NUMERICAL RADII OF ZERO-ONE MATRICES

Kenneth R. Davidson and John A. R. Holbrook

1. Introduction. Recently V. Miiller (see [6]) has constructed a striking exam-
ple related to the following long-standing problem: What is the best constant C
such that w(7'S) = Cw(T)|S| for all commuting operators 7"and S? The setting
here is complex Hilbert space and |S| denotes the usual operator norm. The nu-
merical radius w(7") may be defined as sup{|(Tu, u)|: |u| =1}. Miiller’s example
shows that C > 1.01, in spite of various results that appeared to support the con-
jecture C =1 (for further details see §3).

A study of Miiller’s example led us to related operators that have the following
advantages. They are simpler to describe and can be set in a lower-dimensional
space (dimension 9 seems to be the best we can do; the example of Miiller lives in
a 12-dimensional space). The computations can be carried out directly and the
relevant numerical radii identified (Miiller relies on a computer check of some
aspects of his example). The constant C is more closely constrained by our ex-
amples (we shall see that C=1/cos(w/9) > 1.064; the best upper bound known
for C appears to be C < 1.169). Miiller refers to an approximation result of Hol-
brook (see [5]) to establish that w(7'S) may exceed w(7')|S| even when T is a
polynomial in S; in some of our examples this feature is built in. Finally, we can
adapt our examples to settle a related problem about p-dilations (see §3).

We end this introduction by describing explicitly one of our examples. Let S =
Sy, the shift on the Hilbert space of dimension 9. Let 7= S3 + S7. Then, of course,
IS| = 1, and we shall see that w(7") = cos(w/10) while w(7T'S) =1, so that C =
1/cos(w/10) (> 1.05).

2. Zero-one matrices. Given an n X n matrix M whose entries are zerces or
ones, we form the incidence graph G(AM') with vertices labelled 1 through » and
edges joining exactly those pairs (7, j) such that m;; =1.

PROPOSITION 1. Suppose that an n X n zero-one matrix M has zero diagonal
and, for each 1<k < n, no more than two ones in the cross-shaped region X, de-
fined as the union of the kth row and the kth column. Then

w(M) =cos(w/(L+1)),

where L is the number of vertices in the longest chain in the incidence graph
G(M).

REMARKS. The condition on the X} in the statement of our proposition is a
way of saying that G(M) has no vertices of valence greater than 2, that is, that
no more than two edges meet at a given vertex. As a result, G(M) breaks into
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connected components that are either cycles or chains (with two free ends). We
consider a cycle to be a chain of infinite length L, interpreting the formula of the
proposition to say that w(M)=1. If i and j are distinct and m;; =m;; =1 then
G (M) has two edges joining the vertices i/ and j, forming a special sort of short
cycle. Finally, if M =0 then each vertex in G(M) is isolated and L =1.

Proof. Since the entries of M are nonnegative, max{|(Mu, u)|: |u| =1} is at-

tained as (Mu, u) for some u = (x4, ..., X,), where each x; = 0. In this case
Mu,u)= 3 xx;
mi;=1

and this sum breaks into portions corresponding to the connected components of
G(M). As we have remarked, these components are either cycles or chains. Let
us denote by Cy;, Cy,, ... the portions of the sum (Mu, u) corresponding to the
cycles in G(M), and by Vy, the set of vertices belonging to the kth cycle. Let Ch,
and Vh, refer to the chains of G(M) in the same fashion. Then

uw=3crr3omn=3{( 3 Z)snf+3{( T o)),
k ieVy, k ieVhy

where Sy, = Cyk / (E ie vy, Xi 2y and Shy is similarly defined for the chains.

Since I x# = |u|®>=1, we see that (Mu, u) is a convex combination of the Sy,
and Sh; and that w(M) is the maximum among these.

To maximize the individual Sy, and S#; is a familiar problem. To simplify the
notation, let us assume that the cycle corresponding to Sy, involves the vertices
1,2,...,q. Then

q q
max Sy =max{2 Xi_1 X S xt= 1] ,
1 1

~where we interpret Xo as x,. The sum we are maximizing is certainly no greater
than 27 (x2_1+x?)/2 and under our constraints this is 1; on the other hand, value
1is attalned by the choice x;=1/Vg (1<i=<gq). Thus w(M) =1 if there are any
cycles. We treat the chain term S#; similarly. Supposing that this chain involves
the vertices 1, 2, ..., g, we have

q q
max Shk=max{2 Xi_1Xit S xt= 1} .
2 1

There are several approaches to this computation. One way is to regard this as
w(S,), where S, denotes the shift on g-dimensional space represented as a gXx¢q
matrix with ones on the superdiagonal and zeroes elsewhere. However, w(S,) =
w(Re S;) =maximum eigenvalue of the symmetrlc matrix Re S,. This is a tri-
d1agona1 matrix with zero diagonal and 1 > along the two nelghbormg diagonals,
and it is easy to verify that a simple recurrence relation holds for its characteristic
polynomial P,(x):

P (x)=xP,_(x)—$P,_1(x),

with P;(x)=x and Py(x)=1. This relation identifies P,(x) as a type of Cheby-
shev polynomial; in fact P,(x) = (sin(g+1)8)/(29 sin 8) where cos 6 = x, because
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these functions satisfy the same recursion. Thus P,(x) has g distinct roots in
(—1,1) corresponding to 8 =kn/(q+1) (k=1,2,...,q), and the largest eigen-
value is x =cos(w/(g+1)).

