ON THE AUTOMORPHISM GROUP OF HYPERELLIPTIC KLEIN SURFACES

E. Bujalance, J. A. Bujalance, and E. Martínez

1. In [6] hyperelliptic Klein surfaces (HKS) were characterized by means of non-Euclidean crystallographic groups (NEC groups). An HKS is a Klein surface with non-empty boundary X that admits an automorphism ϕ of order two such that the quotient $X/\langle \phi \rangle$ has algebraic genus zero. Then, the automorphism group of X has order 2N.

Given an HKS X with algebraic genus $p \ge 2$ and k boundary components, and given $|\operatorname{Aut} X| = 2N$ (N odd), we obtain in this paper the possible values for N. Moreover, for each one of these values we prove that there exists an HKS X, with the above conditions, such that $|\operatorname{Aut} X| = 2N$.

In the particular cases p=2 or p=3, the list of the automorphism groups is given in [5] and [7].

2. A Klein surface (see [1]) may be expressed as D/Γ where D is the hyperbolic plane and Γ is a certain NEC group [12]. NEC groups were introduced by Wilkie [15]. Macbeath [10] associated to each NEC group Γ a signature that has the form

$$(g; \pm; [m_1, ..., m_r], \{(n_{11}, ..., n_{1s_1}) \cdots (n_{k1}, ..., n_{ks_k})\}),$$

and determined the algebraic structure of Γ . In this signature the numbers are integers and $g \ge 0$, $m_i \ge 2$, $n_{ij} \ge 2$. The number g is the topological genus of the group (and that of D/Γ). The sign determines the orientability of D/Γ . The numbers m_i are the *proper periods* and the brackets $(n_{i1}, \ldots, n_{is_i})$ are the *period-cycles*. The number k of period-cycles is equal to the number of boundary components of D/Γ . Numbers n_{ij} are the *periods of the period-cycle* $(n_{i1}, \ldots, n_{is_i})$.

The *canonical* presentation of Γ is as follows.

Generators

(i)
$$x_i$$
 $i = 1, ..., r$

(ii)
$$e_i$$
 $i = 1, ..., k$

(iii)
$$c_{ij}$$
 $i=1,...,k; j=0,...,s_i$

(iv)
$$a_i, b_i \ i = 1, ..., g$$
 (if sign '+')
 $d_i \ i = 1, ..., g$ (if sign '-')

Relations

(i)
$$x_i^{m_i} = 1$$
 $i = 1, ..., r$
(ii) $c_{i,j-1}^2 = c_{i,j}^2 = (c_{i,j-1}c_{i,j})^{n_{ij}} = 1$ $i = 1, ..., k$
 $j = 1, ..., s_i$

Received July 7, 1987. Revision received July 26, 1988.

The authors are partially supported by CAICYT.

Michigan Math. J. 35 (1988).

(iii)
$$e_i^{-1}c_{io}e_ic_{is_i} = 1$$
 $i = 1, ..., k$
(iv) $x_1 \cdots x_r e_1 \cdots e_k a_1 b_1 a_1^{-1} b_1^{-1} \cdots a_g b_g a_g^{-1} b_g^{-1} = 1$ (if sign '+') $x_1 \cdots x_r e_1 \cdots e_k d_1^2 \cdots d_g^2 = 1$ (if sign '-').

Every NEC group Γ has associated a fundamental region whose area is called the area of the group (see [14]) and it is denoted by $|\Gamma|$. If Γ^* is a subgroup of Γ with finite index n then $|\Gamma^*| = n|\Gamma|$. Given an NEC group Γ , the subgroup of index 2 of the orientation-preserving elements is called the canonical Fuchsian subgroup of Γ and is denoted by Γ^+ .

Let X be a Klein surface with algebraic genus p. Then $X = D/\Gamma$, where Γ is an NEC group with the following signature [12]:

(2.1)
$$(g; \pm; [--], \{(--)^{\cdot k} \cdot (--)\}),$$

where $p = \alpha g + k - 1$, $\alpha = 2$ (resp. $\alpha = 1$) if D/Γ is orientable (resp. non-orientable). May [11] proved that if H is a group of automorphisms of $X = D/\Gamma$ with algebraic genus $p \ge 2$ then H may be expressed as Γ^*/Γ , Γ^* being another NEC group. The full group of automorphisms of X is $N_g(\Gamma)/\Gamma$, where $N_g(\Gamma)$ is the normalizer of Γ in the group G of isometries of D.

