CYCLIC VECTORS FOR MULTIPLICATION OPERATORS

Allen L. Shields

A vector f in a (complex) linear topological space is said to be a cyclic vector
for a continuous linear transformation 7 on E if the set ®(T')f is dense in E.
Here ®(T)={p(T): pe ®}, and @ denotes the set of polynomials. We prove two
theorems about cyclic vectors in spaces of functions, first for measurable func-
tions, then for analytic functions. The corollary to the first theorem generalizes a
theorem of Bram about cyclic vectors of normal operators on Hilbert space.

If p is a finite measure, let X denote the closed unit ball of L*(x) and let X,
denote X with the metric of L”(u). Recall that a residual subset of a complete
metric space is a subset whose complement is a set of the first category.

THEOREM 1. Let p be a compactly supported Borel measure in the complex
plane. If 0 < p <o, then:
(a) X, is a complete metric space,
(b) the set of cyclic vectors in LP(u) for the operator of multiplication by z is
a residual set; and
(c) the subset of cyclic vectors that lie in X is a residual subset of X),.

Proof. Choose p € (0, «) and keep it fixed throughout the proof.

(a) If {f,} C X and if f,,— f in L”(n), then f, converges to f in measure, and
a subsequence converges pointwise almost everywhere; thus fe X and so X, is
complete.

(b) Let {U,} be a countable basis for the open sets in L?(u). Let T denote the
operator of multiplication by z. For each n, let V,, denote the set of vectors f for
which there exists a polynomial p such that p(T')f € U,. Then V,, is an open set,
and NV, is the set of cyclic vectors for 7. Thus (b) will be proved if we show that
V, is dense in LP(u).

Let K =supp(u). If F is a closed set, if x is its characteristic function, and if
h is any function, then sr denotes the function xzA. Finally, let d(f, g) denote
the distance from fto g in L?(p).

Claim 1. Let ¢ >0 and he LP(u) be given. Then there exists 8 > 0 such that if
FCK and u(K\F) <6, then d(h, hg) <e. Indeed, if p <1 then

d(h, hy) = S \h—hp|P dp = SK\F \h|P d,

and the result follows by absolute continuity. The proof is similar when p>1.

Claim 2. If 6 >0 is given, then there exists a closed set F with empty interior
and connected complement, such that FC K and p(K\ F) < 6. Indeed, let {1,} be
an enumeration of the open subintervals with rational endpoints on the real axis,
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and let Y denote the imaginary axis. Inside each interval 7, choose an open sub-
interval J, such that u(J,xY) <§/2" The set F=K\U (J,XxY) satisfies our re-
quirements. (To see that the complement of F is connected, note that if w is a
point in the complement then a small horizontal segment from w stays in the
complement. This will put us inside one of the sets J, XY, and so w can be con-
nected to co in the complement of F.)

Claim 3. Let F be as in Claim 2, and let pr= u|F, the restriction of p to F.
Then @ is dense in LP(uz). Indeed, the continuous functions are dense in L”(pf)
(from Lusin’s theorem), and the polynomials are uniformly dense in C(F) by a
theorem of Lavrentiev ([6, Thm. 17, p. 25]; see Carleson [3] or Conway [4, Thm.
VI1.8.13] for a more functional analytic proof).

We are now ready to show that V), is dense. Let g e L?(u) and let o > 0 be given;
we must show that V, contains an element within distance « of g. Since the non-
vanishing functions are dense in L”(x), we may assume that g never vanishes.

Choose 4, and € > 0, so that the open ball B(A, 2¢) is contained in U,. By
Claim 1 there exists 6 > 0 such that, if FC K and if u(K\ F) <6, then d(g, gr) < «
and d(h, hp) < e. We shall choose F so that g€ V,,.

First choose a closed set J C K with p(K\J) < é/2, such that |g| is both bound-
ed above and bounded away from zero on J. By Claim 2 there is a closed set FCJ
with empty interior and connected complement, and with u(J\F) < /2. Then @
is dense in L”(uf), by Claim 3. Therefore, gr® is dense in L”(ur), since multipli-
cation by g is an invertible bounded linear transformation on L”(ur). Hence
there is a polynomial p such that d(hg, pgr) <e. (Since the functions vanish off
F, the distances in L”(u) and in L”(ug) coincide.) Thus d(A, pgr) < 2¢, and so
gr €V,, which completes the proof of (b).

(c) The proof here is similar to the proof of (b), and we use the same notations.
Let W,=XNV,. Then W, is an open subset of X, and (M W, is the set of cyclic
vectors lying in X. We must show that W, is dense in X),. Let g € X, and let o >0
be given. The nonvanishing functions are dense in X),, so we may assume that g
never vanishes. The proof of (b) shows that, for a suitable set F, d(g, gr) <« and
greV,. Since gr € X, we have gr € W,, which completes the proof. 1l

A vector f in a Hilbert space H is said to be a *-cyclic vector for an operator
T on H if the smallest subspace containing f and invariant for both 7 and T*
(i.e., the smallest reducing subspace for 7 containing f) is all of H. (Note: sub-
spaces are closed, and operators are linear and bounded.) A well-known theorem
of Bram states that if a normal operator has a *-cyclic vector then it has a cyclic
vector (see [2, Thm. 6] or [4, Thm. VI.8.14, p. 344]). We generalize this as follows.

