ON THE AUTOMORPHISM GROUP OF
HYPERELLIPTIC KLEIN SURFACES

E. Bujalance, J. A. Bujalance, and E. Martinez

1. In [6] hyperelliptic Klein surfaces (HKS) were characterized by means of
non-Euclidean crystallographic groups (NEC groups). An HKS is a Klein sur-
face with non-empty boundary X that admits an automorphism ¢ of order two
such that the quotient X/{¢) has algebraic genus zero. Then, the automorphism
group of X has order 2.

Given an HKS X with algebraic genus p =2 and k£ boundary components, and
given |Aut X|=2N (N odd), we obtain in this paper the possible values for N.
Moreover, for each one of these values we prove that there exists an HKS X, with
the above conditions, such that |[Aut X|=2N.

In the particular cases p=2 or p=3, the list of the automorphism groups is
given in [5] and [7].

2. A Klein surface (see [1]) may be expressed as D/I" where D is the hyper-
bolic plane and T" is a certain NEC group [12]. NEC groups were introduced by
Wilkie [15]. Macbeath {10] associated to each NEC group I' a signature that has
the form

(g; g [mls seey mr]s {(nlls---anlsl)"'(nkl""anksk)})a

and determined the algebraic structure of I'. In this signature the numbers are

integers and g =0, m; =2, n;; > 2. The number g is the topological genus of the

group (and that of D/T"). The sign determines the orientability of D/T". The

numbers m; are the proper periods and the brackets (n;y, ..., n;;,) are the period-

cycles. The number k of period-cycles is equal to the number of boundary com-

ponents of D/T". Numbers n;; are the periods of the period-cycle (n;y, ..., Nis;).
The canonical presentation of I' is as follows.

Generators

(1) x; i=1,...,r

(i) e; i=1,...,k

(lii) cij i=1,...,k; j=0,...,S,—

(iv) a;, b; i=1,...,g (if sign‘+’)
d i=1,...,g (ifsign‘=?)

Relations
() xfti=1 i=1,...,r
.. . i= k
(i) cfj_1=cij= (¢ j-16:,)"i=1 1.
J— ’ "si
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(lli) e,-_lc,-oe,-c,-si=1 i=1,...,k
(iv) X+ x,ey-epaybya; byt a ba; b =1 (if sign ‘+”)
Xy X ey edie d2=1 (if sign ‘=’).

Every NEC group I'" has associated a fundamental region whose area is called
the area of the group (see [14]) and it is denoted by |I'|. If I'* is a subgroup of T"
with finite index n then |I'*| = n|I"|. Given an NEC group T, the subgroup of
index 2 of the orientation-preserving elements is called the canonical Fuchsian
subgroup of T and is denoted by I'*.

Let X be a Klein surface with algebraic genus p. Then X =D/T', where I"isan
NEC group with the following signature [12]:

2.1) (g; +;[—1, {(—) -5 (—)),

where p=ag+k—1, a=2 (resp. «=1) if D/I' is orientable (resp. non-orientable).

May [11] proved that if H is a group of automorphisms of X =D/T" with al-
gebraic genus p=2 then H may be expressed as I'*/T", I'* being another NEC
group. The full group of automorphisms of X is Ng(I")/T', where Ng(T") is the
normalizer of I" in the group G of isometries of D.

3. From now on, we suppose that p=2. In [6] the following characterization
of HKS was obtained.

THEOREM 3.1. Let T" be an NEC group with signature as in (2.1). Then D/T is
a hyperelliptic surface if and only if there exists a unique NEC group T'; with
|T':T'| =2 and with signature
(i) 0;+;1—1,{2,%,2)}) (if g=0);
(i) (0; +;[2,2%%,2], {(—))) (if e#0 and T has sign ‘+°);
(iii) (0; +;1[2, .5.,21, {(2, %.,2))) (if T has sign ‘=’).

Let I', /T =(I;, ¢). It was proved in [6] that ¢, the automorphism of hyper-
ellipticity, is a central element of Aut X.

COROLLARY 3.2. Let X =D/T" be an HKS with boundary of algebraic genus
p =2 such that |Aut X|=2N (N odd); then Aut X = Z,y.

Proof. As X = D/T is an HKS, by Theorem 3.1 there exists a I'; such that I' < T,
and the quotient space D/T'; is the disc or the sphere. If Aut X =TI"*/T" then I'; <T"*,
and so I'*/T' is cyclic as it has odd order. Put I'; /T'=C (= Z,) and I'*/T";= H.
Then Aut X/C=H = Z,; thus Aut X=CUCtUCt*U---UCtN~1 If ¢ gener-
ates C then ¢f has order 2N (as N is odd), and so Aut X =Z,,,. O]

Let G = Aut X the group of automorphisms of X = D/T" then there exists an
NEC group I'* such that G=T"*/T". Thus we must study the possible groups I'"*
such that there is an epimorphism 6; from I" onto G/{¢) with kernel I'; and ' <
I'y<aI"*. According to the possible signatures for I';, the three following cases
can occur:



THE AUTOMORPHISM GROUP OF HYPERELLIPTIC KLEIN SURFACES 363

(a) D/T'is a compact planar Klein surface,

(b) D/T is orientable with topological genus g #0 with one or two compo-
nents in its boundary, ~

(c) D/T is non-orientable.