Since the largest of these values occurs for the chain where g is maximal (i.e.,
when g = L), the formula of our proposition is verified. Ol

The following special case of Proposition 1 was noted (with a different proof)
by Allen in [1, §3.5].

COROLLARY 2. If S, denotes the shift on n-dimensional Hilbert space, then
w(S;") =cos(n/([(n—1)/m]+2))
for all positive integers n and m (here [x] denotes the integer part of x).
Proof. Evidently the chains in G(S}") are of the form
i—(+m)y—(+2m)—---

and the longest of these begins with 1 and ends with 1+ km, where k is maxi-
mal subject to 14 km < n; that is, kK =[(n—1)/m]. The number of verticesin this
longest chain is L =k +1. ]

REMARK. The same considerations show that S,” is unitarily equivalent to an
orthogonal sum of shifts of smaller dimension, the largest dimension being the L
of the last proof. Hence it is no surprise that w(S;’) = w(S;). In the general case
treated in the proposition, M is not usually unitarily equivalent to such a sum of
shifts. Nevertheless, an alternate proof of the proposition might be based on the
unitary equivalence of Re(M) with the real part of such a sum.

COROLLARY 3. There exist commuting 9-dimensional operators T and S such
that w(T'S) > 1.05w(T)|S|. In fact, with S= Sy (the shift on a Hilbert space of
dimension 9) and T = S3 + S7 (a polynomial in S'), we have |S| =1, w(T) =
cos(w/10), and w(T'S) = 1, so that we need only compute 1/cos(w/10) =1.0514... .

Proof. 1t is easy to check that both 7 and 7'S have matrices to which we may
apply Proposition 1. In G(7'S) we find a cycle (involving vertices 1, 5, and 9);
hence w(7'S) = 1. On the other hand, G(T') consists of a single chain involving all
the vertices; that is, L =9. O

Many variations on this theme are possible. The following is somewhat more
closely related to Miiller’s construction.

COROLLARY 4. Consider the 9-dimensional operators defined via 3 X 3 blocks
as follows:

S3; 0 O 0 I3 S3
S=10 S; O and T=|0 0 I;]|,
0 0 S 0 0 O

where I is the 3 X 3 identity matrix. Then S and T commute, |S|=1, w(T)=
cos(w/10), and w(TS) =1 (> 1.05w(T)|S]).
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Proof. Clearly |S3]=|S| =1, and it is easy to check that 7S = ST and that G(7'S)
has a cycle involving 1, 5, and 9. Proposition 1 applies to show that w(7'S)=1.
Moreover, the 7T of this corollary is the same as that of Corollary 3, so that again
w(T) =cos(n/10). O

One can tinker with incidence matrices to examine many such pairs 7 and S,
hoping to obtain better lower bounds on C. It appears that the following corol-
lary gives the best estimate among those based on operators that can be analyzed
using Proposition 1.

COROLLARY 5. Let S=S4, the 16-dimensional shift operator, and let T=
S4+S¥. Then |S| =1, w(T)=cos(n/9), and w(TS) =1. Hence the constant C
(as defined in §1) is no less than 1/cos(w/9)=1.064... .

Proof. We may apply Proposition 1 to 7 and 7'S. The graph G(7'S) includes a
cycle (involving vertices 1, 6, 11, and 16) so that w(7'S) = 1. Examining G(T'), we
find that it falls into two chains of length 8; that is, L =8 for G(T'). O

REMARK. There is no reason to expect that zero-one matrices give the best
lower bounds for C. In fact, by replacing T in Corollary 5 by S4+aS™, where a
is an appropriate positive constant, we can obtain slightly larger ratios. Numeri-
cal studies suggest that @ =1.22 is close to the best choice for this purpose and
that the corresponding estimate is roughly C > 1.066.

3. Implications for dilation theory. The problem of evaluating C was initially
suggested by dilation theory. Such estimates as C < 0.5(2+2vV3)¥/2 (< 1.169), due
to Okubo and Ando [7] (who attribute part of their argument to M. J. Crabb),
and various results about special classes of commuting operators came in response
to this stimulus. We shall briefly review the relevant parts of dilation theory be-
low; for more detail the reader is referred to Sz.-Nagy-Foias [8, Chap. I].

