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1. Introduction

This paper is a continuation of the sequence [18], [13], and is perhaps best
described as a sequel to [18] in which we look more deeply into the construc-
tions of that paper. By so doing, we obtain (Theorem 6.2) some surprising
and unexpected characterizations of the class A x, (to be defined below),
and this leads to several new sufficient conditions for the reflexivity of a con-
traction operator (Theorem 7.2). As a corollary, we obtain the following
improvement of the main result of [13].

COROLLARY. Every contraction operator acting on a separable, complex
Hilbert space whose spectrum contains the unit circle is either reflexive or
has a nontrivial hyperinvariant subspace.

We shall therefore assume that the reader is familiar with [18], and espe-
cially the notation and terminology therefrom, which we continue to use
below without extensive review. For the reader’s convenience, however, we
recall that JC is a separable, infinite-dimensional, complex Hilbert space,
and £(3C) is the algebra of all bounded linear operators on JC. Moreover,
C,(3C) C £(3C) is the Banach space (and ideal) of trace-class operators un-
der the trace norm, D is the open unit disc in C, T = 9D, and N is the set of
positive integers. The spaces H”(T) and L?(T) are the usual Hardy and Le-
besgue spaces with respect to normalized Lebesgue measure m on T. Fur-
thermore, H(T) denotes the subspace of H(T) consisting of those func-
tions f whose analytic extension f to D satisfies £(0) =0. If T is an arbitrary
Borel subset of T, we will have occasion to use the (closed) subspace LP(X)
of L?(T), 1 < p < =, defined as the set of all (classes of) functions f in L?(T)
such that f =0 almost everywhere on T\ X. The space H2(X) is the closure
in L2(X) of the linear manifold consisting of those functions that agree with
some polynomial on X, and if m(T\X) # 0 then H?(X)=L%(X).

If Te £(3C) we write G for the dual algebra generated by 7 and Qr for
its predual C,(3C)/*Q@7, so Gy = Q7 under the pairing
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<As [L])=tr(AL)s AEGT’ Leel(:}c)’

where [L] (or [L]17) denotes the element of the quotient space Qr contain-
ing the trace-class operator L. Recall that if T is an absolutely continuous
contraction then the Sz.-Nagy-Foias functional calculus ®: H*(T) - Qr
is a weak* continuous algebra homomorphism with range weak* dense in
Qr, and thus is the adjoint of a one-to-one linear contractive map ¢: Qr—
LY(T)/H)(T). The class A = A(3C) is defined to be the set of all absolutely
continuous contractions 7" in £(3C) for which & is an isometry; it follows
easily that in this case ®; is a weak* homeomorphism of A *(T) onto Gr
and ¢ is a surjective isometry.

We introduce now, for any cardinal numbers m and n, where 1 <m, n < 8,
some properties (A,, ,) and (A, ,(r)). A weak*-closed subspace @ of £(JC)
has property (A,,, ,) if, for every doubly indexed family {[L;;]1}o<i<m,0<j<n
of elements of Qg = C(3C)/*Q, there exist sequences {X;}o<i<m and {¥j}o<j<n
of vectors from JC such that

1) [Li]1=[x®)y;], 0<i<m, 0=j<n.

A weak*-closed subspace @& of £(JC) has property A,, ,(r) for some r = 1if,
for every doubly indexed family {[L;;1}o<i<m, 0= j<n Of elements of Qg such
that the rows and columns of the matrix (|[L;;]|) are summable, and for
every s >r, there exist sequences {X;}Jo<i<m and {¥;}o< <, from JC satisfy-
ing (1) and also the inequalities

1/2
||xi||s(s » n[L,-,-]u) , 0<i<m,
O0<j<n

(2) 1/2
ny;ns(s » n[L,-,-]u) o=j<n.

O<i<m
It is clear that if m and # are finite cardinals and @ has property (A, (7))
for some r, then @ also has property (A,, ,). Furthermore, it follows from
an easy scaling argument that if @ has property (A1, x,(7)) for some r, then
@ also has property (Aj, x,). We define the class A, , (= A, ,(3C)) to be the
set of those 7" in A(JC) such that the dual algebra G has property (A, ,),
and the class A, ,(r) similarly. The classes A, ,, 1 <n=<R,, were intro-
duced in [4] and have played a major role in the theory of dual algebras (see,

e.g., [5D.

2. Some Equation-Solving Tools Revisited

In this section we take another look at the main construction of Section 3 of
[18] and show that, with more careful consideration, Theorem 3.11 of [18]
can be improved considerably. Moreover, this improvement will be quite use-
ful in obtaining our new reflexivity results in Sections 6 and 7.

The setting of Section 3 of [18] is that we have under consideration an
absolutely continuous contraction 7" in £(JC) whose minimal co-isometric
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extension B in £(X) (with X D 3C) has a Wold decomposition B=S*DR
corresponding to a decomposition of X as S®®, where S is a unilateral
shift of some multiplicity in £(8) if $ # (0), S is the zero operator if 8§ =(0),
R is an absolutely continuous unitary operator in £(®) if ® #0, and R is
the zero operator if ® =(0). The projection of X onto $ is denoted by Q,
the projection of X onto ® by A, and the projection of X onto JC by P.
Thus every vector x in X has a unique decomposition

x=0x+Ax=0QxDAx,
and if x e 3C and he H™, one has
h(T)x = h(B)x =h(S*)(Ox)Dh(R)(Ax)
=Q(h(T)x)DAI(T)x),
SO
3 h(S*)(QOx)=Q(h(T)x), h(R)(Ax)=A(h(T)x).

The following proposition summarizes some facts that we shall need, re-
lating Q7 and Qp from Lemmas 3.5, 3.6, and 3.7 of [18].

PROPOSITION 2.1. Suppose T € A(3C) and has minimal co-isometric exten-
sion B=S*®R in £(X). Then Be A(K), ®r-®z' is an isometric algebra
isomorphism and a weak* homeomorphism from Qg onto Qr, and J =
¢i Loy is a linear isometry of Qr onto Qg satisfying

(4) J([x@y1r)=[x®ylp, x,ye.
Moreover, for all x,ye 3C and w,ze X,

) |x®yIrl=lx®y1sl,

(6) (x®zlp=[x®Pz]p,

(7 [(W®z1p=[Qw®Qz]p+[AWRAz]5.

Furthermore, if {x,}, =1 is a sequence from 3C such that

X, ®y17]| -0 vyedl,

then

®) |, ®z]5] >0 VvzeX,

®) I[0x,®z]p] »0 vzeX,

and

(10) I[Ax,®z15] >0 vzeX.

Finally, if {z,}7 =1 is any sequence in 3 converging weakly to zero, then
11 IIw®z,]s| =0 vweSs.

Now let us recall some additional notation and terminology from [18]. Sup-
pose that 7 and B = S*@ R are as above, with ® # (0) (and T absolutely
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continuous). Because R is an absolutely continuous unitary operator, there
exists a Borel subset X of T such that the measure #7|X, defined on Borel
subsets B of T by (m | X) (®B) =m(X N ®), is a scalar spectral measure for R.
For any vectors x and y in ®, the complex Borel measure p, , on T, defined
by py ,(®)=(E(®)x,y), where E is the spectral measure of R, is clearly
absolutely continuous with respect to m | X, and thus we denote by x-y the
function in L!(X) that is the Radon-Nikodym derivative of p, , with respect
to m|X. Clearly,

(12) URx, ) = ldugy=| Itx-y}dm vieL™(T).

Since L1(X) is a subspace of LI(T), we may write [x-y] for the equivalence
class of x-y in the quotient space L!(T)/H}(T). The following proposition
summarizes Lemma 3.9 and Proposition 3.10 of [18].

PROPOSITION 2.2. Suppose T is an absolutely continuous contraction in
L£(3C), and B = S*D R is its minimal co-isometric extension in £(S ® R)
with ® # (0). Then there exists a Borel set ¥ C'T such that m|X is a scalar
spectral measure for R, and for every pair of vectors w,z € ® we have

13) [w-z]=ep([w®zlp).

Moreover, ® contains a reducing subspace ® for R such that:

(@) Ro=R|® is unitarily equivalent to multiplication by the position
Sfunction on L2(X); and

(b) if we denote by (Rf; the subspace of ® corresponding to H*(X)
under the unitary equivalence in (a), then ®}C(A3C)".

Our first new result is a modest generalization of [18, Thm. 3.11] that per-
mits us to approximately solve a “row” of simultaneous equations.

PROPOSITION 2.3. Suppose T is an absolutely continuous contraction in
L£(IC) and has minimal co-isometric extension B=S*®R in L(SDR) with
®R#(0). Let XCT and Ry C R be as in Proposition 2.2, and let A,y denote
the projection of X =8® ® onto Ry. Let e >0, 0< p<1, and NeN be
given, along with a e 3C, {bj]_‘}\;l C@®, and {hj]j-\'zl C LY(X). Then there exist
u € 3C and {c;}-, C R such that

1I(Aa'bj)+hj—A(a+U)‘Cj|l<E, ISJSN,

|Qul <e,
[(A—Ao)u| <e,

=2 3 ),

1=j=<N
1 .
el = S Ul +1m1", 1=j=N,

and
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Cj'—bjE Ry, 1=j=<N.

