SMALL DIFFERENCES BETWEEN PRIME NUMBERS

Helmut Maier

1. Introduction. Let p,, denote the nth prime number, and let
. s Prntr—Pn
1.1 E,=liminf ———,
(D " iee  logp,

The prime number theorem implies E, < r. Improving on earlier results of Erdos
and of Rankin and Ricci, Bombieri and Davenport [2] showed that

(1.2) E <r-1.
They considered the integral
1
(1.3) SO S() *T(a0) de,
where
k
(1.4) S(a)= % logpe(pa), T(ax)= X t(n)e(2na),
P=N n=-—k

the #(n) are linear functions, and evaluated it by the circle method of Hardy-
Littlewood. They use the Bombieri-Vinogradoff mean-value theorem on the dis-
tribution of primes in arithmetic progressions.

Later, Huxley ([9], [10]) replaced the circle method by the “large sieve” and
chose nonlinear weights #(n), thereby following work of Pilt’ai. Huxley’s result
(1.5) E,szr—l{4r+(4r—l)

in [11] is
6,
16r sind, )’

where 6, is the unique solution of 6, +sin 6, = w/4r.
In particular, he obtained

(1.6) E, <0.4425..., E,=<1.4105....

His latest result [12] is obtained by the application of a theorem of Fouvry and
Iwaniec [4], a modification of Bombieri’s theorem. He obtains

E, <0.4394...

The purpose of this paper is to combine the methods leading to (1.5) and (1.6)
with a method developed by the author in [14]. There he considered the matrix

(1.7) M= (ars),

where
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a,=s+rP(z), 1=s=<U,

P(z)P-1<r=2P(z)?-!, P(z)=1] p.

p<z
This matrix is a union of arithmetic progressions. If U is chosen appropriately,
the density of primes in 9 is larger by a factor of e” than it is on average. It is an
immediate corollary of [14] that
(1.8) E.<e r.
In this paper we apply the method of exponential sums to this situation. We take
the range of summation over all primes from 9 such that (1.4) is replaced by

(1.9 S(a)= 2 logpe(pa).
peM

To deal with the distribution of the primes p € 9 on residue classes we need a
new version of the Bombieri-Vinogradoff theorem in which all the moduli are
multiples of one fixed modulus (Lemma 6).

Ultimately we will obtain an improvement on (1.5) and (1.6) by a factor e ™.

THEOREM. Let 0, be the unique solution of
(1.10) 6, +sin, = =n/4r.
Then

2r—1
1.11 E.<e™
( ) ) r € 16

0
4 4r—1 ¢,
r {’” d )sinB,}
In particular,

(1.12) E;<0.248..., E,<0.79....

The estimate for E, also settles affirmatively a question of Erdds, who had
asked if

max — D -
lim inf (pn+1 Dns Pny2 pn+1) <1.
n— o Ingn

There is one notable deficiency in our results. It is evident from the work of
Bombieri-Davenport-Huxley that p, ., —p, < plog p, for at least c(p)N values
n=<N, where c(u) >0, whenever u is larger than the established upper bound for
E,. Thus the small values of p, ., —p, actually occur in a positive proportion of
all cases. We cannot get such a result. Our small gaps are very rare since the ma-
trix M contains only a small proportion of integers. Thus the method of Bom-
bieri-Davenport-Huxley still gives the best results if one asks for “essential in-
fima.”

The author wishes to thank Professors E. Bombieri, H. Daboussi, E. Fouvry,
H. Iwaniec, M. Jutila, H. L. Montgomery, C. Pomerance, and A. Selberg for
discussions and valuable advice. Especially he wants to thank the referee for nu-
merous suggestions. The paper was written during the author’s stay at The Insti-
tute for Advanced Study. He wants to thank them for their hospitality.
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2. Definitions and notations. By z we denote a positive real number tending to
infinity through a sequence to be specified later.

We set
2.1) P(z)=1]I b,
p<z
2.2 U=U(z)=z(log z)3,
(2.3) D =[(logz)2],
(2.4) [ =log(P(z)P).

For technical reasons the set 9 is defined slightly differently from (1.7):
(2.5) M={n: P(z)P<n=<2P(z)P, n=smod P(z) for some s: U<s <2U].

The letter p will always denote prime numbers. The constants c;, ¢,, ... will al-

ways be positive, depending at most on r in (1.1). Also, the constants implicit in

<, —, and O-symbols will depend at most on r, if not indicated otherwise,
For each row

(2.6) Ry={p=kP(z)+s:U<s=2U}

we enumerate the primes p € Ry in natural order: p{®, p{9, ..., p{*) . Then we
define the classes C () by

2.7) COH={pMeM:s=imodr, P(z)P-1<k<2P(z)P-1}.
We introduce a parameter k satisfying
(2.8) ol <k<c,!
and the following exponential sums:
2.9) S(a)= % logpe(pa),
pecC)
k

(2.10) U(x)= > u(n)e(2na), and

n=-—k
(2.11) T(a)=|U(a)|?
From (2.10) and (2.11) it follows that

2k
(2.12) T(x)= ), t(n)eRna), T(x)=0, for all a.
n=-2k

We also assume the real numbers #(#) have been chosen such that

(2.13) 3k <|t(0)| <c4k, |t(n+1)—t(n)| <cs.
We introduce
(2.14) Z,(2n)= Y, Y, logplogp’.

i=1 p,p'eCct)

p'—p=2n
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3. Large sieve estimate.