3. From now on, we suppose that $p \ge 2$. In [6] the following characterization of HKS was obtained.

THEOREM 3.1. Let Γ be an NEC group with signature as in (2.1). Then D/Γ is a hyperelliptic surface if and only if there exists a unique NEC group Γ_1 with $|\Gamma_1:\Gamma|=2$ and with signature

- (i) $(0; +; [--], \{(2, \frac{2k}{...}, 2)\})$ (if g = 0);
- (ii) $(0; +; [2, \stackrel{2g+k}{\dots}, 2], \{(--)\})$ (if $g \neq 0$ and Γ has sign '+');
- (iii) $(0; +; [2, \frac{g}{...}, 2], \{(2, \frac{2k}{...}, 2)\})$ (if Γ has sign '-').

Let $\Gamma_1/\Gamma = \langle I_d, \phi \rangle$. It was proved in [6] that ϕ , the automorphism of hyperellipticity, is a central element of Aut X.

COROLLARY 3.2. Let $X = D/\Gamma$ be an HKS with boundary of algebraic genus $p \ge 2$ such that $|\operatorname{Aut} X| = 2N$ (N odd); then $\operatorname{Aut} X \simeq Z_{2N}$.

Proof. As $X = D/\Gamma$ is an HKS, by Theorem 3.1 there exists a Γ_1 such that $\Gamma \triangleleft \Gamma_1$ and the quotient space D/Γ_1 is the disc or the sphere. If Aut $X = \Gamma^*/\Gamma$ then $\Gamma_1 \triangleleft \Gamma^*$, and so Γ^*/Γ_1 is cyclic as it has odd order. Put $\Gamma_1/\Gamma = C$ ($\simeq Z_2$) and $\Gamma^*/\Gamma_1 = H$. Then Aut $X/C = H \simeq Z_N$; thus Aut $X = C \cup Ct \cup Ct^2 \cup \cdots \cup Ct^{N-1}$. If ϕ generates C then ϕt has order 2N (as N is odd), and so Aut $X \simeq Z_{2N}$.

Let $G = \operatorname{Aut} X$ the group of automorphisms of $X = D/\Gamma$ then there exists an NEC group Γ^* such that $G \simeq \Gamma^*/\Gamma$. Thus we must study the possible groups Γ^* such that there is an epimorphism θ_1 from Γ onto $G/\langle \phi \rangle$ with kernel Γ_1 and $\Gamma \lhd \Gamma_1 \lhd \Gamma^*$. According to the possible signatures for Γ_1 , the three following cases can occur:

- (a) D/Γ is a compact planar Klein surface,
- (b) D/Γ is orientable with topological genus $g \neq 0$ with one or two components in its boundary,
- (c) D/Γ is non-orientable.

THEOREM 3.3. Let $X = D/\Gamma$ be an HKS of algebraic genus $p \ge 2$, with k boundary components such that $|\operatorname{Aut} X| = 2N$ (N odd). Then:

- (a) If X is planar then N divides p+1 and $N \neq p+1$. Furthermore, for each $p \geq 2$ and each N satisfying these conditions there exists a planar HKS X of algebraic genus p with $|\operatorname{Aut} X| = 2N$.
- (b) If X is orientable and k = 1 or 2, then N divides p + 1 or N divides p ($N \neq p + 1$, $N \neq p$). Moreover, for every $p \geq 2$ and each N satisfying the preceding conditions there exists an orientable HKS X with k = 1 or 2 and algebraic genus p with |Aut X| = 2N.
- (c) If X is non-orientable then N divides g or g-1 and N divides k (where g=p-k+1 is the topological genus of X). Besides, for every $p \ge 2$ and each N satisfying these conditions there exists a non-orientable HKS X of algebraic genus p with |Aut X| = 2N.

Proof. (a) As $X = D/\Gamma$ is a compact planar Klein surface of algebraic genus p, by (2.1) the signature of Γ is

$$(0; +; [--], \{(--)^{p+1}, (--)\}).$$

Since X is hyperelliptic, by Theorem 3.1(i) there exists an NEC group Γ_1 with signature

$$(0; +; [--], \{(2, \frac{2(p+1)}{\dots}, 2)\}),$$

with $\Gamma \triangleleft \Gamma_1 \triangleleft \Gamma^*$ and $|\Gamma_1:\Gamma|=2$. By Corollary 3.2, $\Gamma^*/\Gamma_1 \simeq Z_N$; then the signature of Γ^* is, by [3],

