Direct Limits in an Equivariant K Theory
Defined by Proper Cocycles

PETER HASKELL

Having observed the important role played in a variety of settings by the K
theory of the reduced group C* algebras of infinite discrete groups, Baum
and Connes [2] considered the K theory of the reduced crossed product
C* algebras arising from smooth actions of Lie groups on smooth mani-
folds. The fundamental insights of [2] are that for a group G and a manifold
X as above: one can use as cocycles manifolds on which G acts smoothly
and properly to define groups K*(G, X); it is reasonable to conjecture that
K*(G, X) is isomorphic to K.(C*(G, Cy(X))) via an index map; and if this
conjecture is true, then so are many other interesting conjectures. (Because
all crossed products are reduced in this paper, the subscript r will be omitted
from the notation.)

The definition of K*(G, X') using vector bundles with finite-dimensional
fibers that was suggested in [2] was replaced in [3] by a slightly different defi-
nition. Because it may be that neither [2] nor [3] is available to the reader
and because both are sketchy in their treatment of details, the first section
of the present paper is a full discussion of the definition given in [3]. A re-
mark at the end of the paper discusses the role of finite-dimensional vector
bundles.

Our main result is a theorem concerning the behavior of K*(G, X) under
certain direct limits, of the type G =lil)n,- G;, that is analogous to a theo-
rem about K, (C*(G, Cy(X))). Not only does the analogy between these the-
orems support the Baum-Connes conjecture, but it can be used to prove the
conjecture for any Lie group which is the direct limit of open and closed
compact subgroups (e.g., a discrete group in which each finitely generated
subgroup is finite) and for any abelian Lie group. The main theorem is stated
and proved in Section 2, where the above-mentioned cases of the conjec-
ture are proved as corollaries. The proof of the main theorem is interesting
in that it illustrates the role that the classifying spaces introduced in [12] and
[13] play in the K theory of transformation group C* algebras.

It is a pleasure to thank Paul Baum for suggesting the subject of this pa-
per to me and for many discussions, both broad and narrow, on its subject
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matter. I am also grateful to Larry Brown, Jerry Kaminker, Jamie Mingo,
Chris Phillips, and Jonathan Rosenberg for their helpful comments.

1. K%G, X)

Henceforth all groups are Lie groups, and all manifolds, maps, and group
actions are smooth. Each group and manifold is assumed to be Hausdorff,
second countable, and locally compact, but it may have a countably infinite
number of connected components. All vector bundles have finite-dimen-
sional fibers. In discussing the K theory of C* algebras we sometimes adopt
the notation of KK theory, for example, Ky(A) = KK(C, A) ([4], [10], [11]),
because we use the Kasparov product in some constructions.

In this section we define the groups K*(G, X)) associated to a G-manifold
X, that is, to a left action of a group G on a manifold X. We use L, to de-
note the diffeomorphism of X effected by ge G.

DEFINITION. The action of a locally compact group G on a locally com-
pact space Y is said to be proper if, under the map G XY — Y X Y given by
(&, ¥) = (», Lg(»)), the inverse image of each compact set is compact. In
this situation Y is called a proper G-space.

In our situation this definition is equivalent to that in [13]. We proceed to
define terms and describe constructions we will need.

If Z is a proper G-manifold and X is a G-manifold, then Z X X is a proper
G-manifold [13]. If V is a G-vector bundle over the proper G-manifold Z,
then the total space of V, which we denote E(V), is a proper G-manifold
under the naturally defined action. The pullback of a G-vector bundle under
an equivariant map between G-spaces is a G-vector bundle. A proper G-
manifold can be given a G-invariant Riemannian metric [13].

A Riemannian metric on a manifold Y enables us to identify in a smooth
manner fibers of TY with the corresponding fibers of 7*Y. We will call the
identification 7,,Y — T;*Y dual,,. Let 4: Y; — Y,. The differential (dh), gives
maps T, Y, - Ty, Y, for each y € ¥;. Dualy,° (dh),~dual;’ gives maps
17;*Y; - T}, Y2, which piece together to define a map E(T*Y;) - E(T*Y,).
A special case is when 4 is the map L,: Y — Y effected by an element g of G.
Then the above construction defines a map E(T*Y) —» E(T*Y), making 7T*Y
into a G-vector bundle and making E(T*Y) into a G-manifold. With this
G-action on the total spaces of cotangent bundles, the construction above,
applied to an equivariant f:Y; - Y,, gives rise to an equivariant map be-
tween the G-manifolds E(7T*Y;) and E(T*Y>).