Moreover, if a=0 then the vectors u and c¢; may be chosen to satisfy

1/2
nuusu+e>( » uhju)
N

Isj=
and
leil<1R1%, 1=<j=<N.

Proof. The Hilbert space isomorphism from ®, onto L?(X) given by (a)
of Proposition 2.2 will be indicated by z — {z}. Thus objects of the form
f{z} are (classes of) square integrable functions on T supported on X, and
{z}(e?) has the obvious meaning. This being said, the proofs of all but the
last assertion are almost word-for-word the same as that of [18, Thm. 3.11],
so we content ourselves with making a few comments. As before, the non-
trivial case occurs when X =T. To get started, one sets g =3; < j <y | 4;| and
then, as in the aforementioned proof, obtains {y;} in H2(T) and {z;} in
L2(T) such that

{)ﬁlﬁa§==g’

l(»1}|=|g|”? ae. on T,
and
Il <legll/*(1+36).

One continues as in the earlier proof with {—z—{-} =h;/{»]}, zz' = R"lz{ g
N, and so on; we omit further details except to note that the earlier argu-
ment can be simplified considerably when @ =0, and this leads easily to the
improved inequalities given in the last statement of the proposition. Cd

We next improve Proposition 2.3 to an “exact” form.

COROLLARY 2.4. Suppose T is an absolutely continuous contraction in
L£(3C), and T has minimal co-isometric extension B=S*®R in L(SER)
with ® #(0) and £ CT as in Proposition 2.2. Suppose that Ne N, ae JC,
{b;}3_1 C ®, and {h;}}_, C L\(T) are given, as well as e > 0. Then there exist
u € JC and {c;}_ | C ® such that

(14) (Aa-bj)+hj=A(a+u)-c;, 1<j=<N,
(15) |Qu] <e,
(16) [(A—Ag)u| <e,
1/2

an uuns<z+e>( 5 uh,-u) ,

l1=sj<N
(18) leil = A+e) (bl +1m]7%), 1=<j=N,
and

09) Cy“biE(Ro, lfsjf;AL
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Moreover, if a=0 then the vectors u and c; may be chosen to satisfy

1/2
uuus<1+e>( > nhju)

I<j<N
and
lejl < A+e) k1Y%, 1=j=<N.

Proof. We sketch the proof when a # 0 and N =1; the extension to the case
N> 1 proceeds along obvious lines. If #=0 in L!(X), then setting # =0 and
¢=b completes the proof. Thus we may suppose that 2~0. Let {s,} be a
strictly decreasing sequence such that so=1 and lims,=s>1/(1+¢), and
set p,=S,/S.—1, n€N. Let {¢,} be a decreasing sequence of positive num-
bers less than one such that

1 0
(161418174 5 62) <ol +1417)

and
§ eV2 < max{e|A|"/2, €} .
n=1 3
By Proposition 2.3 there exist a; in 3C and ¢; in ® such that
(20) |Aa-b+h—Aa;-c,| <€,
(21 |Q(a;—a)| <e,
(22) [(A—Ap)(a;—a)| <ey,
(23) lai—al <2]a]"?,
@4 feil = - (11 + 1412},
and
(25) ci—be@®,.

By iterative application of Proposition 2.3 (with A; of that proposition set
equal to Aa-b+h— Aa,_,-c,_;), we obtain sequences {a,} C 3C and {c,} C R
such that for every n=2,

(26) |Aa-b+h—Aa,-c,| <e,,
@7 |0y~ )| < s
(28) [(A—Ap)(a,—a,_1)| <en,
(29) |an—an1l <2€¥2,
(30) leal < - tlea-sl+€l2),
and

31 Cn—Cn-1 € Ro.
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From (29) one sees that {a,} is a Cauchy sequence, and hence converges
to an element a’ of JC. Furthermore, from (24) and (30) one easily obtains
that for n=2,

1 n—1
feal < - {161 +14172+ S, 5,6}

n

<t § del<avouel+ia,
n=
Therefore we may extract a subsequence {c,,} of the sequence {c,} that con-
verges weakly in ® —say, to c. Thus c satisfies (18), and since subspaces are
weakly closed, (19) is also satisfied. If we set # = a’—a then {a,} converges in
norm to a+u, and it follows easily that Aa,, -c,, converges weak* in LI(X)
to A(a+u)-c. Hence we have from (26) that Aa-b+h=A(a+u)-c. More-
over, using (21) and (27), we get

|Qu|=1Q(a’—a)| =lim|Q(a, —a)|

) n ) 1 €
<lim 3 |0@~a-)|<lim T =
n k=1 n k=1

(where we have set ay=a), so (15) is satisfied; a similar argument using (22)
and (28) shows that (16) is satisfied. As for (17), we have from (23) and (29) that

jul =lim]a’—a| SkEl |ax—ax-i] = 2|I’11I1/2+k§31 ei><(2+¢)|hl,

n

so (17) is satisfied and the proof is complete in the case a # 0.

When a =0 the proof goes the same way except that at the first step of the
induction process we apply the last statement of Proposition 2.3, so the vec-
tors ay, c; satisfy

lad=@+e/B) A2 el <RIV
and one sees easily that the desired inequalities are satisfied. ]

When Corollary 2.4 is translated into the language of preduals, the follow-
ing theorem results.

THEOREM 2.5. Suppose T is an absolutely continuous contraction in £(3C)
and T has minimal co-isometric extension B=S*®Rin L(SDR), with R #
(0) and £ CT asin Proposition 2.2. [f NeN, ¢ >0, and elements {h, ..., hy}
in L\(X) C LI(T) are given, then there exist vectors x and {¥y, ..., yn} in 3C
such that

(32) er(x®y; ) =[h;]l, 1=<j=N,

N 1/2
(33) ||x|ls<2+e){ | 1llhjll] ,
P

and
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(34) il=+e)|n|7?, 1=j=N.
Moreover, if R e A(R) (or, equivalently, if m(T\X)=0), thenTe A y(1).
Proof. Taking a=b;=---=by=0in Corollary 2.4, we obtain « in 3C and
fc1y ..., cn} Iin & such that
(35) hj=Au-c;, 1=<j=<N,

N 1/2
(36) u=@raf 3 mll

J=

and
(37) lejl =1+ |m]"% 1=j=<N.

According to Proposition 2.2,
(38) [h]=[Au-c;)= pp(lAu®c;lg), 1<j<N,
and since AB=BA and u € IC,
(B9 [Au®cilp=[u®Aclp=[u®c;lp=[u@®Pc;jlg, 1<j<N.
Thus, upon combining (38) and (39), we obtain
40) ep([U®Pc;lg) =[h;], 1=<j=<N.
Since u# and the Pc; belong to 3C, we know that
(T*u, Pc;) = (B*u,Pc;), keN, 1<j<N,
and this implies, via [4, Lemma 4.9], that
41) ep([u®Pcilp)=pr([u®Pcilr), 1=j=<N.

Upon setting x =u and y; = Pc;,1 < j <N, we obtain (32), (33), and (34)
from (40), (41), (36), and (37).

Now suppose R € A(®R), which is equivalent to saying that m(T\X)=0
by a theorem of Sullivan [23]. Let [L,], ..., [Ly] be arbitrary elements of Qr,
and let §; > |[L;]|, 1 =/j <N. We may choose elements Ay, ..., sy of LI(X) =
LY(T) and » > 0 such that

(42) [hj1=e7r([L;]), 1=<j=<N,
and
(43) (14+n)*|hj| <8;, 1<j=<N.

Applying the last statement of Corollary 2.4 with 4 = ¢, and repeating
the argument above leading to (40) and (41), we obtain vectors x =u and
{y; =Pc;}}_, in 3C such that

44) [Aj]=or([(x®yil7), 1=j=N,
N 1/2 N \1/2
) =a+n( inl) =(Za)

J



On the Structure of Contraction Operators, 111 37

and
(46) Iyl <+ |k V2= (6)Y% 1=<j=<N,

Since ¢r is always one-to-one, we obtain from (42) and (44) that [L;] =
[x®y;]1, 1=<j=<N, and it follows from (45) and (46) that G has property
(A4, n(1)). It remains only to prove that 7€ A. But from (32) one knows that
the range of ¢y is all of (LY/H})(T), which implies that &, = @7 is one-to-
one and has closed range. By the open mapping theorem, &+ is bounded be-
low, and by applying ®+ to functions of the form /" and taking mth roots,
one sees easily that the lower bound of & must be 1 (cf. [5, p. 87]). Thus
T € A and the proof is complete. O

3. A Criterion for Membership in A, s

In [18] it was shown (Theorem 4.7) that if 7€ A and Gy has property Ej .,
(definition reviewed below) for some 0 <0 <y <1then T€ A (r(0, v)), where

47 r0,v)=(6/v)(1/{1—(6/7)"/*})2.

In this section we show that under (a priori) weaker hypotheses on 7, one
can draw the stronger conclusion that T'e Ay x,(r(6,v)), where r(8,v) is
as in (47). .

We recall from [18] that if I is a weak*-closed subspace of £(3C) and
0 =<0<1, then &;(IM) denotes the set of all [L] in Qg for which there exist
sequences {x,} and {y,]} in the closed unit ball of JC satisfying

(a) im|[L]-[x,®y.]| <06
and

(b") |[x,®z]]| =0 vze I,
(c”) {y,} converges weakly to zero.

