#]). Hence the “only if” part of the above-used factorization theorem
shows that S®,Te £, , and L; ,(S®,T) < (1+¢€)?L; ,(S)L; ,(T).

The remaining case p =1, g = oo, follows in a manner similar to the one
above, by use of the factorization theorem ([14, 19.3.7]).

(A2) Of course, £ = £ is -tensor stable.

(A3) Since ﬂg“alsur= EI},“j dual (Pgual, the positive results for £, follow
from 2.2(2) and the result proved in (Al).

(B) Next, we observe that the positive results concerning the tensor stabil-
ity of £, , with respect to e follow by 2.4 and the results of (A), since

dual _ injdual _ esur surdual __ inj
°ep,q - £‘I-P’ £P;q - £q,1” £P:q - °Bq,P’

(C) Now we prove the negative results for the column under e.

(C1) The negative results on the tensor stability of £, , with respect to e
follow by 2.2(1) and (C2).

(C2) For 1< p, g < o the factorization theorem mentioned in (A1) shows
that £2ij is contained in the ideal W of all weakl~y compact operators. More-
over, by [14, 19.4.4], £, e Space(L,, ). Since {, ®, £, is not reflexive, none of
the ideals £5%, (1 < p, g <o) can be tensor stable with respecttoe. Let p=1
and 1 <g < 0. Then

Qp, € @1 (637, £2) S 95(£37, £5) S 9, (037, £3)
(see [14, 22.4.4 and 22.4.2]) and this proves
id,, € 93" = £,

hence idg, € £{%,. Again £, cannot be tensor stable with respect to e, since
L£1% € W. The remaining case £, = £{” follows, for example, by 1.4
Corollary.

(C3) Assume that £, is tensor stable with respect to e. Then, by 2.2(1),

£,s,"‘§]i“j is tensor stable with respect to e. Since
L£o=(9)W (LX) for all p,q

(see the remark after 2.2) and the latter ideal is contained in Wif 1< p <o
or 1 <g <o, it remains to check the case (p, g) = (o0, 1) (use the argument
of (C2)). In view of 2.4 we show that £{V is not tensor stable with respect to
7 (note that £V = gurdvaly Byt this, for example, follows from [11] where
it is proved that ¢, &, £, cannot be a subspace of some Banach space L,(u).

(D) The negative results concerning the column under =« follow, as in (B),
by 2.4 and the results shown in (C). Hence the proof of table (1) is complete.
Next we consider the table for ¥, , and first establish the positive results.

(E) By 2.3(1) Lemma, 91, = 9p" is e-tensor stable and & , = gg"a' ™" -
tensor stable; it then follows from 2.2 that 91" is e-tensor stable and X3"} is
w-tensor stable. As mentioned, X is both e- and w-tensor stable.

(F) Finally, we shall prove the negative results. The relationships

max __ injmax __ @inj surmax __ @ sur
:K:P,q - °BP’Q’ gcp,q - °GP,Q’ JCP,Q - ‘gpsq
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and 2.3(2) yield the negative results for the column under € for X, , from

those of £, , et cetera. Since
max dual __ inj maxdual __ @sur surmax dual __ @ inj
Jcp:q - £Q;P’ :K:P,q —‘S‘LP’ ‘,K:Paq - ‘sq,l”

the negative results for the column under = follow, by 2.4, from the nega-
tive results for the column under e for £, , et cetera. This completes the
proof. ]

We remark that 2.1 includes several already-mentioned results of [6], [7],
and [18].

3. Applications

We start with the following lemma.

3.1. LEMMA. Let [®, A] be an a-tensor stable Banach ideal with constant
a. Then, for all Se @*(E, G) and T e Q*(F, H) with S&®,T e Q*:

A*(S)A%(T) <aA*(S®,T),
where [@*,A*] denotes the adjoint ideal of [®, A].

