SOME REMARKS ON POSITIVELY
CURVED 4-MANIFOLDS

Walter Seaman

1. The aim of this note is to prove the following.

THEOREM. Let M* be a compact, connected, oriented, positively curved Rie-
mannian 4-manifold without boundary. Then M admits at most one harmonic 2-
Jorm of constant length (up to constant multiples). If M admits such a 2-form,
then M is definite.

Background and motivation for the above theorem can be summarized as fol-
lows: the Hopf conjecture asserts that S%2x S? admits no metric of strictly pos-
itive sectional curvature. We have attempted to gain insight into this conjec-
ture by starting with a positively curved compact, oriented 4-manifold M (with
the metric normalized so that the sectional curvature K satisfies 1=K =6>0).
From Synge’s theorem, M is simply connected. Since M is 4-dimensional, it fol-
lows that Hy(M,Z)=H;3;(M;Z)=0 and H,(M;Z) = H?*(M;Z) is torsion-free.
It follows from [2] that we know M topologically once we know its intersection
form.

From a (Riemannian) geometric point of view we know

H*(M;R)=H?*M;Z)QR

as the DeRham cohomology and as the space of harmonic 2-forms (relative to
the subsumed metric). It seems natural to ask, then, if there are topological re-
strictions to the “types” of harmonic 2-forms such a manifold can admit? In [3]
we showed that if our M admits a parallel 2-form, then dim H?(M;R)=1 and
it follows that M is CP? (topologically and even biholomorphically).

In the theorem above we relax the assumption of the existence of a parallel
2-form to the existence of a harmonic 2-form of constant length.

While this assumption is clearly quite strong, it is strictly weaker than parallel,
and we can at least still conclude that M is definite, so that we conclude that a
smooth topological indefinite four manifold can never support such a metric. As
S2x 82, and in fact

S2xS2#.--#S2xS2# CP2#---# CP2# CP2#---# CP2

n m k

where either » > 0, or n =0 and m -k # 0, are all indefinite, our theorem rules out
all such manifolds. In fact, it follows from [1] and [2] that a definite, smooth
simply connected compact 4-manifold must be topologically

CP2#..--#CP?2,
by
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Thus, we can summarize as follows: M* compact, positively curved admitting a
parallel 2-form = M* = CP? (topologically); and M* positively curved admitting
a harmonic 2-form of constant length = M* = CP2#...# CP2,

Ultimately, one would like to make conclusions about M without any special
assumptions of the types of harmonic 2-forms it admits, and this is the focus of
our ongoing work.

Finally, we comment on the significance of the “at most one” portion of our
theorem. In [3] we show that on a purely vector space level, if 1=K=6>0at a
point then the Weitzenbéck operator R, has kernel dimension at most one at
that point, and is positive definite on the orthogonal complement to the kernel.
Solutions to R, X = 0 are the “infinitesimal” version of parallel 2-forms, and our
results in [3] follow. Here we show more generally (again, at a purely vector
space level), that if R, has a nonpositive eigenvalue, then the corresponding eigen-
space is one-dimensional and R, is positive definite on the orthogonal comple-
ment to this eigenspace (this is Proposition 3). Solutions to (R, X, X) <0 are
an “infinitesimal” version of harmonic forms of constant length, and the “at most
one” portion of our current theorem shows that, under this assumption globally,
uniqueness still follows for a compact 4-manifold.

Our notation follows that of [3]. In particular, R, is the Weitzenbock opera-
tor, and harmonic forms X satisfy 0= JA| X |?>+|VX |2+ (R, X, X), and the sec-
tional curvature of M, K, satisfies 1=K = 6__> 0. Also, e;;=e;Ne; where ¢;, e; are
orthonormal vectors, and {(Rye;;,e;;> = K" =3 .; Kjj+ X« j Kip = 48, where
K;;=sectional curvature of {e;, e;}.

Finally, since our initial concerns are linear algebraic in R, at a point, we iden-
tify 2-forms with 2-vectors as in [3].

2. The linear algebra of R,. From the definition of R, (cf. (3) in [3]), we
know that R, is a symmetric operator on A2(7},M ) for each p. As M is ori-
ented, A>(M) = A% (M) @ A% (M), the eigenspace splitting for the Hodge *-
operator.

PROPOSITION 1. Ry: A, = A, and Ry: A_ - A_.

Proof. It suffices to show R,: A, — A, since R, is symmetric. To show this we
need only show

6)) (R X,,X >=0 VvX,eA(T,M), X_eA>(T,M).

There is an oriented orthonormal basis e, ..., e4 of 7,,M such that
V2

2 Xi=7|Xil(612ie34)'

Thus the left-hand side of (1) is
3) (Ro Xy, X_)= 3| X || X_[KRy(e13+e€34), €12~ €34).
This last term is equal to O using the definition of R, ((3) in [3]). ]
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PROPOSITION 2. Fix pe M and let ry<r, < --- <rg be the eigenvalues of R,
on A*(T,M). Assume r|<0. Then r;+r; =83 Vi=2,...,6.