LEMMA 1.
r 2k
G.1) 3 S ISO (@) PT(er) da = 1(0)Z,(0) +2 3 t(n)Z,(2n).
i=1 n=1
Proof. This follows directly from the orthonormality of the functions {e(k«),
ke Z} and from (2.12) and (2.13). J
DEFINITION. For a fixed but arbitrarily small » >0 we set
3.2) Y = P(z)P/2-m,
LEMMA 2.
r 1 )
(3.3) s | |S<')(a)|2T<a) do- (P(2)P/2 42 )2
i=1
2
> [s2(3)[ 7(3)
q<Y a=1 i=1 q q
(a,q)=1

Proof. A special case of the large sieve [3] implies that

q N+H na\ 12 L1 NM+H 2
DI S ane<—> s(H1/2+Y)2S Y a,e(na)
g<Y a=1 |n=N;+1 q 0)n=N;+1
(a,q)=1
We apply this inequality with
N +H '
> ae(na)=S(a)U(a), N;=P(z)P, H=P(z)P+2k
and sum over i. ]

The next lemma already appears in Huxley [9].

LEMMA 3. Let a, q be a pair of relatively prime integers, | an integer. Put

(3.4) q'=(q,P()), q"=4q/q"
Define w, ,= w, 4(1) as follows:
3.5) We,q=0 if (¢,q")>1
and
ayq’+al X ,
(3'6) wa,q=e<T> lf (q »q )=1a
where y denotes the solution of the congruence yq’'= —I(mod q”). Then
am

(3.7) )y e(——) =p(q") g, q(l).

(m,q)=1 q

m=[(modq’)

DEFINITION. Let
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(3.8) Q=&Fq=0@”wmufﬂﬁm;WKP&»=hu%qﬂ=h
4 ”n Y
qauqspm}

For all g €  and all pairs m,s such that m=smod q’, we define

. 1 )
log n— if neCc®
& rsO(P(Z))QD(Q”) nss(mod P(Z))
p(n;q,m,s,i) =+ n=m(mod q)
1
— for all other n: P(z)P<n<2P(z)P
| T reP@)e@”) (@) (z

We now restrict the sum on the RHS of (3.3) to g € Q. The subsequent calcu-
lations will make it plausible that the contribution from the other g-values is

negligible.
We have
. q
(3.10) S<f>(5)= > > e(m£> >
q U<s=<2U m=1, (m,q)=1 q /) P(z)P<n=<2P(z)P
s prime m=s(modgqg’)
1 .
. — +p(n;q,m,s,z)).
(rso(P(z))so(q )

The following notations are borrowed from Huxley [9] and adapted to our prob-
lem:

. a .
@1y shHh= 3 )y e(fﬂ-) 2 p(n;q,m,s, i),
U<s<2U (m,q)=1 q /] P(z)P<n=<2P(z)P
s prime m=smodgq’
r -
3.12) Sa,q= D S}f;,
i=1

. 1 qg — . a
(3.13) A=Y y 3 > w, (s)S‘f’T(—),
deq 2@") v<s<w a=1 T TP \q
s prime (a,q)=1

: r
(3.14 A= A,
i=1
The singular series § is defined by
1 q
(3.15) §=3 > 2z

ny2
ge@ 2(@")° U<s|s,<20 a=1
s;prime; i=1,2 (a,q)=1

'wa,q(sl)wa,q(sz)T(%>-

Then we have the following.



LEMMA 4.
(3.16) Y f; gl
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g<Y a=1 |

S(i)(ﬁ)
q
(@,9)=1

Proof. By (3.10) and (3.11) we have

N ANK P(z)?P (mz—ml)a)
S(’) _ = —
i (CI > r2e(P(z))2¢(q")? y<s,is,=<2vu (m,-,%:):x e( q

s;prime; i=1,2 my=s;modgq’; i=1,2

ke T 5 o(-m)se)

re(P(z))e(q”) U<s;=2U (m,q)=1

2 a P(Z)ZD P(Z)D
T — )= S+2 Re A.
(q)>w(P(z»2 TPy

+|S(i) IZ sy prime m=s;modgq

a,qgi *
We omit the term |S{)|%. The result now follows by summation over g, a, r and
by Lemma 3 and definitions (3.12)-(3.15). ]

4. The error term.

DEFINITIONS. For each triple (s, m, g”) of positive integers with (s, P(z)) =
(m,q")=(q", P(z)) =1 we define

P(z)P
4.1 E; o= )y log p— p
and p=smod P(z), p=mmod q”
4.2) Ep= max  max |Eg,, .|
(s, P(z))=1 (m,q")=1
LEMMA 5. We have
q I/4
(4.3) A| << [t(O)[kU* ¥ ———~d(q")E,-.
qeQ v(q")

