MAXIMAL SPACELIKE SUBMANIFOLDS
OF A PSEUDORIEMANNIAN SPACE
OF CONSTANT CURVATURE

Toru Ishihara

1. Introduction. Generalizing Lawson’s result [4], Chern-DoCarmo-Kobayashi
proved the following in [3]. Let M be an n-dimensional minimal submanifold of
a unit sphere $”*7. Let S be the square of the length of the second fundamental
form of M. If M is compact, it follows from Simon’s result that if S<n/(2—-1/p)
everywhere on M then either S=0 or S =n/(2 —1/p). The Veronese surface
in S* and My, y—pm in S"*! are the only compact minimal submanifolds of di-
mension n in $"*7 satisfying S=n/(2—1/p), where M,, ,_,, is the manifold
S™(fm/n)x S"~™(\J(n—m)/n ) which is naturally imbedded in S"*!.

On the other hand, in this paper we investigate maximal spacelike subman-
ifolds of a pseudo-Riemannian space of constant curvature. Let Nj*7(c) be
an (n+p)-dimensional pseudo-Riemannian manifold of constant curvature ¢
whose index is p. Let M be an n-dimensional complete Riemannian manifold
isometrically immersed in N} *?(c). Note that the codimension is equal to the
index.

The pseudohyperbolic space of radius r (> 0) is the hyperquadric

+ n+p+1, —u2 2 2 2 _ 2
H},’ p(r):[xeRpH X X)=X1+ X=X = —Xpppp1 = —T 7).

This is a space of constant curvature —1/r2. Let H"(r) be the component of
H{ (r) through (0, ...,0,r). Here, we describe two examples of maximal space-
like immersions. We consider the mapping defined by

1 1 1 1
U=V Up= R, UsS XY, UsS oo (x*—y?),

us=g(x2+y*+2z%),

where (x, y, z) is the natural coordinate system in R} and (uy, uy, U3, Uy, is) is
the natural coordinate system in R3. This defines an isometric maximal immer-
sion of H2(V3) into H;(1). We may call this the Ayperbolic Veronese surface.
Let ny, ..., n,,; be positive integers and n=n;+---+n,,,. Let x; be a point of
H"i(/n;/n). Thenx = (xy, ..., X, ) is a vector in RZ:‘I’“ with {x, x)= —1. This
defines also an isometric immersion of

Hnl,...,np_,.l =Hﬂ1( \Y nl/n )X te Xan+l( \Y; np+l/n )

into H,*P(1). Now, it has been proved by Cheng and Yau [2] that a complete
maximal spacelike hypersurface in the Minkowski (n+1)-space is totally geo-
desic (see also [1]). First, we generalize this result slightly.
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THEOREM 1.1. Let M be an n-dimensional complete Riemannian manifold
isometrically immersed in N} *?(c), ¢ =0. If M is maximal, then the immersion
is totally geodesic and M is a Riemannian space of constant curvature c.

In [6], Nishikawa gives another extension of the Cheng-Yau result. Next, we
consider a manifold immersed in a space of negative constant curvature. Denote
by S the square of the length of the second fundamental form of an immersion.

THEOREM 1.2. Let M be an n-dimensional complete Riemannian manifold
isometrically immersed in a pseudo-Riemannian space Nj*?(—c) of constant
curvature —c (¢ >0). Assume that M is maximal. Then we have 0 < S < npc.

The hyperbolic Veronese surface is a maximal submanifold of H5 (1) with S=
4/3. The submanifolds H,,, .., np4 OF H, 1’,’“’ (1) satisfy S = np. Conversely, we can
show the following.

THEOREM 1.3. The submanifolds H,, ...,n, ., in Hy *?(1) are the only complete
connected maximal spacelike submanifolds of dimension n in H;*?(1) satisfying
S=np.