COROLLARY. Let T be a normal operator on Hilbert space and suppose that
T has a *-cyclic vector. Then the set of noncyclic vectors is a set of the first cate-

gory.

Proof. A form of the spectral theorem for normal operators states that, in the
presence of a *-cyclic vector, there is a Borel probability measure p on the spec-
trum of 7 such that 7 is unitarily equivalent to the operator of multiplication
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by z on L2(u) (see [4, Thm. 11.4.3, p. 74]). The result now follows from the the-
orem. ]

Returning to the theorem for a moment, we note that even in simple cases it
may not be obvious that there are any cyclic vectors, let alone how to describe
them. This is illustrated by the bilateral shift operator, where the theory has been
completely worked out. This is the operator of multiplication by z on L2(u),
where p is normalized Lebesgue measure on the unit circle T. We denote the op-
erator by 7. The following results are known (see Helson [5, Chap. 2]). The re-
ducing subspaces of L2(u) (i.e., invariant under both 7 and 7T*) are the spaces of
functions vanishing on a fixed set of positive measure. The nonreducing invariant
subspaces are the spaces of the form ¢H?, where || =1almost everywhere. From
this it can be shown that f is a cyclic vector if and only if both of the following
two conditions are satisfied: (i) | f|>0a.e.; (ii) | log|f|= —co.

If we replace L”(u) by a space of analytic functions, then the situation changes
somewhat. We prove one theorem to indicate this, without striving for maximum
generality.

Let E be a Banach space whose elements are analytic functions in the open
unit disc D in the complex plane, with the usual vector space operations. If f is
analytic in D, let f,(z) = f(rz), r <1. Also, D~ denotes the closure of D. Finally,
“analytic on D™” means “analytic in a neighborhood of D™”. We make four ad-
ditional assumptions about £

(1) point evaluation at each point of D is a bounded linear functional on E;

(2) E contains the polynomials as a dense subset;

(3) if ¢ is analytic on D~ then ¢E C E; and

(4) if feE then f,— fin norm as r11.

It is known that if a sequence in E converges in norm, or weakly, then the func-
tions converge uniformly on compact subsets of D. Also, if ¢F C E then the op-
erator M, of multiplication by ¢ is a bounded linear transformation on E. Fi-
nally, if fe€ E is a cyclic vector for the operator M, then | f(z)|> 0 for all z e D.
See [1, pp. 271-273] for these results. Let o(7") denote the spectrum of the oper-
ator 7.

LEMMA. Let ¢ be analytic on D~. Then o(M,)=¢(D7).

Proof. Let w¢ ¢(D™). The operator M,—w is invertible, since (¢ —w)~!is
analytic on D™. Thus o(M,) Ce(D7).

For the reverse inclusion, let « € D and let N, denote the set of all those func-
tions in E that vanish at «. Then N, # E (by (1), N,, is the kernel of a linear func-
tional). The operator M, — ¢(«) is not invertible, since its range lies in N,. Thus
¢(D) Co(M,). This completes the proof, since the spectrum is a closed set. [J

Let N denote the nonvanishing functions in E, together with the zero function:
N={0JU{feE:|f(z)|>0, zeD].

As mentioned above, N contains the cyclic vectors for M,. Let X denote the set
of those fe N for which |f|<1in D.
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THEOREM 2. (a) Both N and X are closed subsets of E.
(b) The set of cyclic vectors for M, is a residual subset of N.
(c) The cyclic vectors in X form a residual subset of X.

Proaof. (a) To see that N is closed, we recall that norm convergence implies uni-
form convergence on compact sets. Now apply Hurwitz’ theorem: if a sequence
of analytic functions converges uniformly on compact sets and if the limit func-
tion vanishes at a point w, then either the limit is identically zero, or all but fi-
nitely many of the approximating functions vanish in each neighborhood of w.

That X is closed follows from the fact, noted above, that norm convergence
implies pointwise convergence.

(b) We begin as in the proof of Theorem 1. Let {U,} be a countable basis for
the open sets in E (E is separable since ® is dense). Let V, be the set of fin E for
which there exists p € @ with pf e U,. Then V,, is open, and (N V,, coincides with
the set of cyclic vectors. We must show that ¥V, is dense in N. It will be sufficient
to show that the set of cyclic vectors is dense in N.

Let fe N be given, f#0. Then f, is close to f for r near 1, and f, E C E. Also,
0« (D7) and so, by the lemma, multiplication by f, is an invertible operator
on E. Since @ is a dense subset of E it follows that f,® is dense in E, and thus f,
is a cyclic vector. This completes the proof of (b).

(c) The proof here is similar to the proof of (b) and we use the same notations.
Let W,=XNV,. Then W, is an open subset of X, and M W,, is the set of cyclic
vectors contained in X. We now show that this set is dense. If fe X, then the
proof in (b) shows that f, is cyclic. Since f, € X, the proof is complete. L]

Finally, we return to Theorem 1 to raise the following question. If u is a posi-
tive finite Borel measure with compact support in the complex plane, then does
the operator of multiplication by z on L”(u) necessarily have cyclic vectors that
are continuous on the support of u? This is true for the bilateral shift operator
mentioned earlier.
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