Proof. Let S, T be as above. For subspaces M; of G, M, of H, N, of E, and
N, of F (all of finite co-dimension), and for all operators L; € £(G/M,, N,),
Ly,e £(H/M2,N2) with A(L) =1, A(Lz) <1, one gets

ANS®,T) = + |trace(JF, ®u Ih,) (L1 @0 L) (05, B OF,) (S®.T))]
= 1 trace(J§, L1 QF, S®u Jh, L2 4, )|

1
= — |trace(J§, L1 Qj7, S) || trace (J, L, Q17,T)|,

and therefore

ANS®,T)= EII—A*(S)A*(T). O

3.2. COROLLARY. Let [®, A] be an a-tensor stable maximal Banach ideal
such that its adjoint is o-tensor stable. Then, for all S,T € @,

AS®,T)=A(S)A(T).
For a proof apply the lemma to [@*, A*] and recall that [@**, A**]=[Q, A].
By [14, 19.2.13],
(@, P 1=1[97, 1], [9,, ,1=[®F, P}]
for all 1 <r < oo. Hence it follows from 2.1 that
P.(S®.T)=P,(S)P.(T) forall S,Te®,;
L(S®.T)=I.(S)I.(T) forall S,Te¥,.
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If P(E) denotes the projection constant of a finite-dimensional Banach
space E then, for finite-dimensional E and F, the equation P(E®, F) =
P(E)P(F) is a well-known fact of the geometry of Banach spaces (see, e.g.,
[13, p. 135]). Since P(E) indeed equals 7, (idg) (cf. [14, 28.2.5]), the equality
I(8S&®.T)=1I,(S)I,(T) established above for S, T e 9, can be considered as
an extension of the equation on projection constants.

A second application will be to extend a result of Vala [18] to the ideal @,.
Vala proved that, for two compact operators S € X (E, F) and T e X (G, H),

the operator
Hom(S,T): £(F,G)—> L£L(E,H)

U->TUS

is again compact. For absolutely p-summing operators we have an analo-
gous result,

3.3. PROPOSITION. Let Se€ ®§va(E, F) and T € ®,(G, H). Then
Hom(S,T) € ®,(L£(F, G), £(E, H)) and P,(Hom(S,T))=Pual(S)P,(T).
Proof. Since [@gvaldual pdualdual] = [® P ], we have
T'e ®gva and PJva(T') =P, (T).
Hence, by 3.2 and the w-tensor stability of ®gval and its adjoint (see 2.1),
Paa(§®, T') = Pgua(S)P,(T).

Now the diagram
(5®,T)

(F®;G') (EQ.H'Y
l I

L(F,G") ~2L5), ok, H")

commutes, so that Hom(7, $”) € ®@,(L(F, G”), £L(E, H")) and
P,(Hom(T, S")) =P,((S®,T")") = Pua(S)P,(T).

This completes the proof since £ (F, G) (resp., £(E, H)) is an isometric sub-
space of £(F, G") (resp., £(E, H")) and [®@,, P,] is injective. 0

Another application we shall present is to provide an alternative proof of
two known inequalities on ideal norms. We shall again make use of the two
equations following 3.2. In [2], tensor stability techniques have been profit-
ably employed to improve ideal norm estimates of certain operators. The fol-
lowing lemma is a variation of a basic lemma used in the above-mentioned
investigation; we refer the reader to [2, 2.1.1] for a proof.

3.4. LEMMA. Let [®@,A], [®, B] be two quasi-Banach ideals and o a tensor
norm. Assume that for each € >0 there exists a constant c(e) =1 such that,
for all finite rank operators S,
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A(S) <c(e)(rank S)**¢B(S),

where A\=0 is some constant. Moreover, let a, b =1 be constants such that
A(S)2<aA(S®, S) and B(S®, S) <bB(S)? for all finite rank operators S.
Then, for all such S, |

A(S) <ab(rank S)*B(S).
Now we can re-prove the following known facts (see [1] and [10]).

3.5. PROPOSITION. Let E be an n-dimensional space. Then, for each S €
L£(E,F),
Py(S)<n/27Vrp(S), 2<r=<o;

L(S)<n2"V"'[,(S), 1=<r=<2.
From [2, 1.2.3] one has, for 2<r =<,
sup(P,(Sidg)|S e ®,(F, G), P,(S) <1} <24(1+log n)n"/2-Vr
and dually, for1<r=<2,
sup{l,(idg S)|S € 9,(G, F), I,(S) <1} <24(1+log n)n"/2= /"
Since, for finite rank operators S,

. P.(S®.8)=P,(S)}, l<r=<o,
and
L(S®.8)=I.(5)*1=<r=< oo,

the desired results in Proposition 3.5 follow from the preceding lemma. [
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