2. Local formula. Let N be an (n+ p)-dimensional pseudo-Riemannian mani-
fold of constant curvature ¢, whose index is p. Let M be an n-dimensional Rie-
mannian manifold isometrically immersed in N. As the pseudo-Riemannian met-
ric of N induces the Riemannian metric of M, the immersion is called spacelike.
We choose a local field of pseudo-Riemannian orthonormal frames ey, ..., e,,,
in N such that, at each point of M, e, ..., e, spans the tangent space of M and
forms an orthonormal frame there. We make use of the following convention
on the ranges of indices:

1<A,B,C,D<n+p; 1=<i,j,k,l<n; n+l=q,B,y<n+p.
We shall agree that repeated indices are summed over the respective ranges. Let
Wy, ..., Wy p bE its dual frame field so that the pseudo-Riemannian metric of N is
given by dsf =Y 0?—3 0w2=3 e4w3, where ;=1for 1<i<n and e, = —1 for
n+1=<a=<n+p. Then the structure equations of N are given by
de = E eBwAB/\wB, wAB+w3A = 0,
(2.1) dwsp=3 ecwacNwcp—73 2 ecepKapcpwc A wp,
Kuapep=¢(64c08p—04p0BC)-
We restrict these forms to M. Then

2.2) w,=0 for n+l=<=a=n+p,
and the Riemannian metric of M is written as ds# =3 w?. We may put
(2°3) Wia = 2 haij Wy

Then h,,;; are the components of the second fundamental form of M. From (2.1),
we obtain the structure equations of M

{ dw,- =2 w,-j/\wj,

(2.4)
dw,-j = 2 w,-k/\wkj— % ER,-jklwk/\w,,
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and the Gauss formula
{ ijki = €0 01— 8i10j) — 2 (MixBoji— PoirBojic) s
Rogij = 2 (RoriPgkj— hokjhgki) -
We also have the structure equations of the normal bundle of M:
dw,= — Awg,
2.6) { “a= " Zoaphog
dwap= —3% Wy Awyg— 3 2 Rogijwi Awj.

We call H=23 (1/n)(X; h,;;)e, the mean curvature normal. An immersion is
said to be maximal if its mean curvature normal vanishes identically. From the
Gauss formula (2.6) we obtain the following equalities about the Ricci curvature

R;j= 2% Rigj:
2.7 R;j=c(n—1)6;;— 3 hy; % Roix+ Ekhakihakj'

(2.5)

From this, the following is immediate.

PROPOSITION 2.1. Let M be an n-dimensional Riemannian manifold immersed
in N ”“’(c) isometrically. If M is maximal, the Ricci curvature of M satisfies
((n— 1)c6, J,) = (Ry;), and the equality holds everywhere if and only if M is totally
geodesic in N.

3. The Simons-Calabi type equation. Let 4,;; denote the covariant derivative
of haij so that
(3.1) 2 hoijewr=dhyi+ 2 Roipor; + 2 Ropjwri— 2 gijogq.

Then we have h,;;; = hyrj. Next, take the exterior derivative of (3.1) and define
the second covariant derivative of 4,;; by

2 hijrw = dhyp+ X By opt X Baipwpi+ X Bagironi— 2 Ry wge-
Then we obtain the Ricci formula
(3.2) hoijii = Paijik= 2 BaimBRmjki+ 2 PomjRumixi+ 2 Pgij Rogi-

The Laplacian A#h,;; of the second fundamental form 4,;; is defined by Ah,;; =
2 hg;jke- Using the same method as in [3] (see also [2] and [6]), we have

Ahgi;=nchgi;—c8;; 2 hopke— 20 Roumi Pgmjhpre—2 X Pogembgri Rgm;
+ 2 Rokmhgrmhpii+ 2 Romi Pemichsr;+ 2 PamjPaki Pgme-

If we assume that M is maximal in &, and since we have

FAS (h4i))) = 2 (Boiji) >+ 2 By Ay,

(3.3)

we obtain
FA(Z hoii)? =3 (o) *+ne X (M) + 3 Agijhoachgij Pk

3.4)
+ 2 (Moinhgri— hginhoi) (airhgri— hgithog;) -
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We will follow the argument in [3]. The square of the length of the second fun-
damental form A of M in N is given by S=—(h,h)=3; ; ,(h,;;)* For each
o, let H,, be the symmetric matrix (A,;;) and put S,s=2; ; h,;jhg;;. Then, the
(p X p)-matrix (S,g) is symmetric and can be assumed to be diagonal for a suit-
able choice of e, ,...,€,,,. Set §,=S,, and we have S=%,S,. In general,
for a matrix A= (q;;), we put N(A) =trace A-'A. Now, (3.4) can be rewritten as
follows: '

(3.5) IAS

Y (hgpx)*+ncS+ Y N(H Hz;—HgH,)+ Y S
a, i, j, k o, B o

It is clear that

(3.6) 0=<N(H,Hz—HgH),
and the equality holds if and only if H,Hz= HzH,. Put
—1
pa=3%S,=s, 22V, _sss,
2 a<f