$$(g^*; +; [m_1, ..., m_r], \{(n_1, ..., n_s)\}).$$

Let $e, c_0, ..., c_s$ be the generators associated to the period-cycle (see §2). The minimal number t such that $e^t \in \Gamma_1$ is t = N by [3]. Therefore, the period-cycle of Γ_1 must be $(n_1, ..., n_s, \stackrel{N}{\dots}, n_1, ..., n_s)$. From (3.1) we may see that $n_i = 2$ for i = 1, ..., s = 2(p+1)/N. Since $|\Gamma_1|/|\Gamma^*| = N$, we have

$$N\left(2g^*-1+\sum_{i=1}^r\left(1-\frac{1}{m_i}\right)+\frac{p+1}{2N}\right)=\frac{p+1}{2}+1,$$

and thus

$$2g*N+N\left(\sum_{i=1}^{r}\left(1-\frac{1}{m_i}\right)\right)=N-1.$$

We may deduce $g^* = 0$, r = 1, and $m_1 = N$. Hence, the signature of Γ^* is

$$(0; +; [N], \{(2, \dots, 2)\}),$$

and so N must divide p+1. If N were equal to p+1 the signature of Γ^* would be $(0; +; [N], \{(2,2)\})$, and then by [4, (2.4)] X would have a dihedral automorphism group of order 4N. Hence $N \neq p+1$.

Now let N be an odd number, $N \neq p+1$ and N dividing p+1. Let Γ^* be an NEC group with signature

Let θ be the epimorphism from Γ^* onto Z_{2N} defined by:

$$\theta(x) = \overline{2},$$

$$\theta(e) = \overline{2N-2},$$

$$\theta(c_0) = \theta(c_i) = \overline{N} \text{ for } i \text{ even,}$$

$$\theta(c_i) = \overline{0} \text{ for } i \text{ odd,}$$

where x, e, c_i are the generators of the group Γ . From [2], [8], and [9] we may deduce that the signature of ker θ is

$$(0; +; [--], \{(--)^{\frac{2(p+1)}{\cdots}}(--)\}).$$

Let $\Gamma_1 = \theta^{-1}(\langle N \rangle)$. As $x^N \in \Gamma_1$, $e^N \in \Gamma_1$, and $c_i \in \Gamma_1$ for i = 1, ..., 2(p+1)/N, the signature of Γ_1 is, by [3],

with $|\Gamma_1$: ker $\theta| = 2$. By Theorem 3.1, $X = D/\ker \theta$ is a hyperelliptic compact planar Klein surface with algebraic genus p.

Now, we need to prove that there exists a maximal NEC group Γ^* with signature σ^* since the group Aut X is $N_{\rm G}(\ker\theta)/\ker\theta$, and if Γ^* is maximal then $N_{\rm G}(\ker\theta) \simeq \Gamma^*$; thus Aut $X \simeq \Gamma^*/\ker\theta$ ($\simeq Z_{2N}$). From (3.2) we obtain

with $2(p+1)/N \ge 3$. By [13], σ^{*+} has associated a maximal Fuchsian group, and therefore σ^* does also.

(b) By hypothesis upon $X = D/\Gamma$ and (2.1), the signature of Γ is

$$(g; +; [--], \{(--)^k\}),$$

where k = 1 or 2. By Theorem 3.1(ii) there exists an NEC group Γ_1 with signature

$$(0; +; [2,\stackrel{2g+k}{\dots},2], \{(--)\}),$$

with $\Gamma \triangleleft \Gamma_1 \triangleleft \Gamma^*$ and $[\Gamma_1 : \Gamma] = 2$. Since $\Gamma^*/\Gamma_1 \simeq Z_N$, by [3] the signature of Γ^* is

$$(g^*; +; [m_1, ..., m_r], \{(---)\}).$$

Let x_i be the elliptic generators of Γ^* and let s_i be the minimal number such that $x_i^{s_i} \in \Gamma_1$. We have seen in (3.3) that all the numbers are 2 by [3], so

(3.4)
$$s_i = m_i/2 \text{ or } s_i = m_i.$$

We may suppose that for i = 1, ..., h the s_i are of the first type and that for i = h+1, ..., r the s_i are of the second. From [2], the number of proper periods of Γ_1 is

(3.5)
$$2g + k = \sum_{i=1}^{h} \frac{N}{s_i}.$$

The relation between the areas of Γ_1 and Γ^* gives us

$$N\left(2g^*-1+\sum_{i=1}^r\left(1-\frac{1}{m_i}\right)\right)=\frac{2g+k}{2}-1,$$

thus

$$N-1=2g^*N+N\left(\sum_{i=1}^r\left(1-\frac{1}{m_i}\right)\right)-\frac{2g+k}{2}.$$