THEOREM 3.3. Let X =D/T" be an HKS of algebraic genus p =2, with k
boundary components such that |[Aut X|=2N (N odd). Then:

(@) If X is planar then N divides p+1 and N # p+1. Furthermore, for each
p =2 and each N satisfying these conditions there exists a planar HKS X of alge-
braic genus p with |Aut X|=2N.

(b) If X is orientable and k=1 or 2, then N divides p+1 or N divides p (N #
p+1, N#p). Moreover, for every p=2 and each N satisfying the preceding
conditions there exists an orientable HKS X with k=1 or 2 and algebraic genus p
with |Aut X|=2N.

(c) If X is non-orientable then N divides g or g—1 and N divides k (where g =
p—k+1is the topological genus of X). Besides, for every p =2 and each Nsatis-
fying these conditions there exists a non-orientable HKS X of algebraic genus p
with |Aut X|=2N.

Proof. (a) As X=D/T is a compact planar Klein surface of algebraic genus p,
by (2.1) the signature of I' is

0; +; [—1, {(—) " (—).

Since X is hyperelliptic, by Theorem 3.1(i) there exists an NEC group I'; with
signature

(3.1 (05 +; [—1, {(2,212,2)}),

with I' <"y <I'* and |T'}:T'| =2. By Corollary 3.2, I'*/T"; = Z;; then the signa-
ture of I'* is, by [3],

(g*; +; [mly seey mr]’ [(nla ""ns)})-

Let e, ¢y, ..., C; be the generators associated to the period-cycle (see §2). The
minimal number ¢ such that e’ € I'; is = N by [3]. Therefore, the period-cycle of
I'; must be (ny,...,n,, Y., ny,...,n;). From (3.1) we may see that n;=2 for i =
1,...,s=2(p+1)/N. Since |T';|/|T*| = N, we have

r 1 p+1 p+1
N(2g*-1+ 3 (1- — = ,
(g igl( mi)+ 2N> 2 *1

(- )

We may deduce g*=0, r=1, and m; = N. Hence, the signature of I'* is

and thus
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and so N must divide p+1. If N were equal to p+1 the signature of I'* would be
(0; +;[N], {(2,2)}), and then by [4, (2.4)] X would have a dihedral automor-
phism group of order 4N. Hence N# p+1.

Now let N be an odd number, N# p+1 and N dividing p+1. Let I'* be an
NEC group with signature

3.2) o*: (0; +; [N], {(2,2210/7 2))).
Let 0 be the epimorphism from I'* onto Z,, defined by:
0(x)=2,
0(e)=2N-2,
6(cy) =0(c;)=N for i even,
6(c;)=0 for i odd,

where x, e, ¢; are the generators of the group I'. From [2], [8], and [9] we may
deduce that the signature of ker @ is
2(p+1)

O+ [— 1 (=)= (—).

Let I';=60"1((N)). As xNeT, eNeTl';, and c; €T for i=1,...,2(p+1)/N,
the signature of T’ is, by [3],

with [T';: ker 8] = 2. By Theorem 3.1, X = D/ker 0 is a hyperelliptic compact pla-
nar Klein surface with algebraic genus p.

Now, we need to prove that there exists a maximal NEC group I'* with sig-
nature ¢* since the group AutX is Ng(ker 6)/ker0, and if I'* is maximal then
Ng(ker ) =I'*; thus Aut X =T"*/ker 0 (=Z,5). From (3.2) we obtain

with 2(p+1)/N = 3. By [13], o** has associated a maximal Fuchsian group, and
therefore o* does also.
(b) By hypothesis upon X = D/T" and (2.1), the signature of T is

(g +;[—1, ((—)D,
where k= 1or 2. By Theorem 3.1(ii) there exists an NEC group I'; with signature
(3.3) (0; +5[2,%15,2], ((—)H),
with I'<aI';<aT* and [T} : I'| = 2. Since I'*/T'; = Z,, by [3] the signature of I'* is
(&% +;[my, ..., m ], ((—))).