The corresponding subset &5(9M) of Qg is obtained by replacing conditions
(b") and (c’) by

(b)) |[z®y,]| >0 vze L,
(c)) {x,} converges weakly to zero.

REMARK 3.1. The conditions (c”) and (c’) in the above definitions are actu-
ally superfluous. To see this in the case of (c”), suppose [L] e Qq; and {x,,}
and {y,} are sequences from the closed unit ball of JC satisfying conditions
(a) and (b") of the above definition. Let {y,,} be a subsequence of {y,} that
is weakly convergent —say, to y”# 0. Then the sequence {y,, —y’} converges
weakly to zero and satisfies

| (2] =[x, ® (O, 11 <0,

since |[x,, ®y’]1| — 0 by (b"). Thus it suffices to show that some tail of the
sequence {y,, —»’} belongs to the closed unit ball. But
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|, =Y 1P =190, P =2 Re(p,, )+ 5|
<1-2Re(,,,»)+y'I3

and as k£ becomes large, the right-hand side of this last inequality tends to
1—|y’|?<1, which establishes the remark.

We next recall from [18] that a weak*-closed subspace I of £ (JC) is said to
have property Ej ., (for some 0 =<6 <y =<1) if the closed absolutely convex
hull of the set £5(9M) (notation: aco{&} (iﬂl)}) contains the closed ball in Qg
centered at 0 with radius +; property EM is defined similarly. In the case
where M is the dual algebra generated by an absolutely continuous contrac-
tion, we consider now the weaker properties Fy, ., and Fj ..

DEFINITION 3.2. Let T be an absolutely continuous contraction in £ (3C)
with minimal co-isometric extension B=S*®R in £(X), and let X CT be
as in Proposition 2.2 (if & =(0) then ¥ =@). We say that the dual algebra
@ has property Fy ., (for some 0<f<y=<1)if

(48) aco(83(Qr) Uer ([f1: feLI(T), | fl=1]}

contains the closed ball in O of radius v centered at the origin. Moreover,
we say that @ has property F(,’,Y if @7+ has property Fy ... Obviously, if @7
has property Ej ., then it has property Fy ..

In connection with property £y ., it will be convenient to use the following
notation. For an arbitrary absolutely continuous contraction 7" and an ele-
ment f in LI(T) whose coset [f] in L!/H} belongs to the range of ¢, we de-
note by [[f]] the (unique) element of QO whose image under ¢ is [ f].

The following theorem generalizes [18, Thm. 4.7] and plays an essential
role in Section 6.

THEOREM 3.3. Suppose T € A(3C) and Qr has property Fy ., for some 0 <
0 <y=<1.ThenTe Ay x,(r(0,v)), where r(0 v) is as in (47). If on the other
hand, T € A(3C) and Qr has property Fg yJorsome 0=0<y=l1,thenTe

Ao, 1(r(0,7)).

It follows easily (as in the proof of [18, Thm. 4.7]) that T*e A, 1(r(0, v)) if
and only if Te Ay, x,(r(0, 7)), so it suffices to prove the first statement of the
theorem. The proof depends on the following approximation scheme, which
generalizes [18, Prop. 4.6].

PROPOSITION 3.4. Suppose T € A(3C) with minimal co-isometric extension
Be £(8®R), and suppose that Qr has property Fy ., forsome O<f<y=l.
Supposefurther that we are given 0< p <1, NeN, [[V]} -1C Qp, ae 3C,
[w,}l 1CS, {b; ]J 1 C R, and positive scalars {p; }J 1 Satzsfymg

(49) IVilg—a®@w;+bplp|<pj, 1=<j=<N.
Then there exist a’e 3C, {w/}}_,CS8, and [b/}}_, C ® such that



On the Structure of Contraction Operators, 111 39

(50) [Vi15—[a'® (W} +b))1s] < (6/v)nj, 1=<j=<N,
: 1/2
2 w-al< (2 w)
(52) Iwf—w;| < (gi/v)?, 1=<j=<N,
and
i 1/2 .
(53) 1] < = {n ||+(7) ] 1=j<N.
Proof. Define [[Vj’]B}j=1CQB by
(54) [Vilg=[V;lg—[a®(W;+b;)]g, 1=j=N,

and define also {d;}}_; by
dj=max{[][Vj’]B]|,y,j/2}, ISJSN.

Choose {e;}}-; to be positive and to satisfy

7} 0 .
(55) (;)dj'l'EJ((;)uj, l<j=<N.

With J= ¢z 'opr, we observe that

7| =y, 1sisN.

d;

Therefore, by hypothesis, there exist 1ntegers O0=ko<k <-:- <ky,ele-
ments {[K; ]T} N in &3(Q7), elements {l }j 1 in L1(X), and scalars [a,}, 15
for which

—_— -~ N e. .
CONN B ‘(W,-'JB)—([U,-]]T+ » oz,-[K,-]T) <9, 12j=n,
j kj_](iSkj _]
and )
15+ X |a<1, 1<j<N.
kj__1<iSkj
Define

7 a=(di/M&, =/, ki <is<k;, 1<j=<N.
Then, multiplying (56) by the appropriate d; /v, we obtain

(58) “J"%[V,-']B)—([[l,-nﬁ > Oli[Ki]T> <%, 1=jsN,

kj_1<ISkj

and
d; .
(59) ih+ X la|<-L, 1=j<N.
kj_1<isk; Y
Since each [K;]re 85(@r), 1 <i <k, there exist sequences {x}}_ 1 and

{yi}>_, from the closed unit ball of JC satisfying (a) and (b"), (c") above.
After deleting a finite number of terms in each sequence, we may assume that
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(60) |[Kilr—[xa®@yalrl <0+(ejv/2d;), k;_<i<k;, 1=j<N.

We note that, even though the [K;]; are not necessarily distinct, by passing
to subsequences we may assume that the sequences {x.}<_, (resp., {¥}1%-1),
1 <i=kpy, have no terms in common. From (58), (59), and (60) we get, for
each choice of the ky-tuple v = (ny, ..., n;, ) and for each 1< j <N,

"J‘l([V;]B)—([[lj]]T+ )y a,-[x,';,.®y,’;,.]r)
kj_1<iskj

©) \ d 0
<(3)+(5)(+(34)=o+a(5):

Then, passing to the predual Qp by using J (note that J([[/;117) =[[/;1]5)
and Proposition 2.1, we obtain
0
< Ej + dj(;) ’

1<j=<N.

[V,-']B—([[l,-J]B+ > ai[x:;i®y,';i13)

kj__1<15kj

(62)

In view of (55) we may choose, for each 1< j <N, some 7; >0 such that

(63) 57; <(0/v)mj —(d;i(0/v) +¢)).

Using (7) and (54) we may deduce from (62) and (63) that, for any choice
of v,

[Vj]B—'[a®(wj+bj)]B"'< > ai[szi[@Q)’f;,.]B)

kj_l<15kj

(64) o
(| = _ aldx@Ayla)=11h1s

_l<iSkj

0
<(—)}Lj‘—‘5Tj, l<j=<N.
Y

Thus, for any choice of v =(n,, ..., Ni\)s We have

mh—[Qa@w,-]B—( 5 a,-[Qx:;,@Qy:;,.JB)—[Mf(v)JB

kj_1<15kj

65
© (D) 12z

where [M/(»)1; is defined by
(M (915 = [Aa@b,-13+( » af[Ax:;,.®Ay,';iJB)

kj_1<lSkj

+{[/;11g, 1=j=<N.

(66)

Define, for an arbitrary choice of »,

(67) u,= E 6ixi1;,-’ Uy, j = 2 B-iy:;is 1 Sj SN,
where ,
(B,—)2=oz,-, kj_1<i5kj, 1<j=<N.
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Proceeding as in the proof of [18, Prop. 4.6], we may make a particular
choice of the ky-tuple v =(ny, ..., ng, ) so that, for eachl<j=<N,

‘}[Qa@wﬂﬁ( ) af[Qx,ﬁi@Qy,’;,.JB)

(68) kj_l<i5kj
—[Q(a+u,)®(w;+Quv, ;)]s| <7,
(69) 1[Au, ®b;1p| <7,
d;
(10) ot~ B lal<(S)-lhi<
kj_y<isk; Y v’
and
1
an wi= 3 lal<(5) S w.
1<is<ky Y/ 1=j=N
We define
aj=a+u,, w/=w;+Qv,;, 1=j=N,
x'=xp, y'=yi, 1=sisky,
and
h,-=( 3 a,-Ax"-Ay")+1j, 1<j<N.
kj-—l<i5kj
Note that

d; :
mi=( S lal)+ll<Z, 1=j=N.

kj_1<isk; Y
Furthermore, choose ¢ >0 so that e <m1n1< j=ni{7i/Q+|w/|)}. Applying
Proposition 2.3, we obtain # € 3C and {b} W j=1C & such that

(72) |]Aa1-bj+hj—A(a1+u)—bj||<e, 1<j=<N,
(73) 10| <e,

172 ) 1/2
74 | <2 wl) <(—5 AN
o e 3, <) 30
and

1/2
as Iy ||<—u|b,||+nh <t {||b,||+(’f;) } {<j<N.