From (3.4) and (3.5),

$$N-1=2g^*N+N\sum_{i=1}^r\left(1-\frac{1}{s_i}\right),$$

hence $g^* = 0$ and $s_i = 1$ for each *i* with the exception that one of them is *N*. Therefore, the signature of Γ^* must be

$$(0; +; [2, (2g+k)/N, 2, N], \{(---)\})$$

or

$$(0; +; [2, \stackrel{(2g+k-1)/N}{\dots}, 2, 2N], \{(---)\}),$$

and thus N divides p+1 in the first case and N divides p in the second. If N were p+1 (resp. p), the signature of Γ^* would be one of the following signatures:

$$(0; +; [2, N], \{(--)\})$$
 or $(0; +; [2, 2N], \{(--)\}),$

and by [4] the group $Z_{2N} \ltimes Z_2$ would be a group of automorphisms of the surface X, contradicting the hypothesis that the order is 2N.

Conversely, let N be an odd number that divides p+1 and $N \neq p+1$. Let Γ^* be an NEC group with signature

$$(0; +; [2,\stackrel{(p+1)/N}{\dots},2,N], \{(---)\})$$

and let θ be the epimorphism from Γ^* onto Z_{2N} defined by:

$$\theta(x_i) = \bar{N}, \quad i = 1, ..., (p+1)/N;$$

 $\theta(x_{(p+1)/N+1}) = \bar{u}, \quad (\bar{u} \text{ is an element of order } N);$
 $\theta(e) = -(x_1, ..., x_{(p+1)/N+1});$
 $\theta(c) = \bar{0}.$

From [2], [8], and [9], the signature of ker θ is $(g; +; [-], \{(-)^k\})$. Let $\Gamma_1 = \theta^{-1}(\langle N \rangle)$. As $x_i \in \Gamma_1$ (i = 1, ..., (p+1)/N), $x_{(p+1)/N+1}^N \in \Gamma_1$, $e^N \in \Gamma_1$, and $c_i \in \Gamma_1$, by [3] the signature of Γ_1 is

$$(0; +; [2,\stackrel{2g+k}{\dots},2], \{(--)\})$$

and $|\Gamma_1: \ker \theta| = 2$. By Theorem 3.1, $X = D/\ker \theta$ is an orientable HKS with one boundary component. The canonical Fuchsian subgroup Γ^{*+} has the signature

$$(p; +; [2, \stackrel{2(p+1)/N}{\dots}, 2, N, N], \{---\}),$$

where $2(p+1)/N \ge 3$. By means of a similar argument to one of part (a), we may conclude that Z_{2N} is the automorphism group of X.

If N divides p and $N \neq p$, let θ be the epimorphism from Γ^* onto Z_{2N} defined by:

$$\theta(x_i) = \overline{N}, \quad i = 1, ..., p/N = (2g + k - 1)/N;$$

$$\theta(x_{p/N+1}) = \overline{u}, \quad (\overline{u} \text{ an element of order } 2N);$$

$$\theta(e) = -\theta(x_1, ..., x_{p/N+1});$$

$$\theta(c) = \overline{0}.$$

Then $X = D/\ker \theta$ is an orientable HKS with two boundary components whose automorphism group is Z_{2N} .

(c) By (2.1), the signature of Γ is $(g; -; [---], \{(---)^k\})$.

From Theorem 3.1(iii), there exists an NEC group Γ_1 with $\Gamma \triangleleft \Gamma_1 \triangleleft \Gamma^*$ and $|\Gamma_1 : \Gamma| = 2$ whose signature is

$$(0; +; [2, \frac{g}{\ldots}, 2], \{(2, \frac{2k}{\ldots}, 2)\}).$$

Since $\Gamma^*/\Gamma_1 \simeq Z_N$, the signature of Γ^* is, by [3],

$$(g^*; \pm; [m_1, ..., m_r], \{(n_1, ..., n_s)\}),$$

where $m_i = 2s$ for i = 1, ..., h and $m_i = s_i$ for i = 1, ..., r. The relation between areas of Γ_1 and Γ^* yields g = 0, $s_i = 1$ for i = 1, ..., r - 1 and $s_r = N$. Therefore, the signature of Γ^* is one of the following signatures:

$$(0; +; [2, {}^{g/N}, 2, N], \{(2, {}^{2k/N}, 2)\})$$

or

$$(0; +; [2, \dots, 2, 2N], \{(2, \dots, 2)\}).$$

In the first case N must divide g and k and hence p+1. In the second case N must divide g-1 and k and hence p.