Let x; be the elliptic generators of I'* and let s; be the minimal number such
that xfie I';,. We have seen in (3.3) that all the numbers are 2 by [3], so

(3.9 s;i=m;/2 or s;=m;.
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We may suppose that for i =1, ..., & the s; are of the first type and that for i =
h+1,...,r the s; are of the second. From [2], the number of proper periods of
Fl is

(3.5) 2g+k= § N

i=195;

The relation between the areas of I'; and I'* gives us

r 1 2g+k
N(2g*—1 ——))= 1
(g +i§l< mz)) 2 ’

r 1 2g+k
N—1 =2g*N+N( 3 (1- —>>— .
i=1 m; 2

thus

From (3.4) and (3.5),

,
N—-1=2g*N+N Y, < ——l->,
i=1 S

hence g*=0and s; =1 for each i/ with the exception that one of them is N. There-
fore, the signature of I'* must be

or

and thus N divides p+1in the first case and N divides p in the second. If N were
p+1 (resp. p), the signature of I'* would be one of the following signatures:

(0; +;[2, N, {(—)}) or (0;+;[2,2N], ((—)}),

and by [4] the group Z,x X Z, would be a group of automorphisms of the surface
X, contradicting the hypothesis that the order is 2N.

Conversely, let N be an odd number that divides p+1and N# p+1. Let I'*
be an NEC group with signature

and let 8 be the epimorphism from I'* onto Z,, defined by:
0(x;)=N, i=1,...,(p+1)/N;
0(X(p+1y/N+1) =1, (& isan element of order N);
0(e) = — (X1, .ss X(pr1y/N+1)5
0(c)=0.

From [2], [8], and [9], the signature of ker 8 is (g; +; [—1, {(—)*}).
Let = 0"'(NY). As x; €Ty (i=1,...,(p+1)/N), x{11n+1€Ty, elely,
and c; e I'}, by [3] the signature of I'; is
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(05 +;[2,%%%,2], {((—)D)

and |I'y : ker 8] =2. By Theorem 3.1, X = D/ker 6 is an orientable HKS with one
boundary component. The canonical Fuchsian subgroup I'** has the signature

where 2(p+1)/N = 3. By means of a similar argument to one of part (a), we may
conclude that Z, is the automorphism group of X.
If N divides p and N # p, let 8 be the epimorphism from I'* onto Z,, defined
by:
0(x;)=N, i=1,...,p/N=Q2g+k—1)/N;

0(x,/n+1)=#, (@ anelement of order 2N);

0(3) = _O(XI, ceny xp/N+l);
6(c)=0.

Then X = D/ker 6 is an orientable HKS with two boundary components whose
automorphism group is Z,y. ,

(c) By (2.1), the signature of I is (g; —; [—1, {(—)*}).

From Theorem 3.1(iii), there exists an NEC group I'} with I' <«I"; <I"* and
IT'; : T'| =2 whose signature is

(05 +;1[2,.5,2], (2,25, 2)]).
Since I'*/T", = Z,, the signature of I'* is, by [3],
(g*; i; [mls ooy mr]’ [(nly'--’ns)])9

where m;=2s for i=1,...,h and m;=s; for i=1,...,r. The relation between
areas of I'y and I'* yields g=0, s;=1fori=1,...,r—1and s, = N. Therefore, the
signature of I'* is one of the following signatures:

(3.6) (0; +; [2,%7,2, N1, ((2,%7,2)})
or
3.7) (0; +3 [2,%=0/8,2,2N1, (2, %, 2)}).

In the first case N must divide g and k& and hence p+ 1. In the second case N must
divide g—1 and k£ and hence p.

Now let N be an odd number dividing k. Let us also suppose N divides g or
g—1. Let I'* be an NEC group with signature (3.6) or (3.7), respectively. In the
first case, let 0, be the epimorphism from I'* onto Z,, defined by:

6,(x;)=N, i=1,...,g/N;
01(xg/n+1)=1u, (& anelement of order N);

01(6) = —Ol(xi, seey xg/N+l);
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0,(co) =0,(c;)=N for i even,
0,(c;)=0 for i odd.
In the second case let 6, be the epimorphism from I'* onto Z,:

02(xi) = Nx

02(X(g—1yn+1D) =1,
0r(e) = —05(x1, -5 X(g—1)/N+1)>

and 0,(c;) as 0,(c;).

In a manner similar to parts (a) and (b), we may deduce that X =D/ker 6;,
Jj=1or 2, is a non-orientable HKS with boundary whose automorphism group is
Z,N, and so we finish the proof of the Theorem. O

Let X be an HKS with boundary of algebraic genus p, with G its group of
automorphisms. Let G* be a maximal subgroup of G with order N (N odd). In
these conditions we have the following corollary,

COROLLARY 3.4.
(i) Gt=2Z,.
(i) N divides p+1 if X is planar.
(iii) Ndivides p+1or N divides p if X is orientable with one or two boundary
components, respectively.
(iv) Ndivides g and k or N divides g—1 and k if X is non-orientable, where g
is the topological genus and k the number of boundary components of X.

REMARK. The results on bordered HKS may be expressed in terms of real
hyperelliptic algebraic curves (see [1] and [6]), so that we may translate the re-
sults of Section 3 obtaining conditions for the hyperelliptic real curves with auto-
morphism group of order 2N for N odd.

The authors wish to thank the referee for his helpful comments and suggestions.
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