If we have maps of manifolds f;: Y; - Y3, f5: Y, - Y3, and 4: Y] — Y5 with
J20h = fi, then for each y € Y; the vector spaces (fi*T*Y3), and (f3T*Y3) )
are identified with 7%, (,)Y;. Thus for each y € ) it makes sense to talk about
the identity map of vector spaces (f*T*Y3), = (f3T*Y3)p(,). We can take
the direct sum of this map with the map dual,y° (dh),-dualy 1 of the pre-
ceding paragraph, and the resulting maps can be pieced together to give a
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map h: E(T*Y,® fiT*Y;) - E(T*Y,® f3T*Y3). If Y}, Y5, and Y; are G-
manifolds with Y; and Y, proper, and if f, f5, and 4 are equivariant, then
the resulting map A: E(T*Y;® fi*T*Y3) - E(T*Y,® f4T*Y;) is an equivari-
ant map of proper G-manifolds.

DEFINITION. A map h: Y, - Y, is called K-oriented if TY,®h*TY, has a
spin® structure.

Examples of K-oriented maps include an imbedding with spin® normal bun-
dle and the projection from the Cartesian product of two manifolds to the
second factor when the first factor is a spin® manifold. In each case in this
paper, the key idea is that the direct sum of a vector bundle with itself (or,
for that matter, with its dual) has a natural complex structure and thus a
natural spin® structure. In the following general discussion we assume that
the fiber dimension of 7Y@ h*TY, is even. That will always be the case in
our applications.
Associated to a K-oriented map 4: Y, — Y, is an element 4! of

KK(Cy(Y1), Co(Y?))

([71, [8]). We first describe A! for two cases: the case when 4 is an imbedding
with complex normal bundle and the case when # is the projection for a
fiber bundle in which the fibers are almost complex manifolds and in which
the structure group preserves the almost complex structure.

When A4:Y; - Y, is an imbedding with complex normal bundle (and the
image of the imbedding does not “wrap arbitrarily close to itself”), a tubu-
lar neighborhood of the image of 4 can be given the structure of a complex
vector bundle p: F— Y;. “The” Thom class associated to F, represented by
the module of sections of p*A*F and the operator exterior product plus its
adjoint [1], gives an element of KK(Cy(Y;), Co(Y>)). The action of an ele-
ment a of Cy(Y;) on the module is by multiplication by a-p. The action of
an element b of Cy(Y,) is by multiplication by the restriction of 4 to the
tubular neighborhood.

When h: Y, - Y, is a projection as described above, hA! is constructed as
follows. Give Y; a Riemannian metric. For each ye Y, we can form the
Hilbert space H, of L? forms of type (0, *) on A~!(y). Let D,=3+d* on
this Hilbert space, where 0* is the formal adjoint of d. [For concreteness,
initially define the operator d+ d* to have domain equal to the set of smooth
compactly supported (0, *)-forms. Let D, be the closure of this operator.
The class of the KK cycle constructed from D, is not changed if we choose
a different “natural” domain for D,.] The operator Dyo(1+D;Dy)‘1/ 2is
a bounded operator on the Hilbert space H,. These Hilbert spaces patch
together to form a bundle of Hilbert spaces over Y,. The element h! of
KK (Cy(Y1), Co(Y,)) has as its module the set of continuous sections, van-
ishing at infinity, of this bundle. Its operator T is defined by (To)(y) =
Dy (14+D;D,)"/2(a(y)). Co(Y;) and Cy(Y,) act (respectively) by pointwise
multiplication and by pointwise multiplication by the composition with A.
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The construction of A! for such a projection # makes no use of a metric
on Y,.

With a few more observations we are prepared to use the ! construction
in this paper. One observation is that every map 4 for which we use 4! can
be factored into the composition of an imbedding and a projection of the
types described above. For K-oriented maps 4;: Y;— Y, and h,: Y, —> Y3,
h2°h1 is K-oriented and (h2°h1)! =h1! ®C0(Y2) hz' [8]

The significance of 4! is that it realizes a map of K theory via the Kas-
parov product. Let h: Y; — Y,. For a € KK(C, Cy(Y})),

a®CO(Yl) h! EKK(C’ CO(YZ))'

Replacing Cy(Y;) by Co(Y;) ® Co(R), we get an analogous map K'(Y;) -
K\(Y,).