From (66) and (72) we get
(76)  |IM/(v)]p+[Au,®b;1p—[A(a;+7)®b/1p| <e, 1=j=<N.
Combining (65), (66), (68), (69), (72), (76), and the definitions of @; and the
w/, we obtain

IIV;18—[(a, + @)@ (w/ + b)) 1| < (0/y)nj, 1=<j=N.

Thus, with ¢’'=a;+u=a+u,+u, (50) is satisfied, and the inequalities (51)
to (53) follow immediately from (71), (74), (70), and (75). Thus the proof
of Proposition 3.4 is complete. O
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It is obvious that Proposition 3.4 is self-improving, just as was Proposition
2.3, and we will need its exact version to complete the proof of Theorem 3.3.

COROLLARY 3.5. Let Te A(3C) with minimal co-isometric extension B e
L(8SDR), and suppose that Qr has property Fy ., for some 0<6<y=<l.
Suppose further that we are given 3 >1, Ne N, {[V]B], 1 C QOp, ae IC,
{wJ}J 1CS8, {b; }J 1 C R, and positive scalars [,u,}l 1, satisfying

) [Vilg—[a®(w;+b)lsl<mpj, 1<j=<N.
Then there exist é € 3¢, {w;}Y_,C 8, and {b;}_, C R such that
(78) [V;1z=[a®(W;+b)lp, 1=<j=<N,

1/2
(19 ja—al <3 3 w) .

<J<

(80) |W;—wil <op)/?, 1=<j<N,
and
@81 16,1 <B(l&;l+ o)), 1=j=<N,

where o =1/(yY2—61/2),

Proof. (This proof is similar to that of [18, Thm. 4.7].) We first consider the
case 0 > 0. Let {s,},=¢ be a strictly decreasing sequence of positive numbers
such that sy=1 and lim s, =1/8. For ne N, set p,=s,/5,—;. Via Proposi-
tion 3.4 we obtain vectors a; € 3C, {w; ;}}=;CS8, and {b; ;}’_| C ® such that

(82) 1V;1g— a1 ®@(wy, j+ by, D1l <(0/¥)nj, 1=<j=<N,
1/2

(83) "al a||<<'yl/2)< E 0”'_1) ’

(84) Iwy, i —wil <(mi/7)Y% 1=<j=N,

and

(85) 161,71 < (/p) (B + (i /7)?), 1=<j=<N.

Upon iterating the procedure, we obtain sequences {a,},;=; C I, {w, j};=1C
S, and {b,, j},=1C R, 1=<j =N, such that

86) V15— [as® W +b0 Nsl < O/7) s, neN, 1<j<N,
3 N 172 g \("—1/2
& lamanl<(5)(Zw) (2) . n=2

(88) IWa, j = Wae1, 1 < (mi/VV20/v)" V2, n=2, 1=<j=<N,
and
(89  |ba il </on) Ubny, il + (i /)2 O/7) D2}, n=2, 1<j=<N.
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Clearly the sequence {a,} and the sequences {w, ;j};=1, 1=<j=<N, are Cau-
chy, and it is easy to see from (83), (87), (84), and (88) that their limits & and
Ww; satisfy (79) and (80). From (89) and the definition of the p, we obtain

Sn"bn,j" <Sn—1[“bn—l,j||+(l"j/7)1/2(6/7)(n-1)/2}, neN, 1=<j=<N,

which leads to

\I/2 /0 /2
©°0) ubn,,-||<ﬁ[ub,-1|+(—‘3) ( lsk(ﬁ) )} neN, 1<j<N.

k=0 Y

Thus the sequences {b, ;};-=1, 1 <j <N, are bounded, and by dropping down
to appropriate subsequences we may assume that {b, ;},/-; converges weakly
to Bj, 1<j=N. Since s, <1 for k=1, (81) follows from (90). To prove (78),
we first observe that

o1 limf[@&® (W;+ by, j)1p— (@, & (W, j+ by, j)]18| =0
n
because |[x®y]1|=|x]|»[, |@—a,| -0, and the sequences {w, ;+ by ;lx=1,

1<j=<N, are bounded (being weakly convergent to w;+ b;). Thus, using
(86), we obtain

im|[V;1p—[a®(W; + b, )1s| =0, 1=<j=<N,
n
and hence, for any X € @z, we have
(X, [a® (W; +b))] ) = (Xa, w; + b;) =lim(Xa, W; + b, ;)
n
=1lim(X, [d® (W;+ b, )]p) =(X, [V;1p), 1<j<N.
n

This completes the proof in the case 6 >0.
In the case 6 =0 we choose p; < x; such that

IlVilg—[a®(w; +bp)lp|<mj, 1<j=<N,

and, by an elementary continuity argument, we choose 0 < 6’< vy such that

1 1
11/2 1/2 .
"”j/ Y2 (9")1/2 5”’1'/ (71/2>’ I=j=N.

Since @ has property Fy. ., we may apply what has just been proved with
the estimates p, and we do get the result corresponding to 6 = 0 and the esti-
mates p;. Thus the proof is complete. O

We next observe that what remains to be proved of Theorem 3.3 is a conse-
quence of the following stronger result.

THEOREM 3.6. Let T € A(3C), with minimal co-isometric extension B €
L(8SDR), and suppose that Qr has property Fy ., for some 0<0<y<1.
Suppose also we are given vectors a € 3C, {[L;17};=1 C Qr, and positive sca-
lars T>1 and {6;};- such that
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I[L;j17|<8;, JeN,

and

6= § 6; <o,

j=1

Then there exist a’e 3C and (w; @ b;};-, C S@ R satisfying
92) [Ljlr={a’'®P(w;+b;)lr, JjeN,
93) la’—a| <3ab"?,
(94) Iwil <ad}?, jeN,
(95) |b;] <7ed}%, jeN,

where o =1/(y"/>*—0"2). In particular, if Te A and Gy has property Fy .,
then Te Al,xo(3\/§a2). Furthermore, given {[L;11};-; C Qr, the set of vec-
tors d in 3C for which there exists a sequence {y;};-| C 3C satisfying

[Ljlr=[a&®y;lr, JjeN,
is dense in 3C.

The first part of Theorem 3.6 will be an immediate consequence of the up-
coming Theorem 3.7, which includes some additional technicalities needed
in the sequel. Before stating that stronger result, however, we show how to
deduce the membership of 7 in A1,30(3\/5a2) from this first part. To that
end let {[L;]17}72 be a sequence from Qr such that d =¥, d; < o, where
d;=|[L;1r]. Choose s>3V2a? and 7>1 such that 3(1+72)/2a2<s, and
also choose, for each integer j, ;> d; such that 3(1+ sz)1/ 2q25; < sd;. It fol-
lows easily that 3(1+ 72)/2a26 < sd.

By the first part of Theorem 3.6, there exist a vector a’ and a sequence
{¥/=P(w;+b;)};-, from JC satisfying

[L;lr=[a'®y{1r, JjeN,
la’| <32,
1711 = Awil*+15;1)* < (1 +7%)/28}%, jeN.

Setting 3
1 , 3 , .
x=—\/‘—3"'(1+72)1/4a’ Yi= (1+7.2)l/4'yj’ JEN,
we have
[Lilr=[x®y;l7, J€EN,
Ix] < V3(14+72)4asY2 < (sd)?,
and

|3 <V3(1+72)4as}? < (sd;)?, jeN.

Therefore T e AI’NO(S\[E(XZ), as was to be shown. Moreover, the last state-
ment of Theorem 3.6 (concerning density) follows from the first by a stan-
dard argument involving scaling of the {[L;]};; we omit the details, as the
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technique is by now fairly standard and is used, in particular, in the proof
of Theorem 5.4.

THEOREM 3.7. Let T € A(3C), with minimal co-isometric extension B €
L(8®DR), and suppose Qr has property Fy ., for some 0<0<y=<1. Sup-
pose we are given a€ I, {y;}7=1CS8, {[L;l17r};=1C Qr, scalars >1, 7;>0,
8;> |[L;1r], j €N, with § =37, 8; <o, and a dense subset N of Qp. Then
there exist d € 3C and sequences {w;®b;};=1, (9;®z;}]=1 C SD R such that

(96) [Lilr=[a®P(w;+b))]lr, jeN,
97 [@®(P;+2;)]peN, JjeN,
(98) |éd—a| <3ab'?,

(99) Iwil <ab}?, jeN,
(100) |b;] < 78}/%, jeN,
(101) 19i+z;—yil<n;, JeN,

where o =1/(y"/2—0Y?).

Proof. Let [V]p= (pB_IOgoT([Lj]T) and let d; = |[V;1] for each positive inte-
ger j. The proof will require an iteration based on Corollary 3.5 and, to that
end, we introduce some auxiliary numerical sequences. By hypothesis there
exists a sequence {u;} such that d;<p;<é§;, jeN, and we set p=27_, ;.
We also select a strictly decreasing sequence {s,},=o of positive numbers
such that s =1 and lim, _, ., s, =1/7, and we set 3,=s,_,/s, for each posi-
tive integer n. Next we choose a strictly increasing sequence {N,}, - of posi-
tive integers such that Ny =1 and

w §Y2_ y1/2\2
_EN }Lj<<T) , h=2.