Proof. From (3.13) and (3.14) we have

A=y - s S a0 ¥ 3 e(m-‘i)

geqQ e(q”) U<s;<2U a=l1 U<sy<2U (m,q)=1 q
sy prime (a,q)=1 55 prime m=symodgq’
a
® 2 p(n;q, m,SZ)T<—->-
P)P<n=2pPi)P q

Now ¥ p)P<n=<2p)? P(N; g, M, S2) =Eg n , and we obtain, by definitions (3.6)
and (4.2),
2k

1
4.4) A= X ” % 2 2 |im)]
qeq 9(Q@") v<s<2w  (mg) =1 nw-2k
s; prime; i=1,2 m=s,modgq’

51; e<a(y(sl)q’+sl—m+2n’))
a=1 q
(a!Q)=1

E,-.

b2y

The sum
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L a(y(s))q’ +s,—m+2n’

c,(¥(s)q' +s;—m+2n)= Y e( (y(s1)q’+5 ))
a=1 q

(a)Q)zl

is Ramanujan’s sum. The formula [7, §16.6]

q
4.5) c,u)=3 dp(—)
d
. d|(q,u)
gives
S lc(¥(s1)q’+5,—m+2n')| < > d 3 |c - (2n'—m)|
mmod g d'|12n'+51—5, mmod g
m=s,modq’ d'|q’ m=s,modg’
< Ulq lc,~(2n'—m)|.
mmod g

m=s,modgq’
For the estimate of the last sum we follow Huxley [9, p. 374]. For fixed »" and
each m we have
2n'—m=umodqg”, where l1=su=gq’,

such that distinct m belong to distinct . Thus

Y |egr2n'—m)|= E |cg-(u)| = E 2 d<gq'dq").
mmod g u=1 d|(q",u)
m=symodg’

Therefore
Y eg((s)g’+s,—m+2n")|<U2q’q"d(q").

mmod q
m=s,modgqg’

From (4.4) we obtain

1 2k 7 n I/4
A<y —1 ( » 1)( 5 lt(n)|>U2q 4"d(q")E,
qe@ P(@")\ v<s;=2v n=—2k
s; prime; i=1,2
and thus Lemma 5. U

The next lemma is a generalization of the Bombieri-Vinogradoff mean-value
theorem [1].

LEMMA 6. Let
v(x,q,a)= Y A(n).

n=sx
n=amodgqg

Let 6, 6,, 65 be arbitrarily small positive constants. Let Y > 1, a positive integer

R<ex log ¥
P (log log Y)!+é1 J°

QO=1, and L =log YQ. Assume that
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62
4.6) L(s,x)#0 for Res>1-—
log(R(|¢]|+1))
for all x mod M with M < R'*%,. Then
4.7) S max max |Y(X,gR,a)—
g<Q X<Y (a,qR)=1 ¢(gR)
@R)=1 R2
<p (logy)=B+Y/2 QLs,

(R) ¢(R)
where B >0 is arbitrarily large.

Proof. We will use the theorem of Vaughan [16]: Set
q
T(Ys Q)= 2 TN E*math(X, X)I’
g=0 ¢(q@) ¥ x=<v
where Y * denotes summation over the primitive characters x mod g.
Suppose that Q=1, Y =2, and L =log YQ. Then
(4.8) T(Y,Q) < LYY +Y5/6Q+YV2Q2?),

We also use Theorem 7 of Gallagher [5]: Let X/Q<h=<x and exp(log!/2x)=<
Q < xb with fixed b > 0, and assume L(s, x) #0 for Res>1—48,/log(Q(|¢|+1))
for all x mod M with M < Q. Then

x+h

log x
“.9) S T Ex(p)logp'<<hexp(—5s g )
1<k=Q x x log Q

Obviously we can replace 3" x(p) log p with X% x(n)A(n). We write

X
¢(gR)

UR,Q,Y)= > max max
g=Q X=<Y (a,qR)=1
(g.R)=1

= Y 2 max|Y(X, x)|
g=<Q ¢(gR) xmodgR x=Y
(g, R)=1 X# X0

(log Q) B /
+O( o(R) Yexp(—(log X)! 2))
1

xlog0 Y >+ (max|¢(X, x)|+ O(log OR))
dIR 1<g=0 P(AR) ymodqd
(g, R)=1

(log Q) _ /
+O( 2(R) Y exp(—(log X )! 2)).

\L(Xa QR, a) -

Thus
e(d) 1

d|R @ (R) 1<g=Q e(dq)
(g,R)=1

® X2* max|y¥(X, x)|+0(Q(log QR)?)

xmoddg X=Y

+ 0((1:(gRQ)) Y exp(—(log x)l/z)).