The second observation is that the above discussion goes over to equi-
variant KK theory as follows. Assume 4: Y; — Y, is a K-oriented equivariant
map between G-spaces. Assume further that the metrics, where needed, and
the (almost) complex structures (or, in the more general setting of [7] and
[8], the spin€ structures) are G-invariant. Then the constructions of 4! give
operators that commute with the natural actions of G on their modules, and
h! € KK5(Co(Y7), Co(Y3)). (See [10] for the definition of KKs;.) The prop-
erties of ! (e.g., (hz0ohy)! = h! ®cy(vy) A2!) hold in KK . The proof of this
statement follows from the observation that the connection approach to
Kasparov products used in [8] extends to KK ([10], see also [9]). When the
G actions are proper, all metrics used in the constructions can and should
be chosen to be G-invariant. The choices made (e.g., the metrics) affect the
cycles but not their classes in KK.

Finally, we need to describe how to use ! in conjunction with j;. For A! €
KK(Co(Y1), Co(Y2)), Jg(h!) € KK(C*G, Co(Y1)), C*(G, Cy(Y>))). (This
Jg is analogous to the j; of [10, §6], the difference being that we complete in
the reduced crossed product C* algebra norm.) We have

Jo((hyeh)!) =Jjc(h!)@cHc, cyry) Jolha!).

That is, ! followed by j; intertwines composition with the appropriate Kaspa-
rov product. Also, js(A!) realizes a map between crossed product C* algebras
via Kasparov product in the following manner. For a € KK(C, C*(G, Cy(Y7)))
ard (resp.) KK(C, C*(G, Co(Y})) ® Co(R)),

a @c+G, cotryy Jo(h!) e KK(C, CXG, Cy(Y3)))
and (resp.)
KK(C, C*(G, Cy(13)) ® Co(R)).

(Of course, KK(C, AR Cy(R)) =K,(A).)
We can now define the groups K*(G, X) associated to a G-manifold X.
For i=0or1a K’ cocycle for (G, X) is a triple (Z, &, f) such that:
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(1) Z is a proper G-manifold;
(2) f:Z - X is an equivariant map; and
(3) £eKi(CHG, CE(T*ZRf*T*X)))).

[It can be instructive to think of £ as a sort of coefficient, carrying both mul-
tiplicity and orientation information for Z. A trivial £ carries only multi-
plicity information equal to the dimension of its fibers, but a nontrivial £
puts some extra structure on its cycle. An analogous thing happens in bord-
ism theory where a cycle is described not by a manifold and a map alone but
requires the additional information given by the assignment to the manifold
of a structure (orientation, stably almost complex structure, etc.) appro-
priate to the bordism theory.]

We say that there is an elementary equivalence of K’ cocycles (Z;, &1, f;) ~
(Z,, &,, f>) if there is an equivariant map A: Z; — Z, such that:

(1) fi=/S20h; and
(2) for the map h: E(T*Z,®*T*X) > E(T*Z,® f3T*X) formed from

hy £1Qc* G, co Tz @ T X Jo() = 5.

(The map /4 is K-orientable because of the natural complex structure of the
direct sum of a vector bundle with itself or with its dual.)

DEFINITION. K(G, X) is defined to be {K* cocycles for (G, X)}/the equiv-
alence relation generated by elementary equivalences.

The disjoint union of K* cocycles realizes addition in K*(G, X). Also,

(Z, _S,f)= _(Z’E,f)'

One can define a map
p: K*G, X) - K (CH(G, Co(X)))

as follows. Let (Z, &, f) be a K* cocycle for (G, X). Let w be the projection
E(T*Z®f*T*X)— Z. Then pu((Z, £, f)) is

EQcc, coET z+rT X)) Jafem)).

Because js(+!) intertwines composition with the Kasparov product and be-
cause the Kasparov product is associative, u is well-defined on K*(G, X).
The Baum-Connes conjecture is that p is always an isomorphism.

We finish this section with two observations. First, the conjecture that
w: K*(G, X) - K, (C*(G, Cy(X))) is an isomorphism is true when X is a prop-
er G-manifold. The argument has two ingredients. One is the Thom isomor-
phism K, (C*(G, Co(E(T* XD T*X)))) = K (C*G, Cy(X))) of [14]. The oth-
er is that cycles of the form (X, £,id) with £ € K, (C*(G, Co(T* XD T*X)))
are “final” for K*(G, X'). When G is compact, the Green-Julg theorem says
that the groups in the domain and range of u are isomorphic to the equi-
variant K theory groups defined by Segal [4].
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Second, in using ! (say, to define the equivalence relation or to define y)
we can restrict ! to maps that are imbeddings with complex normal bundles
or the projections of fiber bundles whose fibers have almost complex struc-
tures preserved by the structure group. The reason is that 4: Z — Y can be
factored by (id, h): Z— Z X Y and py: Z X Y — Y. Our constructions require
us to apply ! to maps constructed from this imbedding and projection and
defined on the total spaces of vector bundles. These maps will be of the kind
described in the first sentence of this paragraph.