Then we have

EO;Sﬁ: <§ Sa)z—z > S.Ss

a<f
=poi+p(p—1)(of—a,).
On the other hand, we know that
PY(p—1)(of—0)= ¥ (S,—Sp)*

a<fl
Hence, we obtain
1 1
(3.7 D S02,= —82+ =3 (Sa-—SB)z.
P a<f

Thus formula (3.5) is reduced to

1 1., 1
—AS= 3 (hyp)?+ncS+—82+— 3 (S,—Sp)?
(3.8) 2 P P

+ 2 N(HQHB—HﬁHa).
o, B

4. Proofs of Theorems 1.1 and 1.2. We need the following theorem of [5] and
[7] to prove our main results.

THEOREM 4.1 (Omori-Yau). Let M be a complete Riemannian manifold with
Ricci curvature bounded from below. Let f be a C*— function which is bounded
Sfrom below on M. Then for all ¢ > 0 there exists a point x in M such that, at x,

lgrad f|<e, Af>—e, and f(x)<inff+e.

LEMMA 4.2. Let M be an n-dimensional complete Riemannian manifold iso-
metrically immersed in NJ*P(c). If M is maximal in Ny*?(c), then S=0 or
S<—cnp.
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Proof. Using Proposition 2.1, we see that M satisfies the assumption of Theo-
rem 4.1. We use the maximum principle argument as in [8]. Put f=1/+/S+a for
any positive constant a. Then f is a bounded C*-function on M. By calculation,
we have g

3
@.1) Af=-—2_

2

Let e be any positive number. Then Theorem 4.1 implies there is a point x on M
such that, at x,

AS+3f3|grad S|2.

6

4.2 T lgrad S[2<e, Af>—¢, f(x)<inff+e.
From (4.1) and (4.2) we get

4
4.3) ‘—fz—AS< e(inf f+¢€)+12e.

On the other hand, formula (3.8) states the following:
1 1
ncS+ —8%< —AS.
D 2
Substituting this into (4.3), we obtain

S 1

(Sta) (—nc— ;S)Z —e(inf f+€)—12e.

When e — 0, f(x) goes to the infimum and S(x) goes to the supremum. Thus, we
conclude from (4.4) that the function S is bounded on M, and that if S0 then
S< —npc. L

(4.4)

Proofs of Theorems 1.1 and 1.2. First, assume that c=0. Then Lemma 4.2
implies that S=0; that is, M is totally geodesic in N}*?(c). Next, if ¢ <0 then

(from Lemma 4.2) we obtain S < —npc. This completes the proof of Theorem
1.2. 1

5. Proof of Theorem 1.3. Let M be an n-dimensional complete maximal space-
like submanifold of H;*#(1) with S=np. Then from (3.8) it is clear

5.1 hyiix=0, S,=8g, HHg=HgH, forany i,j,k,«a,p.
Thus we have
(5.2) S,=n.

The equalities H,Hg= HgH,, imply that all of H, are simultaneously diagonal-
izable, and that the normal connection in the normal bundle of M is flat. Hence,
choosing a suitable base ey, ..., e,, we have h,;; =0 for i # j, and put

(5.3) hai = h(xit"

As M is maximal,

(5.9 > h,;i=0.
i
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LEMMA 5.1. All h,; are constant on M. By changing the order of ey, ..., e, we
can put

hay=hoy =" =hom, hop=Hhom +1="**=hom,s ...,
h(;SJrl:ho,,,,sH:---=hc,m,erl forn+l<a<n+p,
where, if a # b, hl,# h}, for some a. Set
h, =Yy, ...s hlsy1) for n+l<a<n+p,
h, =Ry 105 o> Bnipa) JOr 1=a<s+1.
Then h, #h,, for a# b and
(5.5 Moy hp) =3 hghiy=~1.

Moreover, if we put my=0 we have
(5.6) wij=0 for my_j+1<ism,, my_1+1=<j=<my (a#b).

Proof. We modify slightly the argument in the proof of Lemma 3 in [3]. As
hyijr =0, setting i = j in (3.1) we get

0=dhy;i+ Y heigwii+ X Rokiwri = dhy;,

where we use w,g =0 because the normal connection is flat. Hence 4,; are con-
stant. If A,; # h,;, since (3.1) implies

0= hoirwij+ X Horj0ii = (Aoi — hoj)wij,
we get w;; =0, and hence (5.6). If h,; # h,; for some i, j, a, we also have
0 =d(.0,'j = '—E w,-k/\wkj+ 2 w,-B/\wﬁj—w,-/\wj.