UR,Q,Y)log Q
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From (4.8) we get, by partial summation,

S L >+ max|y(X, x)| <K é—(—Y- +Y5/%d log Q+Y1/2d2Q>
Qp<g=Q v(dq) xmoddg X<Y d \Q
(g, R)=1

We apply this estimate with Oy = R% and obtain

1
UR,Q,V)logQ > L maXhZ/(X,x)l
qu’53 (qR) xmoddg X<Y

(g, R)=1 X#Xo
5
+-L ~53/24Y%Rlog Q+Y'*R*Q)+QL?
o(R)
log O
+ Y exp(—(log X)1/2).
¢(R)
Since d |R and (g, R) =1, the numbers of the form dqg are distinct. Thus
1 1
> 2 max|Y(X,x)|s —< X 2+ max|¥(X, x)|,
diR g<gr% P(AR) ymoddg x=<Y ¢(R) 1<r=0, xmodr X=<Y
(g, R)=1 X#Xo

where O, =exp((1+83)(log Y) (log log Y)~17%1),
Given r < Q, and x mod r, choose Xy=X,(x) so that X, <Y and
|¥(Xo, x)| =max|¢(X, x)]|.
X=<Y
Let K =[Q4°], Z=Y/K and choose k = [X,/Z]. Then 0 <k <K and | X, —kZ| <
Z. Thus

max |¥(X, x)|=|¥(kZ, x)|+O(Z log Y)
X=<Y

k
Slg W(UIZ, x) =¥ ((I—1)Z, x)|+ O(Z log Y).

Clearly, if k =1 then the term with /=1 is also << Z log Y. Therefore the sum in
question is

( DD Il#(lZ,x)—¢((1—1)Z,x)I+ZQ§logy),

=2 1<r=Q, xmodr

(R)
and by (4.9) this is

1 log Z
K —— | KZ ex 05
¢(R) ( p( log O,

as required. U

1
)+ ZQ2log Y)) < “(®) Y(logY)—£

We now want to apply Lemma 6 with R = P(z). We call moduli R for which
(4.6) is satisfied admissible moduli. The definition depends on the constants
8,,63>0. If we are only interested in E, then we can immediately assume that
P(z) is admissible for all z. This follows from the work of Heath-Brown [8]; if



332 HELMUT MAIER

there are infinitely many real primitive x mod g, such that L(8,, x) =0 for 8y=
1—-1/(31og q), then there exist infinitely many prime twins. The author owes this
observation to Prof. C. Pomerance. For r > 1 we need the following.

LEMMA 7. For given 63 > 0 there is a constant 6, > 0 such that in terms of 6,, 63
there exist arbitrarily large values of z for which P(z) is admissible.

Proof. The idea already has been used in two papers of the author ([13], [14]).
By Page’s theorem (see [15, Satz 6.9b]), for sufficiently small values of 26, there
is at most one exceptional character x* of modulus M < R!*%3 and an exceptional
zero 3 such that 8 >1-26, /log R.

For a given z, we find a z = z; with admissible P(z) as follows: If P(z,) in terms
of 24,, 6; is admissible then set z =z;. Otherwise there is an exceptional charac-
ter x* of modulus M < P(z;)!*% with an exceptional real zero 8 such that 3>
1—-26,/log P(z;). Now we take z =z, such that

6, 26,
— 2 <l-f<—2 .
log P(z) B log P(z)

Then by the second inequality x* is still an exceptional character. Thus for all
other x mod M with M < P(z)'*% we have 8 <1—26,/log P(z). Thus P(z) is
admissible in terms of §,, 5. O]

We now assume that 6, >0, ;>0 are fixed. In the sequel we always assume
that 7 — oo through a sequence of values for which P(z) is admissible in terms

of 65, 03.
LEMMA 8. We have
(4.10) |A| << |t(0)|kU*P(z)P1~8
Jor arbitrarily large B > 0.
Proof. By Cauchy’s inequality we obtain, from Lemma 5,

"2 2\ 1/2 1,2
A|<<[t(Q)|kU* 3 q'( —‘Z—L"f—) ( > sa(q”)(Eqﬂ)?-) .
qg'=U q"<Y/P(z) e(q”)

q"<Y/P(z)
q’|P(z) (g", P(z))=1 (", P(z))=1
We have the trivial estimate
P(z)PI
q” < ny °
e(P(z)e(q")
Together with Lemma 6, we obtain the desired result. O
5. The singular series.
DEFINITION. Set
a(n)= >, 1.
U<S,‘ <2U
s; prime; i=1,2

Sp—81=2n
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LEMMA 9. Assume we have =2k <a<b <2k, b—a=k/logz, and a sequence
c(n), a<n<b, of real numbers such that |c(n+1)—c(n)|<cgs. Then we have

(5.1 Y c(ma(n)

a<n<b

_ U 1 C6k2
=2 log2U (I+O<10g u ))<a<§sb c(nHO((log z)3 >)

Proof. We partition the interval (a, b] into subintervals I, of lengths |I;| with
1 b—a
——<\|I)|=
2 (logz)3 4]

where 11 (011, ()t[_H]
We may assume that the «; are integers after changing @ and b into integers, if
necessary, and that a=0. Then

R R cek
Y, c(n)a(n)= Y, ( S, c(n)a(n)>= > (c(a,)+0(m)) Y, a(n)

a<n=<b I=1 nel; =1 nel;
R cck
=Y (c(a )+0(——6 ))
!gl( ! (log z)3

> s 1).
(U<5152U s1+2a;<Sp=min(s;+2a; 1, 2U)