Upon setting A, = (Zn, <j<n,,, #7)"% We have

J

o 12 12y @ ~—n_ 51/2 §1/2—p/?
N A <NF (@ =p) Y 27 <6 ———
n=1 n=2 2

It follows from this inequality that it is possible to select a sequence {e¢, ], =1
of positive numbers such that

0

(102) (N +e,) 2 <812,
=1

n

so suppose this has been done. Next, for each positive integer j, define n;
to be the unique positive integer satisfying

Nnjsj<Nnj+l'

For each pair of positive integers (n, j) satisfying n=n; (i.e., j <N,41) we
now choose a positive number ¢, ; such that
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(103) en,j <infle, /N1, 172721,
where
(104) t;=inf{(8)2— u}/?), n;/27a}.

We can now sketch the main steps of our iterative procedure.

Step 1. Since I is dense in Qp, there exists, for each 1< j <N,, [R;]15e N
such that
I[R;1p—[a®y;ls| <e,;.

On the other hand, we have
I[V;1e—[a®01s| = |[V;1pl <mj, 1=<j<Ns.

Therefore, by Corollary 3.5, we can find vectors g, in JC and {w; ;®b, ;},
{(y1,;®@z1,;} in SOR, 1< j<N,, such that

(105) Vilg=[a1@(wy, j+ by, )1g, 1=J<N,,
(106) [Rilp=[a1® (¥, ;+21, )1, 1=J<N,,
107 |lay—a| < 3a<j<EN2 (pj +51,j))1/2 < 3a()\‘;‘+el)l/2,
(108) Iy, jl <ep)/?, 1=j<N,,

(109) 151, ;] <Brow}?, 1=j<N,,

(110) C idil<edl, 1sj<N,

and

(111) lz1, ;] <Biael/?, 1=<j<N,.

Step n (n=2). Suppose we have found vectors a,,_; in JC and
(Wh_t, j®bp_1, i}, (Vn-1,j@zp—y,j} INSAR, 1=j<N,,
as well as elements [R;]z in IT such that
Wilg=lan_1®Wn_y,j+bp_1, ), 1=j<Ny,
[Rilp=[an_1® (Vu-1,j+2n-1,))18, 1=J<N,.
For N, < j <N, we choose [R;]p in 9T such that
I[Rj1—[an_1®¥;1s] <e€n, ;-
These inequalities, together with
IVilp—la,_1®01| <nj, Ny=j<Npyii
1Vi1p— a0 1@ Wyet, j+ By, DIBl < 3€nj» 1<J <Ny,

112),,_,

IR 1p—[@n 1@ (Vp—1,j+2Zn-1, )18l <3€nj» 1=Jj<Np,
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provide a setting to which we can apply Corollary 3.5. We obtain, thereby,
vectors a, in 3C and {w, ;@ b, ;}, (¥, Dz, ;j} in SR, 1= j <Ny, such
that the two families of equalities (112),, are satisfied, as well as the follow-
ing inequalities on the norms:

1/2
a13), uan—-a,,_lu<3a( D> ) <3a(2+e)2,

N,<j<Npiy 1<j <Ny
(114),, [Wa Il <o, by il <Buowl?,  Ny<j<Npii,
A15), [ Wa,j=War, il <cel%, by, | <Bnlae) +1by_y 1),
1<j<N,,
(116),, | Vn, j = Pn-1, i1 < 0!6,‘,{3‘-, |2a, I < B,,ae,ﬂ’fi-,

I.S.j <Nm Nn<j<Nn+ls

]<6n(a51/2 +"Zn 1 _I“)’
1<j<N,.

(117)n ]|yn,j_.yn—-l,j|| <a6,}1{3" “Zn.

In this fashion we do obtain Cauchy sequences {a,},=; and (for each j & N)
{Wn,j};o=nj+ls {yn,j}roio=nj+l’ whose limits 4, Wi, ﬁj satisfy

(118) ||ﬁ—a||<3a( 3 (>\3,+e,,)1/2) <3abd'?,
n=1

(119) ||w,-||<a(,u}/2+ > e},{%-)<a5j1/2, JjEN,
n>nj

(120) 19—yl <« 2 V2 < 7, J€eN,

(where, for example, (118) follows from (107), (113),,, and (102)). Next (since
B,=5,-1/5, and s, <1), we observe from (115),, that

Sn"bn,j||<sn——1“ n-—l,j||+aen/' n>nj'

J ’
Hence, taking into account that s, |b,,, j| <sn,-1op)/?, and using (103) and

(104), we obtain
Sn”bn,j" <a( l/2+ E 1/2‘) < aajl/z.

Since lim,, _, o, s, =1/7 we finally get

lim |b, ;| <7ad}/?, jeN.

n— o

Similar computations from (116),,, (117),,, (103), and (104) lead to

fim [z, ;| <ra 3 e/2<l jeN.

n— o n= HJ 2
Choose, for each jeN, a weakly convergent subsequence of {b, ;] - nj+1
(reSp o {2y 0= n;+1) and let b; (resp., z;) denote its limit. The vectors 4, w;,

b;, yj,z; then satlsfy the 1nequa11t1es (98)-(101).
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As in the proof of Corollary 3.5 we see easily that, for all jeN, [V;]p=
[@® (w; +b;)]p, and hence from (4) and (6) that [L;1;=[a®P(w;+b;)]r.
Similarly, for each j € N, we obtain from (112),, that

[Rj]B = [an®(yn,j +zn,j)]Bs nxzj.
Therefore,
[Rj]B = lim [an®(yn,j +zn,j)]B

n— oo

= lim [@®(P;+2,,;)]1p=[aR(P; +2;)]5,

n— 00

which gives (97) and completes the proofs of Theorems 3.3, 3.6, and 3.7.
O

4. Analytic Invariant Subspaces

In this section we establish some connections between analytic invariant sub-
spaces of an operator 7 and reflexivity. (Recall that an operator 7" in £(3C)
is reflexive if Alg Lat(T) = "Wy, where “Wr is the closure of @ in the weak
operator topology, and Alg Lat(7)={Se £(3C): Lat(S)DLat(7T)}.) We
begin by recalling the definition and some properties of analytic invariant
subspaces as introduced in [20] and [11].

DEFINITION 4.1. Let T be a contraction in £ (JC) and suppose M € Lat(T),
the lattice of invariant subspaces of 7. We say that 9 is an analytic in-
variant subspace of T if there exists a nonzero conjugate analytic function
e:A—e) from D into 9N such that

(121) (T|gx—N)*ey =0, AeD.
If, in addition to (121), the function e satisfies
(122) V e, =91,

AeD

then M is said to be a full analytic invariant subspace for T.

The following proposition, for which no proof need be given, develops some
elementary facts associated with analytic invariant subspaces.

PROPOSITION 4.2. If T is a contraction in £(3C) and I is an analytic in-
variant subspace for T with associated map e: A — e,, then there exist vec-
tors {yp}n=o in M such that e has an absolutely convergent power series ex-
pansion

(123) e(\)=ey =Y Ny,, AeD.
n=0
The coefficients y, are given by
1 /d"%
24 = —( ——
(124) In= 1 (d)\,, )\=0), neN,

and satisfy
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(125) (Tlo)*vo=0,  (T|m)Yn=Yn-1, neN.
Moreover,
(126) fim| y, " =1,
(127) Vex=V y,
AeD n=0
(128) dim ker(T |gpn—N)*=1, AeD,

and after suitable normalization one may suppose that y, # 0 for each n = 0.
Conversely, if M € Lat(T) and there exists a sequence {y,} -1 of vectors in
M satisfying (125) and (126), then the conjugate analytic map e defined by
(123) turns M into an analytic invariant subspace for T.

Let us denote by H(D) the linear space of all complex-valued functions ana-
lytic on D, and by M, the linear transformation of multiplication by the in-
dependent variable on H(D).

PROPOSITION 4.3. If T is a contraction in £(3C) with analytic invariant
subspace M and associated map e: \ — ey, and if the map F: W —- H(D) is
defined by

(129) FEYN=(x,e)= 3 (5, y)N, xe9M, \eD,
n=0

then F is a linear map from M into H(D) which is one-to-one if and only if
M is full analytic for T. Moreover,

(130) Fo(T |on) = M)°F,

and if {x;}7=, is any sequence converging weakly to zero in N, then the se-
quence {F(x;)} converges pointwise to zero on D. Finally, if M is full ana-
Iytic, then

(131) ker(T |on—p) =(0), neD.

Proof. The only statement which is not completely trivial is the last one,
and it is a consequence of the fact that

ker(T |gn—p) Lker(T |qp —N)*, VA peD, p#A\. O

Full analytic invariant subspaces have proved to be very useful in establish-
ing the reflexivity of certain operators (cf. [11], [20]), and we shall see even-
tually (Theorem 7.2A) that every contraction with gny analytic invariant
subspace is reflexive. But we must boot-strap our way to this result, and we
begin with the following two propositions from [11], whose proofs are in-
cluded here for completeness and because the proof of Proposition 4.5 is
somewhat simpler than the corresponding proof in [11].