As Y wiy Awg; =0, we obtain
( 2 hB,-th+l>w,-/\wj = 0.
B

Hence we‘obtain 2 hgihg;+1=0if h,; # h,; for some a. This shows (5.5).
Put n,=m,—m,_; and
Hy,=~[n,/nhty, Hyipira=~In/n for n+l<sa<n+p, 1sass+l.
Now, we put
H,=(Hy; -5 Hys11), Ha=t(Hn+las ---aHn+p+1a)-

Since (5.4) is rewritten as X n,h.,=0, we have

5.7 (Hpip+1, Hy) =0 for n+l<a=n+p.
From (5.5), it follows that
(5.8) (H,Hp)=0 for l=sa<b=s+l.

As (5.2) implies 3, n,h’% =n, we obtain
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(5.9 |IH,|?=1 for n+l<a<n+p+l. O

We consider the matrix H= (H,,) as the linear mapping H: R**1 - R?*1, Then
we have the following.

LEMMA 5.2. The matrix H is square and orthogonal.

Proof. First we will show s < p. As nonzero vectors Hy, ..., Hy,; of RP*!sat-
isfy (5.8), they are linearly independent. Hence s+1=< p+1. Put

Taﬁz E HaaH,Ba’ T= EB (Taﬁ)z-

a o,
Taking a suitable base of R?*!, we diagonalize the symmetric matrix (T,p) and
put 7, =T,,=|H,|% Then we have
(5.10) T=Y T2
Put

U= 3 T,= % (Hy)*

o o, a

and
+1
(p+l)oy =3 T,=U, Maf 2 I,T;.
a 2 a<f
Then, as in (3.7), we have
1 1
U? > (T,—Tp)

= +
p+1 p+1 .25
Using (5.9), we obtain

(5.11) T=—_U>
On the other hand, we set

T,=|H,*=Y H,,H,, for 1sa<s+l.

Then as (H,,H,) =0 for a # b, we get
T= 2 HaaHaaHﬁaH,Ga= E (Ta)z'

a!B:a a
AsU=% (H,,)*=3,T,, we have
1 1
5.12 = U? T,—T,)>.
.12 s+1 +s+la§b( = Tb)
From (5.11) and (5.12) we obtain
S—p 2 1 2
= — T,—T,)-.
(p+1)(s+1) s+1 Eb( = T»)
This implies that s = p and |H,| = |H,|. From (5.8) and (5.9), it follows that the
matrix H is orthogonal. 0

Proof of Theorem 1.3. First, we assume that M is connected, simply connected
and complete. For each 1 <a < p+1, define the distribution D, by
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w1=0,...,wml=0, wml+1=0,...,wm2=0, ...,wma=0, “""a+1+1:0’ veey , =0,

Then, D, is globally defined on M. From (5.6), it is clear that D, is integrable
and parallel. Take a fixed point x of M. Let M, be the maximal integrable sub-
manifold of D, through x; then it is n,-dimensional, complete, connected and
totally geodesic in M. Since M is simply connected and complete and each D, is
parallel, we conclude by a standard argument that M is a Riemannian product
M XMyX--- XM, ;. Since M is complete and simply connected, and since each
M, is totally geodesic in M, M, is complete and simply connected. If n,=1 then
M,=R. We may consider R as H'(x/1/n ). From the Gauss formula (2.5) it fol-
lows that the Riemannian curvature of M, is expressed as

Rijr=—(1+ X (B)*) (818, — 811 8j1.)-

From Lemma 5.2 we have |H,|?>=3X, H?,=1, that is, (2 (h.,)>+1)(n,/n)=1.
Hence, M, is a space of constant curvature —n/n,. Thus, in any case, we can put
M,=H"(\/n,/n).

If M is complete and connected but not simply connected, let M be its simply
connected Riemannian covering manifold. Then the composition mapping of M
in H}*?(1) under the covering mapping and the immersion of M in H TP(1) sat-
isfies the assumption of the theorem and is imbedded in H +P(1) as above. Thus,
M is immersed as the product submanifold of the theorem. ]
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