2. Direct Limits

Throughout this section we consider the following situation. Let a Lie group
G be equal to the direct limit of Lie subgroups G;, with the indices i ele-
ments of the positive integers with their usual ordering. Assume further that
each G; is an open and closed subgroup of G and that i; <i, implies G;, C
Gi,. Some examples appear in the corollaries in this section. An action of
G on a space restricts to an action of each G; on the space.

In this section we prove that in this situation lil)n ; K*(G;, X') makes sense
and is equal to K*(G, X). The significance of this theorem is that there is
an analogous result in the K theory of C* algebras: K,(C*(G, Cy(X))) =
li_ng,-K*(C*(G,-, Co(X))). It follows that the conjectured isomorphism of
K*(G,X) and K,(C*(G, Cy(X))) reduces to analogous isomorphisms in-
volving the G;, which we check in a couple of cases.

We attend first to the well-known C* algebraic results. Direct limits of C*
algebras will always be C* direct limits.

LEMMA. Let A= li_r)n,- A; be a direct limit of C* algebras. Then li_r)n i K(Ap) =
K.(A).

Proof. Considered well-known for years, this lemma receives an explicit
proof in a more general setting in [17]. L]

LEMMA. Let G =li_1_1)1,- G;, under the assumptions at the beginning of this
section. Suppose G acts smoothly on a manifold X. Then, fori, j, k € Z, with
i <j, there are maps C*(G;, Co(X)) = C*(Gj, C*(X)) and C*(Gy, Cp(X)) —
C*(G, Co(X)) which realize an isomorphism

lim C*(G;, Co(X)) = C*(G, Co(X)).

i

Proof. Letting H; C H, denote either G; C G; or G C G, define
C.(H}, Co(X)) » Cc(H, Co(X))

to be extension by zero. Because H, /H, is discrete, these maps extend to C*
algebra homomorphisms with the desired properties. O

We now consider the behavior of K*(G, X) under such direct limits. Let H,
and H, have the meaning given them in the proof of the preceding lemma.
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On the level of cocycles, we define the map ind : K*(H;, X) —» K*(H,, X) by
sending (Z, &, f) to (Hy Xm,Z, ¢, f'). It is easily checked that when Z is a
proper Hj-manifold H, Xy, Z, which is defined to be (H,xZ)/((gh,z) ~
(g, hz) for ge H, and he H,), is a proper H,-manifold under the action
gil(g,z)1=I[(g,&,2)]. The map f” is determined by the requirement that it
equivariantly extend f. Having observed that H,/H, discrete implies that
E(T"(H, Xg, 2)®f*T*X)=H, X g E(T*Z® f*T*X), we define £’ to be
i(£), where i is the induction isomorphism

K (C*H,y, Co(E(T*Z /T X))))
= K (C*(Hy, Co(Hy Xy (E(T*Z@ f*T*X)))))

arising from the strong Morita equivalence of the C* algebras [16]. By [10],
i can be realized by taking the Kasparov product on the right over the origi-
nal C* algebra with the equivalence bimodule of [16].

It remains to be checked that ind, as constructed on cocycles, describes a
well-defined map K*(H,, X) - K*(H,, X). We also need to know that these
maps determine a direct system K*(G;, X) and that

K*(Hy, X) nd s K*(Ha, X)
l 9:8 l P,
K (C*(Hy, Co(X))) > Ki(C*(H,, Co(X)))

commutes. (The lower horizontal map in the diagram is the one coming from
the C* algebra map described in the proof of the preceding lemma.) We leave
the verification of these claims to the reader but offer two suggestions about
the proofs. First, these statements are checked by direct computation of the
KK elements, the products with which realize the various maps. Second, it
is easier to factor maps through imbeddings and submersions when doing
these computations.

THEOREM. Lim; K*(G;, X) =K*(G, X).