Recall that an operator S on Hilbert space H is a contraction (i.e., |S| <1) ex-
actly when S has a Nagy dilation —that is, a unitary operator U on some Hilbert
space containing H such that

Sn=PHUn|HN (nZl)

(here Py is the orthogonal projection from the larger “dilation space” onto H).
On the other hand, an operator 7 on H is a “numerical contraction” (i.e., w(7) <
1) exactly when 7 has a Berger dilation—that is, a unitary operator ¥ on some
larger space such that

Tn=2PHVn|H (nZl).
It is natural to ask, for commuting 7 and S, whether these representations may

be achieved “simultaneously”; that is, whether there exist unitary U and V com-
muting on a larger space such that, for all integers n, m=0,

) sngm={ LaU"ln il m=0,
2PLUV™|y if m>0.
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This would mean in particular that S7 has a Berger dilation UV, so that w(ST) <
1. In Holbrook [3] it was noted that such a simultaneous dilation is possible when
S and T"double commute (i.e., ST =TS and S*7T"= T'S*). Ando’s dilation theorem
for two commuting contractions (see [2]) does not require double commutativity
and raises the possibility of a similar simultaneous dilation theorem for a numer-
ical contraction 7" simply commuting with a contraction S. We have seen, how-
ever, that this would imply that w(S7T) <1 whenever |S| <1, w(T) =<1, and ST =
T'S. By homogeneity the constant C of §1 would be 1; thus the examples of §2 (or
Miiller’s example) yield the following.

PROPOSITION 2. There exists a commuting pair of (finite-dimensional) oper-
ators S, T such that S has a Nagy dilation and T has a Berger dilation but the pair
has no simultaneous dilation as in (1).

Sz.-Nagy and Foias introduced the classes C, of operators T" having p-dila-
tions: unitary ¥ on a space containing A such that

T"=pPHVn|H (n=1).

The earlier history of these classes is presented in [8, §1.11]. In [4] (see also Wil-
liams [9]), Holbrook develops the properties of the corresponding (homogene-
ous) operator radii defined by

w(T)<1 iff TeC,.

We shall say that a contraction S on H and an operator 7€ C, commuting
with S have a simultaneous (1, p)-dilation if there are commuting unitaries U, V/
on a larger Hilbert space such that

@ sopm={ PuU"a i m=0,
pPrUY ™|, if m>0.

Proposition 2 says that the Ando dilation theorem ((1, 1)-dilations) does not
extend to the (1,2) case. The following proposition says that failure occurs for
(1, p)-dilations with any p>1.

PROPOSITION 3. For any p > 1, there are commuting operators S and T such
that w,(ST) > w,(T)|S|. Consequently there are commuting S’ and T’ such that
S’ is a contraction and T’ has a p-dilation but the pair has no simultaneous (1, p)-
dilation (as in (2)). In particular, if S=Sqand T=S3+(p—1)S7, we have w (T) <
1 while w,(ST) =1.

Proof. In general (see [8, §1.11]), w,(T) <1 if and only if
pI+3 (T )"+ (e1T)*)
1

is positive definite for every 6. Writing our particular 7 in the form
0 I (p—1)J
T=]0 0 I ,
0 0 0
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where 7 is the 3 X 3 identity matrix and J = S;, we must verify that

ol el  (p—DeiJ+e2i0]
e 9] ol eifr
(p—1)e~0J* =200 e—i0f ol

is positive definite. This matrix is unitarily equivalent (via diag{1, e, e2}) to

ol I I+(p—1)e~iJ
I ol I
I+ (p—1)ebJ* I ol

so that we need to show that [7]4+(p—1)(l9— Q) >0, where

I I 1 0 0 —e-itj
1=|71 1 I| and Q=] 0 0 0O
I I T —eifj* 0 0

Now ([I1h, h) = |x+y+2z|? (=0), where

>
I
N X

Also, Q is a (self-adjoint) contraction, so (Io— Q) =0. This makes it clear that
[I14+(p—1)(I9— Q) =0. To show that the inequality is strict we must examine
those A for which ([7]4, k) =0 and ((Io— Q)A, k) =0. This requires |x+y+2z| =
0 and

|x|2+1»1?+ |z]|* = —2 Re(e¥(x, Jz));

because this last quantity is no greater than |x|?+ |z]? we must have y =0 and
|x+z] =0, so that —2 Re(e?(x, Jz)) = 2 Re(e??(z, Jz)). This can only be 2|z [?if
Jz =ei%z, which forces z =0 and hence 4 =0.

To show that w,(ST) =1 we may first note that ST=S*+(p—1)S? and that
S§ is unitarily equivalent to S;@®S,®S,®S,. Thus ST is unitarily equivalent to
(J+(p—1) DS, ®S,®S,, and we need only check that w,(J+ (p—1)J?) =1.
Using the general criterion described at the beginning of this proof, we see that
we must check that the 3 X 3 matrix

is nonnegative for every 6. Since p > 1, the first two principal minors are certainly
positive, and it is a matter of computing the 3 X3 determinant. This turns out
to be 2(p—1)%2(1—Re(e’?)), a nonnegative quantity that vanishes at 8 =0. Thus
w,(J+(p—1)J?)=1. O
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