5 prime S, prime

b—a R
and (a,b]=U I,
(log z)3 (a, D] 1L=Jl I

By the prime number theorem it follows that

> c(m)a(n)

a<n<b

_ R cek o1~
=2 (c(“’) +O((logzﬁ »2 log U log U ( (1 og UD
., U 1 R Ce

2———10g2 U (1 +O<-—————log U)) l§=;l (C(a;)‘l‘O(——-(log 2)3 ))(a,_,_;—a,)
.U cek? 1
_210g2 U (a<§sb C(n)+o((logZ)3)>(l+0<log U))

which is (5.1). O
LEMMA 10. We have
UlogY c 2k U
(5.2) 8 =1(0)o(P (1 0( L ))
(0)p(P(2)) Tog U + oz 2 +2n=§_32kt(n)P(z)lOg 7

(Here c; depends on c3, ¢y, c5 in (2.13).) "0

Proof. From (3.15) and (4.5) we have

1  — . a
S=3 —— T 3 e (sZ)T(—>=
qeq e(q )2 U<sp,$9<2U a=1 “a “q q

s;prime; i=1,2 (a,q)=1



334 HELMUT MAIER

1 2k
=Y —s D Y Hn)cy(sy—sy+2n)cy(2n).
ge@ (@7 U<s| sy<2U n=—2k
s; prime; i=1,2

The main contributions come from the terms with

(@) n=0and s;=s,
or

(b) s;—s,+2n=0; qg"=1. _
The rest will be treated as error terms.

We obtain
U v(q’) 1
5.3 S=1(0 1+0
©-3) ( )IOquE:Q 90(61”)( i (log U>>
2%k
+ X (@) Y tnma(n)+0(X)+0(Xy),

geqQ n=-2k

where ¢"=1 n#*0
1 2k
L= X )) )y |t(n)||cy(s1—52+2n)||cyn(2m)|

7”32
qe@?(@")" uU<s;<ou n=—2k
s; prime; i=1,2 §1—5§,+2n#0

and
1 2k
=22 —— > > [t(n)||cy (s1—52+2n)||cgr(2m)].
geq 2(@")* u<s;<2v n=—2k
q">1 s;prime; i=1,2 n#0, s;—5,+2n=0

We write P(z) =q’s and obtain

D e(q") _ » so(q’)+0(___1__ T o5 ! >

deq 0(@")  J2q e(@”) o(P(2)) gipy g2y (")

q'>U qg'<sU
‘ 1 U2logY
= ¢(P(2)) )) ” +O(—)
s|P@), s=P@u  ¢(5q") o(P(z))

(¢",P(z))=1, q"<Y/P(2)

1 1 U2logY
ol (Z))( ng}’ ¢(n) " (Y/P(z)2<nsY 50(")>>+ <¢(P(Z)) )

and thus (see [17]) p2(n)=1
v(q’)

5.4

oY ' ng (q”)

The second sum is handled by Lemma 9.
Because of (2.13) we get

= ¢(P(z))(log Y + O(log P(z))).

2k
(5.5) 2 o(q@') X t(nm)a(n)
qgeQ n=-2k
g =1 n=0

_ ., UP(2) 1 2k ck?
=2 log2U (1+O(10g U>)(n=§22kt(n)+0(10832 ))

n=0
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In the estimate for Xy we use |c,-(2n)| < ¢(g”) and observe that if s —s,+2n %0
then ¢, (s;—5,+2n) << U2. Thus
2k

(5.6) EI<<< D |t(n)|>U“

n=-2k

1
geq ¥ (q”)

2k

< ( > It(n)l)U“(log Y)3z/logz,
n=-2k

In the estimate for I, we use |c,.(s; — s, + 2n)| < o(q’). If (¢”, 2n) =1, then

c,r(2n)=1.1f (g”,2n) > 1, then p=(q”, 2n) is prime, z < p <4U, and |c,-(2n)| <

p. We get

2k
LK X % (@) X |t(n)|a(n)

q'>z e(q )2 q’'| P(z) n=-2k
n#0
2k
(1+ ) ) 2 e@) X |tn)a(n)
s=z § q’'|P(z) n=-2k
and thus n#0
5.7) LK — = P(@) S Jeml.
ZlO n=-2k
n#0
(5.3)-(5.7) now yield the proof of Lemma 10. Ol

6. Conclusion. We now summarize the results of the last sections.

LEMMA 11. Let U(a), T(a) be as in (2.10)-(2.13). Then for arbitrarily small
€ >0 and z=zy(e) we have

2k

(6.1) r ¥ H(n)Z,(2n)>2e*P(z)?~'U 2 t(n)
n=1 n=1
1 1 D-1
——E(r—§+e)e7t(0)P(z) ul.