Proof. We start by establishing surjectivity of the map from left to right. By
[14], we need consider only cycles (Z, &, f) for which ¢ has G-compact sup-
port. (In the definition of K,(C*(G, Cy(W))) established in [14] for proper
actions of G on W, cycles are represented by Hilbert vector bundles with
morphisms between them. The support contains the points over which the
morphism is not invertible. For our purposes it is sufficient to know that all
of the K-theoretic information carried by £ is carried by the restriction of ¢
to a neighborhood of its support.) Because E(T*Z® f*T*X) is locally com-
pact, we can find a compact neighborhood of support(£)/G. Let Z’ be the
pre-image in E(T*Z@® f*T*X) of this neighborhood, and let Y be the in-
terior of Z’. Let j be the composition of f with the projection from Y to Z.
Let ¢ be the Thom isomorphism

Ki(C*(G, Co(Y))) » K(CHG, Co(E(T*YDJ *T*X)))).
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We now consider the cocycle (Y, ¢#(£), j), which represents the same class in
K*(G,X) as (Z,&, f).

Because Y is contained in the G-compact set Z’, we can draw two con-
clusions. First, we can argue as in [5] that Y contains only finitely many
orbit types. Thus the theory of classifying spaces for proper G-actions ([12],
[13]) applies. Second, the image of Y/G under the classifying map is con-
tained in a compact subset of the appropriate classifying space. This means
that Y is equivalent to an induced G-space G X' Y’, where G’ is one of the
G;. Our discussion of the map ind completes the proof of this theorem once
we outline the proof of the claim that Y is G X5 Y’. We now do this.

Let X, ..., X, be proper G-spaces and let I be the unit interval. The reduced
join of the {X;} is formed as follows. Take {((xy, £1), ..., (X,, ,)) : E¢t; =1}.
Form the quotient by the equivalence relation ((xy, &), ..., (x,, £,)) ~
((¥1,51)5 +++s (Vn»$p)) if and only if (a) ¢; =s; for all i and (b) #; # 0 implies
x; =y; for all i. The reduced join is the subset of this quotient defined as
follows. For p = ((xy, #1), ..., (X4, £y)) let K; , be the isotropy group of x; if
t;#0and G if ¢; =0. Then p is in the reduced join if and only if there is a
K; , contained in all of the K ,,. The action of G on the reduced join is given
by g((X1, tl), AR (xna tn)) = ((gxls tl)s eery (gxna tn))°

Let {H,} be a set of representatives of the conjugacy classes of isotropy
groups appearing in the Y introduced in the second paragraph of this proof.
Palais’ universal space U is a reduced join of copies of the G/H,, where each
G/H, may appear more than once. U is a proper G-space, and U/G is the
classifying space governing the action of G on Y.

For each G; containing all of the H,, U/G contains a subspace that can
be identified with the classifying space for certain proper actions of G;. This
subspace is described as {[((x, £1), ..., (X,,, £,))1 € U/G: for all u,v with ¢, #
0 and #,#0, x, 'x, C G;}. Let P be the natural projection

U/G—{(ty,...,1,): Tt; =1].

Observe that there is a natural simplicial decomposition of the image of this
projection. The “fibers” of P are constant over the interior of each simplex
in this decomposition. Also, if simplex o; is contained in the boundary of
simplex o, and if the fibers of P over the interior of o, are not empty, then
they are “at least as big as” the fibers over interior points in ¢;. (To under-
stand the phrase in quotes, regard it as a necessary condition for U/G to be
Hausdorft.)

It follows that if there exists an infinite collection of proper containments,
classifying space for G; properly contained in classifying space for G;,,
then this can be observed on some fiber of P. This fiber is then noncom-
pact, and the reasoning of the preceding paragraph shows that each com-
pact subset of U/G is contained in one of the classifying spaces for G; ac-
tions. Of course, if there are only finitely many proper containments of
classifying spaces then the claim is true as well. This completes the proof
of surjectivity.
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The proof of injectivity is much the same. It suffices to check that, if
two cocycles for K*(G, X) are related by an elementary equivalence, then
they (are cocycles for and) are related by an elementary equivalence for
some K*(G;,X). Suppose h:Z,— Z, realizes an elementary equivalence
(Zy, &1, 1) ~ (25, &3, [2). (Assume * =0; if * =1, the same arguments work
when we replace the total spaces of the relevant vector bundles by the Car-
tesian products of these spaces with R.) By [14], the equivalence relation in
Ky(C*G,Cy(E(T*Z,®f*T*X)))) is generated by the addition of trivial
virtual Hilbert vector bundles and by homotopy. Because there is no diffi-
culty in working addition of trivial bundles into our argument, we focus on
homotopy. The homotopy consists of a pair of Hilbert vector bundles over
E(T*Z,®f*T*X)x[0,1] with a compactly supported morphism between
them. (See the definition of support in the first paragraph of this proof.) As
in the proof of surjectivity, the compact support is used to deduce that the
homotopy is induced from a homotopy at the level of one of the G;. This
completes the proof of the theorem. O

COROLLARY. The Baum-Connes conjecture is true if each G; is compact.