PROPOSITION 4.4. Suppose T is a contraction in £(3C) and 3C is a full ana-
Iytic invariant subspace for T. Then T € A and Alg Lat(T) = Q= "W, so
T is reflexive.
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Proof. Let e: X\ — e, be a nonzero conjugate analytic map satisfying (121)
and (122) with M = JC. By [17, Prop. 2.8], the sequence {T*"};_ converges
to zero in the strong operator topology (notation: 7€ C.,), and thus 7 is ab-
solutely continuous. Since ¢(7)ND =D from (121), where ¢(7") denotes the
spectrum of T, we know that 7€ A by [5, Prop. 4.6]. Since always

@ C WrC Alg Lat(T),

it suffices to show that Alg Lat(7") C Gr. Denote by A the set of all A in D for
which e, =0, and note that at most A is a countable set with no point of accu-
mulation in D (since e is nonzero and conjugate analytic). If A € Alg Lat(T)
then 4* e Alg Lat(7*), and from (121) (with 9 = JC) we deduce that

(132) A*ey=h(\)e,, AeD\A,

where 4 is some function defined pointwise. Clearly |#(\)| < |A| for A\e D\ A,
so h is bounded on D\ A. A computation using (129) and (132) shows that

(133) C(FAY)Y (N =hNFON(N), AeD\A,

for every y #0 in JC, and since F(y) # 0 for any such y by Proposition 4.3,
the zeros of F(y) form a set A’ with the same properties as A. Thus one has
from (133) that 4 is a bounded quotient of analytic functions on D\ (AUA’),
and it is a routine task to extend # to a bounded function in H(D). Another
computation using (130) then shows that

(W(T))*ex=h(\)ey =A%\, AeD\(AUX),

and using (122) with 9 = JC and the fact that AU A’ is a countable set with no
point of accumulation in D, we conclude that A =A(T) € G, so the proof
is complete. 0

Of course the above proposition concerns a very special situation, but we
continue to chip away at the hypotheses. For T a contraction in £(J3C), let
us denote by CF(T') the set of all x in JC such that the cyclic invariant sub-
space V,=07"x for T generated by x is a full analytic invariant subspace
for T.

PROPOSITION 4.5. If T is an absolutely continuous contraction in £(3C)
Jor which CF(T) is dense in 3C, then Qr= "W+ and T is reflexive.

Proof. Let A e Alg Lat(T'), and note that it suffices to find an # in H°(T)
for which A(T)x = Ax for all x in CF(T'). Given nonzero vectors x; and x,
in CF(T), let M; =V ,=0T"x;, i =1, 2. Using Proposition 4.4 on the opera-
tors T'|an;, { =1, 2, we produce functions #; and A, in H*(T) such that

(134) hi(T) o, = hi(T |, ) =Alg,, =12,
and it clearly suffices to show that #; = h,. If ;N I, = (0), let
y € (IM;N M)\ (0).
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Then h(T)y = h,(T)y from (134), and therefore

N (s e\) =, (Ve = (1, hi(T*)ey)
= (hi(T)y,e\) = (h(T)y,e5) =hy(N) (), e)),

where e: N\ — e, is the map associated with the full analytic invariant sub-
space 9I;. Since A — (¥, e, ) is a nonzero analytic function on D (Prop. 4.3),
it follows easily from (135) that A, = h,, and the argument is complete in case
M, N M, # (0). If NN M, = (0), choose a sequence {u,},-; from CF(T)
such that lim, |u,, — (x;+Xx,)| =0. Using Proposition 4.4 we deduce that for
each n in N there exists a function f,, in H “(T) such that f,,(T) and A4 agree
on V;.oT/u, and | f,]| <|A]|. By dropping down to a subsequence, we may
suppose that {f,},,—; converges weak* to a function f in #*(T). Thus,

hl(T)xl +h2(T)X2 =Ax1 +Ax2
=1lim Au,,
(136) n
=lim f,(T)u,
n

=f(T)(x1+Xx,),

because {f,(7")} converges in the weak operator topology to f(T) and {u,}
converges strongly to x; + x,. Since N; N M, = (0), we obtain from (136)
that 4;(T)x; = f(T)x;, i =1, 2, and then by a repetition of the argument used
above we get A, = h,, so the proof is complete. J

(135)

In Section 7 we will prove the much better theorem that every contraction
with an analytic invariant subspace is reflexive, but first we must connect the
topic of analytic invariant subspaces to the material of Sections 2 and 3.

S. Solving Equations in Q7
and Analytic Invariant Subspaces

In this section we develop a connection between the solution of certain 1 X &,
systems of simultaneous equations in a predual Q7 and the existence of ana-
Iytic invariant subspaces for the operator 7. In particular, we show that if
T'e A(3C) and @ has some property Fy ., (0 <v), then either T has an iso-
metric part or a supply of cyclic full analytic invariant subspaces that is suf-
ficiently rich for Proposition 4.5 to apply.

DEFINITION 5.1. If Te A and n is a nonnegative integer, we set [C{"]=
o7 ([e~]). It follows easily that |[[C{M1|=1and [C{M] is the unique ele-
ment of Q satisfying

137 CA(T), [CP1y=h(n), heH®,

where /(n) is the nth Fourier coefficient of 4. We denote by 91, the linear
manifold in Q spanned (algebraically) by the set { [Cé”)]: n=0,1,...}, and
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note that it follows easily from the definitions and elementary Fourier analy-
sis that 9T+ is norm-dense in Qy.

The following two propositions are taken from [11], and their proofs are in-
cluded here for completeness.

PROPOSITION 5.2. Let T € A(3C) and suppose that there exist vectors x and
{¢j}=0 in 3C such that

(138) [x®tj]T=[C(§j)]T, J=0, 1""’
and such that '
(139) | im |4}/ <1.

Jj—o o

Then the cyclic invariant subspace N for T generated by x is an analytic in-
variant subspace for T. In particular, if T € Ay x,(r) for somer=1, then T
has a (cyclic) analytic invariant subspace.

Proof. Since M e Lat(7T) and x € M, we have

(140) [x@Flr=[x&y]lr, ye i,
where 7 is the projection of y onto 9. Moreover, since I = V,,> o T"x, the
conjugate linear map y — [x® y ] from M into Q7 is one-to-one. From (138)
and (137) we obtain

[Tx®t]r=0,
[Tx®]r=[C{  Plr=[x®¢t_;1r, JjeN.
Of course, we also have

(142) [Tx®@4]r=[Tx@F1r = [x®(T |m)*E17r, j=0,1,...,

and it follows easily from (141) and (142) that each 7; is nonzero and that
(T |on)*o =0,

(T|m)*5="F_1, jeN.

Since |#] < |¢| for all # in 3C, we obtain from (139) that lim}7;|"/ <1, and the

reverse inequality follows from (143). Thus, by Proposition 4.2, 9 is an

analytic invariant subspace for 7.

Suppose next that T'e Ay ,(r) for some r = 1. Then, by definition there
exist vectors x and {z;}7°-¢ in 3C such that

(141)

(143)

(144) [x®2z;lr=[C{1r/(G+1)?, j=0,1,...,
and
(145) lz;] <2rV%/(j+1), j=0,1,....

Therefore, upon setting ¢; = (j +1)2z;, we obtain (138). Moreover, from (145)
we deduce that (139) is valid, so by what has already been proved, T has a
cyclic analytic invariant subspace. 0l
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PROPOSITION 5.3. Let Te A(3C), and suppose that there exist a vector x
and sequences (t;}7- and {s;};-, in 3C such that

(146) x®41r=[C{1y, j=0,1,...,
(147) lim| £ <1,
(148) [x®sjlreNr, j=1,2,...,
and
(149) -V1 s;= 3¢.

j>

Then the cyclic invariant subspace I for T generated by x is a full analytic
invariant subspace for T.

Proof. 1t follows from Proposition 5.2 that O =V, »; T"x is an analytic
invariant subspace for 7. Furthermore, from the definition of 91 it follows
that for each fixed j e N, [x®s;]7 is a linear combination of the [Céf Ny—
say, '
N . Npo
x®slr= 3 a[C{1r= [x@ P a,.‘“t,-]
i=0 i=0 T
Thus, from the one-to-one character of the mapping y — [x ® 7], where 7
is (as before) the projection of y onto N, we see that

Nj
§i=% a¥’%, jeN.
i=0
Thus V;21§;CV;s0fj, and from (149) we obtain V;.# =M. Since the
sequence {7;} satisfies (143), just as in the proof of Proposition 5.2, it follows
from Proposition 4.2 (cf. (127)) that 9 is a full analytic invariant subspace
for T. O

The next step in our boot-strapping process is crucial.

THEOREM 5.4. Suppose T is a completely nonunitary contraction in A(3C)
with minimal co-isometric extension B € £(8® ®), Qr has property Fy ., for
some 0 < 0 <+ <1, and there exists no nonzero subspace M € Lat(T') such
that T |9 is a pure isometry (i.e., a unilateral shift). Then the set CF(T) of
those vectors x in JC each of which generates a full analytic invariant sub-
space for T is dense in 3C, and hence T is reflexive.

Proof. We assert that P(S@(0)) is dense in JC. Indeed, a calculation shows
that
HOPS®(0) CRNI elat(T)NLat(R).