Proof. By Lemma 6 we have

PR U 1
2= ey g U (1 +0(Eg'17)>‘

From Lemmas 1 and 2 we obtain

N\

7(5)

2k
2 Y H(n)Z,(2n)= (P()P2+2Y)~2 3 E 2 |S(t)(q>

n=1 g<Y a=1 i=1
(a,q)=1

P(z)P U 1 \
O By o U <1 +O( log U ))

Lemmas 4, 8, and 10 give
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2k
2 ¥ {(n)Z,(2n)

n=1

= (P(z)P/24+2Y)2

UlogY -
x[t(O)SO(P(z)) o2 0 (1+o<10"g72>>+2 _Ezkt(”)P(Z)loggU]

n=0

P(z)?P Pz U 1
* @y O opr)y osu (l +O(log U ))

Now we observe that

Y, t(n)=2) t(n) and go(P(z))=P(z)—<l+O( ))
n=-2k n=1 log z logz
n#0
We recall that, by (3.2), Y=P(z)P1/2-n, By choosing 5 sufficiently small we
obtain (6.1). U

Lemma 11 is the analogue of Lemma 1 of Huxley [11], who considers the prime
numbers of [1, N] instead of those of 9. The difference is the occurrence of the
factor e” in our paper. This will ultimately lead to an improvement on Huxley’s
result by a factor e ™.

The remainder of the paper is now analogous to Huxley’s treatment. We need
an upper bound for Z,(2n) that on average corresponds to the one given in Lem-
ma 2 of [11]. This is accomplished by a linear upper bound sieve. We borrow no-
tations and results from [6].

Let there be given a finite set @ of integers; a subset @ of the set of all primes; a
real number X > 1; and a real number z =2. Then we define

S(Q,®,z)=card{aeR: pfaforall pe ®, p<z}.

Let w be a multiplicative function, defined for all square free positive integers d,
such that w(p)=0if p ¢ ®@. Then we define

G;=f{ae@:a=0modd},

d
Ri=1Gd - 22 %,
w(p))
W(z)= 1— .
@) P1_<Iz( p

The functions F and f are defined by the system of differential-difference equa-

tions:

2e”
F(u)=7, f(u)=0 for O<u=<2;

(wFw)) =f(u—1), (uf(u))=Fu—-1) for u=2.

We assume that w satisfies the conditions (the A’s are positive constants):
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w(p) 1
Q):0<s—"<1——;
(Q):0=< > 4

1
QL) —Le Y SWPOBP 02 4 if 2<w=z,
wsp<z w
and that the R, satisfy
X
(R(1, @)): 3 pAd)3 DR <As—S—, X=2.
d < X/(log X)A IRl >log2 X
d,®)=1

The following lemma is the first part of Theorem 8.4 of [6].

LEMMA 12. Let @ be given with w and R, satisfying (2,), (,(1, L)), (R(, a)).
Then, forz <X,

log X L

where B depends only on the A;.
We now use Lemma 12 to prove the following.

LEMMA 13. Assume that the sequence c(n), —2k<a<n<b <2k, is nonneg-
ative and that we have b—a = k/log z and |c(n+1)—c(n)|<cg. Then

a<n<b a<ns<b (logz)3

6.2) 2 C<">Zr(2n)<(8+e)e2*P(z)D”lU< ) c(n)+0< o ))

with € > 0 arbitrarily small and 7 = zy(¢€).

Proof. Let sy, s, be prime numbers satisfying U <s; <s, <2U. We define
Z(s1,5,)=card{k: p;=kP(z)+s;€ M, prime, i =1,2].
Define the set @ by
@ =Q(sy,5;) ={n=kP(2)+5,: p=kP(z)+s,€ M, prime}.
(@ is the set of all prime numbers.) Obviously Z(s;,s,) <S(@, ®,Y).

We define w:
(») 0 if p<z,
w = )
P22 p/o-1) if p=z,
and set
_ liP(z)P
e(P(z))

Then () is satisfied with A; =2 and (2,(1, L)) with L =log z. We have
card @, =card{p e M: p=s;mod P(z), p=s;—5, mod d}.
Lemma 6 shows that (R(1, )) is satisfied with o = % From Lemma 12 we have
1

liP(z)P (
(P( )) z=p<Y

7.
Z(sy,5,) < >e7(2+e)

Thus
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Y, c(n)Z,(2n)=< PRI II (1— L >e7(2+e) Y, c(n)a(n)
a<n<bhb r T o(P(z)) z2=p<Y p—1 a<n<b
Lemma 13 now follows from Lemma 9. ]

In [11] Huxley does not apply Lemma 11 directly. The quality of the result is
enhanced by comparison of the inequality for two exponential sums.

LEMMA 14. Assume that 2s = 2k = j and also that s satisfies (2.8): ¢,/ <k < ¢, 1.
The following exponential sums are given:

k 2k
U(x)= Yu(n)e(2nx), T(x)= Y t(n)e(2nx)=|U(x)|?,
—k —2k
s 2s
Wi(x)= Y w(n)e(2nx), Vix)= Y v(n)e(2nx)=|W(x)|2

-5 —2s

Let t(n) and v(n) satisfy conditions (2.10)-(2.13). Moreover, assume
w(—n)=—-w(n); v(n)<0 for n=h.