Now let N be an odd number dividing k. Let us also suppose N divides g or g-1. Let Γ^* be an NEC group with signature (3.6) or (3.7), respectively. In the first case, let θ_1 be the epimorphism from Γ^* onto \mathbb{Z}_{2N} defined by:

$$\theta_1(x_i) = \overline{N}, \quad i = 1, ..., g/N;$$

$$\theta_1(x_{g/N+1}) = \overline{u}, \quad (\overline{u} \text{ an element of order } N);$$

$$\theta_1(e) = -\theta_1(x_1, ..., x_{g/N+1});$$

$$\theta_1(c_0) = \theta_1(c_i) = \overline{N}$$
 for i even,
 $\theta_1(c_i) = \overline{0}$ for i odd.

In the second case let θ_2 be the epimorphism from Γ^* onto Z_{2N} :

$$\theta_{2}(x_{i}) = \bar{N},$$

$$\theta_{2}(x_{(g-1)/N+1}) = \bar{u},$$

$$\theta_{2}(e) = -\theta_{2}(x_{1}, \dots, x_{(g-1)/N+1}),$$

and $\theta_2(c_i)$ as $\theta_1(c_i)$.

In a manner similar to parts (a) and (b), we may deduce that $X = D/\ker \theta_j$, j = 1 or 2, is a non-orientable HKS with boundary whose automorphism group is Z_{2N} , and so we finish the proof of the Theorem.

Let X be an HKS with boundary of algebraic genus p, with G its group of automorphisms. Let G^+ be a maximal subgroup of G with order N (N odd). In these conditions we have the following corollary,

COROLLARY 3.4.

- (i) $G^+ \simeq Z_N$.
- (ii) N divides p+1 if X is planar.
- (iii) N divides p+1 or N divides p if X is orientable with one or two boundary components, respectively.
- (iv) N divides g and k or N divides g-1 and k if X is non-orientable, where g is the topological genus and k the number of boundary components of X.

REMARK. The results on bordered HKS may be expressed in terms of real hyperelliptic algebraic curves (see [1] and [6]), so that we may translate the results of Section 3 obtaining conditions for the hyperelliptic real curves with automorphism group of order 2N for N odd.

The authors wish to thank the referee for his helpful comments and suggestions.

REFERENCES

- 1. N. L. Alling and N. Greenleaf, Foundations of the theory of Klein surfaces, Lecture Notes in Math., 219, Springer, Berlin, 1971.
- 2. E. Bujalance, *Proper periods of normal NEC subgroups with even index*, Rev. Mat. Hisp.-Amer. (4) 41 (1981), 121-127.
- 3. ——, Normal subgroups of NEC groups, Math. Z. 178 (1981), 331–341.
- 4. ——, Automorphism groups of compact planar Klein surfaces, Manuscripta Math. 56 (1986), 105–124.
- 5. E. Bujalance and J. M. Gamboa, Automorphism groups of algebraic curves of \mathbb{R}^n of genus 2, Arch. Math. 42 (1984), 229–237.
- 6. E. Bujalance, J. J. Etayo, and J. M. Gamboa, *Hyperelliptic Klein surfaces*, Quart. J. Math. Oxford Ser. (2) 36 (1985), 141–157.

- 7. ——, Groups of automorphisms of hyperelliptic Klein surfaces of genus three, Michigan Math. J. 33 (1986), 55-74.
- 8. J. A. Bujalance, *Normal subgroups of even index of an NEC group*, Arch. Math. 49 (1987), 470-478.
- 9. A. H. M. Hoare and D. Singerman, *The orientability of subgroups of plane groups*, London Math. Soc. Lecture Note Ser. 71 (1982), 221–227.
- 10. A. M. Macbeath, *The classification of non-Euclidean crystallographic groups*, Canad. J. Math. 6 (1967), 1192–1205.
- 11. C. L. May, Large automorphism groups of compact Klein surfaces with boundary, Glasgow Math. J. 18 (1977), 395-405.
- 12. R. Preston, *Projective structures and fundamental domains on compact Klein surfaces*, Thesis, Univ. of Texas, 1975.
- 13. D. Singerman, *Finitely maximal Fuchsian groups*, J. London Math. Soc. (2) 6 (1972), 29–38.
- 14. ——, On the structure of non-Euclidean crystallographic groups, Proc. Cambridge Philos. Soc. 76 (1974), 233–240.
- 15. H. C. Wilkie, On non-Euclidean crystallographic groups, Math. Z. 91 (1966), 87-102.

Dep. de Matemáticas Fundamentales Facultad de Ciencias UNED 28040 Madrid Spain