Since T|(’RN JC) = R|(RN JC) is an isometry, and since 7 is completely
nonunitary and has no pure isometric part, the density of P(S@®0) in 3C is
established. Next, let {y;}7>; be a sequence dense in $®(0), and let ae 3C
and e >0 be given. Fix 7> 1 and choose » >0 such that
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(150) 4»( 3 ,—2> <e(yY/2—-91?),
i=1J
Then we may apply Theorem 3.7 with 9 = ¢z e (1),
162 1 v2[C¢ P1r -
(151) 5j=—917', "= [Lj]T=——72—, JEN,

and we obtain a vector & in JC and sequences {§;®Dz;};=1, [W;®Db;}7-; in
S@ R such that (96)-(101) are satisfied. It follows easily that by setting

;2

(152) o= TzPOy+b),  s=P(9+7), JjeN,
and using (4) and (6), we obtain

(153) [6®t1r=[C{ 1y, j=0,1,...,

and

(154) [6®s;lreINr, jeN.

Moreover, from (99), (100), (151), and (152) we have

(j+1)? 7+1 4\ . :
= L mal + 1D = (g ) (35 ) U+, JeN,

SO _ )
imjs]% <1.

On the other hand, from (152) and (101) we know that
Isj—Pyil<1/j, jeN,

and since {y;} is dense in S®(0) and P(S® (0)) is dense in JC, the sequences
{Py;} and {s;} are dense in JC. Thus, by Proposition 5.3, M = Vo T*d is a
full analytic invariant subspace for 7. Since from (98) and (151) we know that

. 3 4v 1\
lo=al <52 ) (T )(2 52) <o

it follows that CF(T) is dense in JC. Therefore, by Proposition 4.5, T is
reflexive. U

In Section 7 we will use Theorem 5.4 to obtain our new sufficient conditions
for the reflexivity of a contraction operator, but first we must bring together
the various concepts treated so far.

6. The Wheel of Equivalences

In this section we give several characterizations of the class A; g, of a geo-
metric and spectral nature. We begin with a well-known lemma which was
brought to our attention by Hari Bercovici. Recall that a subspace § C 3C is
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semi-invariant for an operator 7 in £(JC) if there exist I, 91 € Lat(T) such
that M DI and g=MON.

LEMMA 6.1. Every absolutely continuous contraction T in £(J3C) is similar
to a contraction T in £(3C) with the property that |Tx| < |x| for every non-
zero x in 3C.

Proof. It is well known that the minimal unitary dilation of an absclutely
continuous contraction is an absolutely continuous unitary operator (cf. [24,
Ch. II, Thm. 6.4]), and it follows easily that 7" has a unitary dilation W, act-
ing on a Hilbert space ‘W D JC, which is a bilateral shift of some multiplicity.
It is also well known that W is similar to a weighted bilateral shift ¥ all
of whose weights are positive numbers less than one. It is obvious that W
has the property that | Wx| < |x]| for all nonzero x, and this property clearly
carries over to the compression of W to any semi-invariant subspace. An
elementary calculation shows that 7, which is the compression of W to a
semi-invariant subspace, is similar to the compression 7 of W to some semi-
invariant subspace, and the result follows. |

We now introduce some notation that will be useful in the remainder of the
paper. If T belongs to £ (JC), we write o,(T") for the right spectrum of T, and
&% (T') for the set of all points X in C such that 77—\ is a Fredholm operator
with (strictly) positive (Fredholm) index. The compression of T to a semi-
invariant subspace J is denoted by T4, and the set of all semi-invariant sub-
spaces for T is denoted by S9(T').

The following result, which establishes an equivalence between various
a priori unrelated concepts, is one of our two principal theorems.

THEOREM 6.2. If T is an absolutely continuous contraction in £(3C) then
the following are equivalent:
(@) Te A and Qr has property Ej y;
(b) TeA and Qr has property Ej ., for some 0<0<y<1;
(©) Te€A and Gr has property Fy . for some 0<0<y=<1;
(d) TeAy,x,(p) for some p=1;
(e) TeAy g,
(f) the set CF(T) of those vectors x which generate a full analytic
invariant subspace for T is dense in 3C;
(g) T has an analytic invariant subspace;
(h) there exists M € Lat(T) such that (T |qy) € A(IN) and
(0, (T ) ND)YUD\F, (T |op)) is dominating for T;
(i) there exists § in 89(T) such that Tge A(g) and
(0, (Ty)ND)U D\ FL(Ty)) is dominating for T;
(J) the j-fold ampliation TU) e A, x, for some j € N.

Proof. We establish first the wheel of implications
(155) (@) = (b) = (c) = (d) = (¢) = (a).
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Of these, that (a) implies (b), (b) implies (c), and (d) implies (€) are trivial.
Moreover, that (¢) implies (d) is the content of Theorem 3.3. To show that
(¢) implies (a) and thus that (155) is valid, suppose now that Te A x,, and
for each A in D let [C\)]7 be the unique element of Q7 such that

M), [CI=f(N), feH™(T).

We will show that each [C) ] belongs to &3(Q7), and since aco{[C\]: A € D}
is the closed unit ball in Qr (cf. [5, Prop. 1.21]), this will, indeed, show that
Qr has property E ;. By applying the familiar technique of taking Mobius
transforms (cf. [13, proof that Theorem 2.4 implies Theorem 2.3]), we see
that it suffices to show that [Cylr e §3(Q@7). For this purpose, let x and
{t;};°=0 be vectors in JC such that

[C'(gj)]T= [X®t_]], .}=0’ 1: veey

and set M = V,>o T"x. As in the proof of Proposition 5.2, we may suppose
that each ¢; € 9, and from (143) we learn that

tieKer(T |on)*V ™Y,  (T|q)¥t;=1,#0, jeN.
Thus there exists an orthonormal sequence {x,},—; such that
x,€Ker(T |gn)* " *VOKer(T |gn)*”, neN,

and from [17, Lemma 5.2], with 7 and T* interchanged, we deduce that
[Col € EH(CGr). This establishes the equivalence of (a)-(e), and we next ver-
ify that (j) is also equivalent to this group. Obviously (e) implies (j), and if
T e Ay g, for some j €N, then Gr) has property Eg ; by (155). The tech-
nique used in the proof of [5, Thm. 3.8] then shows that @ has property
E(;_1y/,1, and since T € A along with 7), we have that (j) implies (b).

To complete the proof of the theorem, we will establish the chain of im-
plications

(156) (€) = (f) = (&) = (h) = (i) = (b).

Of these, only the first and last are nontrivial. To show that (e) implies (f),
suppose 7€ Ay, x,. By Lemma 6.1 there exist a contraction 7} and an inver-
tible operator B in £(JC) such that 7; reduces the norm of every nonzero
vector and 7= B ~1TB. Since f(T)=Bf(T,)B ! for every f in H*(T), we
have

(57) Ifle =151 =|BIIB~IATI,

and applying this relation to the functions f”, n e N, and taking nth roots,
we see that 77 € A. That Qr, also has property (A x,) is proved as in [5, Re-
mark 2.1], so 77 € A x,, and since (155) is valid, @7, has property E{ ;. Since
T, reduces the norm of every nonzero vector, 7; has no nontrivial isometric
part, and thus by Theorem 5.4, CF (7)) is dense in JC. If N, is a cyclic full in-
variant subspace for 7} generated by x then, since 7} |on, is similar to T | gay,,
it is clear that BOI; is a full analytic invariant subspace for 7. generated by
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Bx, and so (e) implies (f). To show that (i) implies (b), we suppose that g is
a semi-invariant subspace for T such that

(158) Tge A(Y) and (0,(Tg9)ND)U(D\F,(Ty)) is dominating for T,
and we show that
(159) Qr y has property Ef, for some 0 <6<1.

Assume for the moment that this has been done. Then, using (155), we see
that Tge Ay x,, and since § is a semi-invariant subspace for T it follows
easily (cf. [5, Prop. 4.11]) that T e A, ,. Using (155) again, we conclude that
Q7 has property Ej ., for some 0 <4, so (b) is established.

To show that (158) implies (159) and thus complete the proof of the theo-
rem, we may as well take § = JC for simplicity of notation, and we separate
out what is to be proved as a proposition.

PROPOSITION 6.3. Suppose that Te A(3C) and (6, (T)ND)UD\F,(T)) is
dominating for T. Then there exists 0 < 0 <1such that Qr has property Ej ,.

Proof. By definition, it suffices to show that there exists 0 <6 <1 such that
aco{8) (@)} contains the unit ball in Q7. For any subset A C D, let NTL(A)
denote the (Borel) subset of T consisting of all nontangential limit points of
A. It follows from the hypothesis that, disregarding a set of measure zero,
we have

(160) NTL(D\F, . (T))UNTL(0,(T)ND)=T.

Moreover, it follows from the same calculation as that made in the proof of
[12, Prop. 2.8] that if A, is any subset of D, then

(161)  aco([Cy]:Ae A D{I[f11€ Qr: fe L'(NTL(A)), | f]=<1},

where [[f]] is as defined after Definition 3.2; it is elementary that if A,CD
then

aco{[[xp/m(I")11: T CNTL(A,)}
D{[[f11eQr: fe LNTL(A,)), | f] <1},

where I' C NTL(A,) means that I' runs through the Borel subsets of
NTL(A,). Therefore, from (160), (161), and (162), to prove the proposition
it suffices to show that

(163) [CA\lre&12(Rr) VAeD\FL(Gy)
and
(164) 3I0=0<1:[[xp/mT)]1€&(Ry) VI'CNTL(0,(T)ND).