Let j be an integer for which
(6.3) r é (—v(n))(8+¢)e"= {%(r—%)+2e}v(0)l.
h

Assume
J t
S t(n)>cel?, —cpp=< Ty <0;
h

(6.4) o _
_ v(n){ =-v()/i(j) for h=n=<j,

t(n) | =—v())/t(j) for j=n=<2k=<2s.
Then Z,(2n) =0, for all n with 0 <n< h, implies

6.5) 8re 2:;: t(n) > T(0)e"— {% (r— %)+cue}t(0)1,

where c;; > 0 depends only on the other c;.

Proof. If Z,(2n) =0 for n < h then, by Lemma 11,

2s 2s
rS v(n)Z,(2n)>2e*"P(z)P?7\U Y v(n)
n=h n=1

1

_1/.1 D-1
Z(r 2+e)e”v(0)P(z) Ul.

Now w(—n) = —w(n) implies W(0) =0 and thus ¥(0) = 0. We have 2 325 , v(n)=
—v(0), which yields

2s
(6.6) r Y (—v(n))Z,2n)< —;—(r——;—+26>e7v(0)P(Z)D"1U1.
n=~hn

Now
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2k I‘(J) 2k
rS t(n)Z,(2n) =r(——.) S (—o(n))Z, (2n)
h h

v(J)
2k

+r2[t(n) < m) (n)]Z 2n).
h (/)

By (6.6) and Lemma 13 we get

2k .
r Hnz,2n)= r(——t—(J.—)> {l (r— 1 +Ze>e70(O)P(Z)D"1Ul}
h

v(J) 2
k 2
+r 2zt(n)-- DN my+ 0o 9% \) 8+ eye?P(z)P-'U
v(j) (log z)3

sr( U“;)z( v(n))(8+e)e?P(z)P~U
+r'<2 [t(n)——ﬂv(n)](8+2e)e27P(z)D_lU
h

< r( E t(n)> (8+2¢€)e®'P(z)P~1U.
h

Now Lemma 11 gives the result (6.5) ]
Suppose that

6.7) : h>e=T—"_)
) 32v2

and assume that

(6.8) Z,(2n)=0 for n<h.

Our next task will be the construction of j and of the weights u#(#) and w(n) such
that the conditions of Lemma 14 are satisfied. Finally we shall derive an inequal-
ity for A in (6.7) from Lemma 14. This then will prove the theorem.

Here we closely follow Huxley [11]. The adaptation to our problem is accom-
plished by a simple scale change involving a factor e ™.

We write
n=e—7_).;.£, 2k=e_7)\71,
(6.9)
PR v

, =e T—.
2 7 2
We fix € >0 and choose the integer j such that

pt+v . [v—u {(2r—1)+16¢}
6.10 = -1
(6.10) T Sm(v+u>ﬂ— (8+¢)r +ou™
and
(6.11) v <3p.

This is possible for sufficiently small e >0, since for fixed p the expression
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pty sin(v—‘u)w
T v+p
increases monotonically from 0 to
8 sin
37 #
as » increases from p to %M, and since
N2 {2r—1+16¢}
w>
3w (8+¢)r

because of (6.7) and (6.9).
We set 6 =(v—p)/(v+p)7 and get
ptv 2r—1+416¢

g 2r—1+16e 1
- sin 6 BTor + 0O 1).

T _42
4 31r”

+0( 1)

(6.12)

We now set
(6.13) 2s+1=2k+1=h+j
and define 6 =2#/(2s+1),

w(n)=sinén for —s<n=<s,

6.14
(6.14) u(ny=3+1cosén for —k<n<k.
We have pay)
sin 6m sin®V —A+1)/2
% wn)=- — for —s<n=<s
h<|m—n|<j sin%/2

and thus the eigenvector equation

Y w(n)+ —l—w(m)=0,

h<\m—n|<j 2A
where
| sind(j—h+1)/2
(6.15) 24 sin®/2
(6.16) 1 et oo,
A w

The condition (6.3) of Lemma 14 now follows because of (6.10) and (6.16).
We now check the condition v(n) <0 for n=h. We have

S S
v(n)= Y, sinémsinﬁ(m+n)=l Y, (cosdén—cos d6(2m+ n))

m=—s 2 m=-—s
__(2s+1—n)cosén siné(2s+1—n)
B 2 2sind ‘
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The smallest positive solution of & —tan & =27 satisfies 7/2 < ® <3x/4. The
expression
(2s+1—n)cosdén sind(2s+1—n)
2 26
changes from positive to negative as én passes through ® and v(#n) remains nega-

tive until én=27; or n=h+j.
Because of (6.11) we have that 64 > 37/4 and thus v(n) < 0. For n =0 we obtain

=v(n)+0( ™)

S—n

4t(n)= Y (1+4cosdm)(1+coséb(m+n))

m=-s
S—n

=2s+1-— n)(1+ cosén)+ I, {cosém+cos§(m+n)+ coso6(2m+n)}
m=-—-s

=(2s+1—n)(1+-,; cos6n)+[sm6(s+i—n)—sinﬁ(—s—z)
+sin (s + 1) —sin8(—s— 3 —n)}/2 sin®”2
+{sin6(2s—2n+1—n)—sind(—2s5—1+n)}/4siné

. 1 . 1 1
=2s+1—-n)(1+53 cos6n)+sm5n{sin§/2 ~3sns |’
from which we conclude 2{; t(n)>cyl?, —cip=<t(j)/v(j) <0. Also, conditions
(2.10)-(2.13) for #(n) are easily verified.
To show the condition (6.4) we set y =8(2s+1—n) and replace sin /2 by /2
and siné by é with a negligible error; we must then show:

d ycosy—siny

6.17
©.17) dy y(2+4cosy)—3siny

>0 for 122<y527r.