Proof. Because G; is compact, every smooth G;-action is proper and so the
conjecture is true at each stage of the direct limit.

COROLLARY. The Baum-Connes conjecture is true for abelian Lie groups.

Proof. For some choice of finite m and n, G=T"@®R"®a countably gen-
erated discrete abelian group. Let G; be the subgroup T”@R"®discrete
group generated by the first i generators of the discrete group. To proceed
as in the proof of the preceding corollary, we need only prove: (a) if the
Baum-Connes conjecture is true for H then it is true for H@®R; and (b) if
the conjecture is true for H then it is true for H®Z.

To prove (a), observe that there is an equivalence of categories between
the cocycles for K'(H®R, X') and the cocycles for XK' *1(H, X). This equiv-
alence arises because R is a contractible torsion-free group. This equivalence
takes a cocycle (Z, £, f) for K'*Y(H, X) to (ZXR,s(£), f1). The action of
H®Ron ZxRis defined by letting A act on Z and letting R act by addition
on R. The map f is determined by requiring that it equivariantly extend f.
The map s is the inverse of the composition

K (CHH®R, Co(E(THZXR)® fIT*X))))
- K{(C*H, Co(E(T*Z® f*T*X) X R)))
- K'Y C*H, Co(E(T*ZD f*T*X)))),

where the first map is the isomorphism of [14, Thm. 8.1] and the second fol-
lows from definition, Bott periodicity, and the triviality of the action of H
on R. To finish the proof of (a) observe that u intertwines the isomorphism
induced by this equivalence of categories with the isomorphism established
in [6] for the K theory of C* algebras.
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To prove (b), let Z act on R by addition and let Z act on R X X diagonally.
There is an equivalence of categories between the cocycles for K (Z@H, X)
and those for K**!1(H, (Rx X)/Z). This equivalence takes a cocycle (Z, £, f)
for K(Z@H, X) to (Z/Z, &, f;), which is constructed as follows. Because
Z is torsion-free, a proper action of Z on Z is a principal Z-bundle. Thus
there is an equivariant map f,: Z - R X X which drops to the quotients to
give fi: Z/Z - (RxX X)/Z. &, is constructed from ¢ by a map analogous to
the inverse of s in the preceding paragraph. The equivalence of categories
gives the first isomorphism in the following string of isomorphisms:

K(Z®H,X)—- K" (H, (RXX)/Z)~ K; {(C*(H, Co((RX X)/Z)))
- K{(C*(H®R, Cp((RX X)/Z)))
= K;(C*(H, C*(Z, Cop(X)))) = K(CHZD H, Cy(X))).

The other isomorphisms arise by assumption, [6], strong Morita equiva-
lence, and the commuting of the Z and H actions. A check that the compo-
sition agrees with u completes the proof of this corollary. ]

REMARK. The original paper [2] suggested that K*(G, X') could be defined
with proper cocycles carrying equivariant finite-dimensional vector bundles.
An example in [14] shows that for G acting properly on X, K*(C*(G, Cy(X)))
cannot always be defined using only finite-dimensional vector bundles on
X. This example does not imply that K*(G, X) cannot always be defined
using only finite-dimensional vector bundles. However, it does imply that
if one wants to define K*(G, X) using only finite-dimensional vector bun-
dles, one loses the argument that says that K*(G, X) is isomorphic to
K. (C* G, Cy(X))) when G acts properly on X because X is a final cocycle
in the direct system. This seems too large a price to pay. Phillips [14] shows
that much of the geometric character of X*(G, X') can be retained if one
accepts vector bundles with infinite-dimensional fibers. In fact, in families’
index theorems these arise more naturally than finite-dimensional vector bun-
dles. However, it is sometimes useful to have finite-dimensional vector bun-
dles. Phillips [15] has shown that these are sufficient for some Lie groups G.
The present paper shows that finite-dimensional vector bundles suffice to
define K*(G, X)) when G is a direct limit of groups for which finite-dimen-
sional bundles suffice.
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