That (164) is valid is a direct consequence of [14, Ch. IV, Thm. 4], so we con-
centrate on (163). It follows easily from elementary Fredholm theory that
D\ F, (T) can be written as the disjoint union

(162)
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(165) D\FL(T) = (0(T)ND)UF_(T)U pp(T)U 0;(T),

where p,(T) is the union of the holes in o(7T"), F_(7) is the union of those
holes H in the essential spectrum o,(7") of T such that H Co(T) and the
Fredholm index i(H) associated with H is nonpositive, and

07 (T) ={Ne o (T)\ (0 (T)UF_(T)): i(T—N) =0}.

One knows that o;,(T") consists at most of a countable set of isolated points
v of o(T), each of which has a punctured neighborhood 91, C D\ F} (T),
and thus

A3 =(0(T)NDYUTF_(T)Upp(T)

satisfies NTL(A3;) =NTL(D\ . (T)). Hence we may replace the task of
establishing (163) by that of establishing

(166) [C\Ire &12(Qr)  VAE (o (T)NDYUTF_(T)Upp(T).

If \e (6.(T)ND)UF_(T), the argument is exactly like that in the proof of
[18, Thm. 5.3], so it suffices to do business with those X in p, (7). In this case,
we need the fact (established in [15]) that the two-fold ampliation 7® of T
acting on the Hilbert space 3C(?) belongs to A,(r) for some r = 1. Thus, for
any such A, there exist vectors X and j in JC(® such that [C)]r@ = [F®F].
It follows that, if we define M = V2o (T@)X%, then 9 € Lat(T?) and
(T —\) |4 is a semi-Fredholm operator with index —1. It is therefore clear
that there exists an orthonormal sequence {Z,}>_, in 91 satisfying

(167) Z,eKer(T@ | —N*"*1OKer(T® |5 —N\)*", neN,
and by [18, Lemma 5.2] we have

(168) 2,82l =[C\lr@, neN,
and
(169) 112, ®Wlr@| -0, wedt®,

Let us write £,=zV@®z!? for each neN, where zVe 3@ (0) and zP e
(0) ® 3C, and note that since

1=12:* =z PP+121%, neN,

we may suppose (without loss of generality) that for infinitely many values
of n—say, along the subsequence {n;}; -, —we have

(170) lz1?=1/2, keN.

Equation (168) can be passed to the predual Q7 by [17, Lemma 2.4], and

becomes
[C\lr=[z2"®z1r+ [P ®zP]1y, neN,

which, along with (170), yields
a7 G-z ®z01<1/2, keN.
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Note that the number 1/2 in (171) is independent of the X in p,(7T’), so the
proof can be completed by showing that

(172) Iz ®y1r| -0, yel,
and this follows immediately from (169) by taking w = y@0. Thus the proofs
of Proposition 6.3 and Theorem 6.2 are complete. ([

7. The Results on Reflexivity

In this section we use Theorem 5.4 and Theorem 6.2 to establish a long list
of sufficient conditions that a contraction operator T in £(3C) be reflexive.
Since Theorem 6.2 pertains only to absolutely continuous contractions, one
needs to recall that an arbitrary contraction 7" in £ (3C) has a unique decom-
position T=T,®T;, where T, is an absolutely continuous contraction and
T, is a singular unitary operator. (Of course, either summand may act on the
space (0).)

The following lemma is well known. A proof can be found, for example,
in [3].

LEMMA 7.1. If T=T,®T, is an arbitrary contraction in £(3C), then T is re-
[fexive if and only if T, is reflexive.

We are now prepared to establish several new sufficient conditions for the
reflexivity of a contraction — our second principal theorem. Recall that Cj,.
[resp., C;.] denotes the set of all contractions 7" in £(3C) such that the se-
quence {|7”x|} converges to 0 for all x in JC [resp., only for x =0] and C., =
(Co.)% Cq=(Cy.)*~.

THEOREM 7.2. Each of the following is a sufficient condition for an arbi-
trary contraction T in £(3C) to be reflexive:

(A) T (or T*) satisfies any one of the conditions (a)-(j) of Theorem 6.2,
(B) T, (or T}) satisfies any one of the conditions (a)-(e) of Theorem 6.2;
(C) T,e(Cy.UC.H))NA;

(D) T,e(C,.UC.))NA;

(E) T is hyponormal and T, € A.

Proof. To prove that each of the conditions in (A) is sufficient, suppose that
T is an arbitrary contraction in £ (JC) satisfying one of the conditions (a)—(j)
of Theorem 6.2. If the condition is one of (a)-(e), or (j), then T'=T,; where-
as if the condition is one of (f)-(i), then one verifies easily that 7, satisfies
the same condition. Thus we may suppose that T, satisfies one of the condi-
tions (a)-(j), and therefore all of the conditions (a)-(j), by Theorem 6.2. In
particular 7, € A, x,, and, just as in the proof that (€) implies (f) of Theorem
6.2, one shows that T, is similar to a contraction 7" in A x, that reduces the
norm of every nonzero vector. Thus @4~ has property Ej ; by Theorem 6.2,
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and 7 is reflexive by Theorem 5.4. Hence T}, is reflexive, and that 7T is reflex-
ive now follows from Lemma 7.1. This proves also that each condition in
(B) is sufficient.

To treat (C), suppose that 7, C.,NA. It follows from [1, Thm. 4] and
[17, Prop. 2.7] that Qr, has property Ej ; for some 6 <1, and thus by what
was proved in (B), T is reflexive. The case in which 7,e€ Cy;.N A is done by
taking adjoints.

To treat (D), suppose that 7, C,.NA. Then Ker(7,—\) = (0) for each
N in D, and hence § (T,) =0. Thus D\ F, (7,) is dominating for T, so 7,
satisfies condition (h) of Theorem 6.2, and therefore all of the conditions of
Theorem 6.2. That T is reflexive now follows from (B) above. The case in
which T,e€ C.;N A is dealt with by taking adjoints.

To treat (E), we note that the hyponormality of 7 implies that of 7,, — \ for
each A in D, and this in turn shows that Ker(7;, —\) C Ker(7,—\)* for each
A in D. Thus if 7, —\ is semi-Fredholm for some such \, then i(7,—\) <0,
so F.(T,) =9, and that T is reflexive follows as in (D). Hence the theorem
is proved. g

As a first corollary of Theorem 7.2 we have the following improvement of
the main theorem of [13] that was noted in Section 1.

COROLLARY 7.3. If T is a contraction in £(3C) such that o(T)DT, then
either T is reflexive or T has a nontrivial hyperinvariant subspace.

Proof. One knows from a theorem of Apostol [0, Thm. 2.2] that if T¢ A
then 7 has a nontrivial hyperinvariant subspace. Thus we may suppose that
TeA, and if T¢ Cy.UC;. then {xe JC: |T"x| — 0} is a nontrivial hyperin-
variant subspace for 7. Thus we may suppose that 7€ AN(C,.UC}.), and
that 7 is reflexive now follows from (C) and (D) of Theorem 7.2. ]

It is worth pointing out that this corollary cannot easily be generalized.

EXAMPLE 7.4. Let W be a singular unitary operator such that (W) =T,
and let 7 be any nonreflexive and absolutely continuous contraction. Then
a(TOW)DT, but by Lemma 7.1, T@W fails to be reflexive. Thus it is easy
to find a nonreflexive contraction whose spectrum contains the unit circle.

As additional corollaries of Theorem 7.2 one recovers easily many known
results on reflexivity from [2], [31, [8], [11], [25], [26], and [27]. In particu-
lar, we obtain the following.

COROLLARY 7.5 (Bercovici-Takahashi-Wu). If T, S, and X are operators
in £(3C) such that T is a contraction, S is a unilateral shift, X #0, and XT =
SX, then T is reflexive.

Proof. Let A — e, be a nonzero conjugate analytic function on D such that
S*e\ = Ney, for N in D and V,cpe, = JC. Then T*(X*e,) = A(X*e)) for
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A in D and the function A - X*e, is clearly a nonzero conjugate analytic
function on D. Since the zeros of such a function are isolated, it follows
that the point spectrum ¢,(7*)ND is dominating for T, so T*€ A, and T

is reflexive by (A) of Theorem 7.2 (using (h) of Theorem 6.2). [
COROLLARY 7.6 ([3], [2]). Every operator in the class Ay, is reflexive.
Proof. The class Ay, is a subset of Ay x,. O

We close this paper with two conjectures that result from Theorem 7.2.
CONJECTURE 7.7. Every operator in A is reflexive.
CONJECTURE 7.8. Every hyponormal operator is reflexive.

The results in this paper were presented at the meeting of the American Math-
ematical Society in Lincoln, Nebraska in October, 1987, and were announced
in [16]. These results were obtained in the spring of 1987 while the second
and third authors were visiting the Department of Mathematics of the Uni-
versity of Bordeaux I, and we wish to express our gratitude to this depart-
ment for its kind hospitality to the authors.

Added in proof. Very recently, the first author and Scott Brown have shown
that every contraction operator in A is reflexive, thus establishing Conjec-
ture 7.7 (cf. “Toute contraction a calcul isométrique est reflexive,” C. R.
Acad. Sci. Paris 307 (1988), Series I, 185-188).
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