We shall give a new proof of this, since the computation in Huxley [11] contains
an error. The numerator of this derivative is 2f(y), with

f(r)=—y2%siny+y—ycosy-+siny—sinycos y.
An elementary but lengthy computation gives
fmM(0)=0 for m=6 and

SD(y)y=-36cosy+13ysiny+y2cosy+64—128sin2 y,

and thus f(7(0) =28. Moreover, we have
f®(0)=0 and

fON(y)=64cosy—17ysiny—y2cosy—256+512sin? y.

For y >0 Taylor’s formula gives

N
Sy)= —f—(o)y7+

SONz)
72

S ONz)
T

(6.18) S(y)= ——-(28+ ) with 0<z <.
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The simple estimates

fOz)=-256 for 0<z=<

fO(z)=-20 for % <z=<

’

r

4 ’
o
2

together with (6.18), yield:

f(y)>0 for O<y5%

For the range /2 < y <« we observe that

S"(y)=(?>=1)siny+(3y—4siny)(—cosy) >0,
because both products are positive in (7/2, w]. This implies that f’(y) > 0 in
(m/2, ), since f'(w/2)=2—x/2>0. Finally f(y)>0 in (x/2, w) since, by the
discussion above, f(wx/2)>0.
For the range [7, 27w ] we follow Huxley [11] and use the identity

d ycosy—siny
dy y(2+cosy)—3siny
={y(2+cosy)—3siny}{—ysiny}—{ycosy—siny}{—ysiny+2—2cosyj
=2(1—cosy)(y+siny)—2y2siny
=4sin(y/2){(y+siny)siny/2—y2cos y/2}.
In the last expression all terms are positive or zero for T <y <2m.

All the conditions of Lemma 4 have now been verified, and we can draw the
conclusion:

(6.5) 8re? 2::; t(n)>T(0)e"— {% <r— %) +cue}t(0)l.

Now the u(m) satisfy
u(m+1+j)—u(m+hy+u(m+1—h)—u(m—j)= —i{u(m+l)—u(m)},

where u(n) is interpreted as 0 if |n|> k. Addition gives

(6.19) S u(m)+ = u(m) =2pU(0)
h<|m—n|sj 24
for some fixed p. -
Multiplying by u(m) and adding gives

(6.20) E =2pU%0),

with
k

— I &,
E= m’n2=_k u(m)u(n)+ﬂ_§iu (n)

h<|m—n|=<j

_zﬁh) t(n)+ﬂt(0),
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whereas simply adding (6.19) for —k<m <k gives

(j—h+1+ —L—>U(0)=2pU(O)(2k+l)

2A
and thus
/
_ af AR
(6.21) p=(h+J) (j h+1+2A>
(6.5) now gives
Es U%(0)
4r °
: I _ h+j
j—h+1+ZA—> ar

Division by //2 gives

2u<(un(1- L)+ o
gAY ar )T A )
and by (6.16):

we? 1 e’ 1
(6.22) h< 2Asin0(1_5>+52+0(7>'
Now set
2r—1 0,
(6.23) F,-—T6'r—'{4r+(4r—l)sin0r}.
We claim that, given 6 > 0, the inequality (6.22) implies
(6.24) p<F.+6,

provided that e =¢(6) in (6.10) is chosen sufficiently small and z = z(6) is suffi-
ciently large. This clearly will conclude the proof of (1.5) because of (6.8) and

(6.9).
To establish (6.24) we consider the function »*=p*(u*), defined implicitly by
#*_*_ p* V*—,u* e”
6.25 =
629 (S )7) = 5

where Ayg=8e"r/(2r—1). (This is (6.10) without the ¢ terms and error terms.)
For p*=F, we obtain

Y
y,*: e

(1— 1)+ ll
6.26 * 4r 24,°
(6.26) 2A0sin(<V s )w) 0

* *

it p
and thus, by (6.25),

1 1 1 1 eY
27 (L LYo (Ao L .
6.27) “<2+8r) ”(2 8r)+2A0

From (6.25) we obtain by implicit differentiation that

dv*
du*

<0 for all u*

Thus, for u*> F, we have
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Y
* e

Y

pr> S (l— %>+ —2: .

2A0 SiH((V £ )7!') 0
V*+ %k

U

That proves our claim that (6.22) implies (6.24) u < F, + 6 and thus concludes the
proof of the theorem. ]
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