Proof. Assume R, X =r; X. Then splitting X=X, +X_, we get from Propo-
sition 1 that R, X, =r; X, . Now take any X=X, + X_. Then from (2),
| X_| X, + X | X_=V2[X_|| X, ey
Again from Proposition 1 we get
@ (Ro(| X _| X + | X | X)), | X | X, +]| X | XD
= | X_|P(RX . X )+ | X |P{RX_X_).

From (4) we have
) | X_|2(RX L X )+ | X [ HURX_X_y=2|X_|?| X, |?PK"?= 86| X_|?| X, |2
Now assume R, X =r; X (r;<0). Then (5) shows that either X=X, or X=X_.

We may assume (by using — * in place of *) that X=X _ . Then (5) again shows
that, if RX_=r; X_,

ry+r; = 86.

Suppose now that R, X;=r; X;, i = 2. The above remarks show that, in order to
conclude r+r; = 85, we need only consider X;=X_, € A,. Also assume RX,=
ri X, (X;e A,). Taking X, X; orthogonal unit vectors, there is an orthonormal
basis £, ..., F, of T, M such that

1 1
(6) X1= 7_2—[—‘F12+F34], Xi= —E[Fl3+Fz4]
as in (9), (10) of [1]. As in that paper, we conclude:
() ri=K2+2R 5, ri=KB—2Ry;

and adding these, we obtain
) rytr;= 29+K14+K23+2R1423,

where p=scalar curvature.
The argument in [3] ((14) through (17)) now shows that r,+r; = 86. O

PROPOSITION 3. Let X, Y be nonzero vectors in AZT M such that (R, X, X) <
0 and (X,Yy=0. Then (R,Y,Y) = 85|Y |2

Proof. Let e; be a unit eigenvector for the minimum R, eigenvalue r; (<0).
Proposition 2 shows that r; =86+ |r;| for i=2,..., 6. Decompose orthogonally
X=x1e;,+ X", Y=y,6,+ Y . Then (R, Y, Y')=(86+|ry|)|Y’|?and (R, X", X'y =
85+ ) [ X2

Now 0= (R, X, Xy =x{r +(85+|ry|)| X’|?, so we have

X
85"“‘,"1' - x12

®)
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Also, 0 =x,y;+(X’, Y'Y so y2 =(X’,Y'Y*/x{. Hence
X', Y’ )?
<R2Y, Y) =_yi2r1+(RY’, YI> = _<__x2—r1+(85+ ’r1|)|Y'|2
i

X’ 2
z|Y’|2|xz| ri+(88+|r)| Y|
i
Using (9), we now obtain:

)
<R2xY>2|Y'[2(m+85+[rl|>

(10) 861r.|

! r 7

=Y |2(m)+8a|1’ |2.

Again, we have
(X, Y')? X2 _|Y']?|r]
x? x2 — 86+|r|

(by (9)). Therefore, 85y2=<|Y’|2-88|r,|/|r:|+ 86, and so (10) yields (R,Y,Y)=
86y +86|Y’|>=86|Y|% O

yi= =y

3. Proof of the theorem in §1. If X is a harmonic form, then as noted,
11 0=1A|X2+|VX|2+(R,, X, X),

where |VX|3=13;|V,, X|2, e; an orthonormal basis for 7, M. In particular, for
any harmonic X, integrating (13) over M yields

(12) | <Ryxxy=<0
M
with equality if and only if X is parallel. Polarizing (11) we obtain, for any har-
monic X and Y,
(13) 0= %A(XY)+(VX,VY)+<R2X, Y)

where (VX, VY),=3,;(V,; X, V., Y).

We shall now prove that if X and Y are harmonic 2-forms with constant
length then X is a constant multiple of Y. Assume |Y|?2=1. Now (11) yields that
(R, X, X)=—|VX|?=<0, and (R,Y,Y)= —|VY|2=<0 everywhere on M. Also,
X —(XY)Y is everywhere orthogonal to Y, so Proposition 3 of §2 yields

(14) (Ry(X—AXY)YY), X—(XY)YY)=85|X—(XY)|?,

which reduces to

(15) (RyXX)—2(XY IR, X,YY+H(XY)(R,Y,Y)=85|XNY|%

Using (13) and the above remarks, (15) yields

(16) —|VX|24+2XYXVX,VY)— (XYY |VY|?+(XY)A(X,Y) = 85| XAY |2
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Now Proposition 3 implies that (XY is never 0, since both (R, X, X) <0 and
(R,Y,Y)=<0, and X, Y are never 0. We may therefore assume that (XY)>0
everywhere on M. Also, using the Cauchy-Schwartz inequality twice, we have
(VX,VY)=<|VX||VY]|. Using this in (16), we get

a17) —(|[VX|—(XY)|VY )2+ (XYYA(XY )= 85| XNY|?%

hence (XY)A(XY)=88|XAY|?and since (XY) >0, we get A(XY)=0every-
where, so (X, Y) is constant and | XAY|=0. Therefore X = fY for some func-
tion f. But then constant = | X|2=(X, fY) = f-constant, so f is constant. Thus
X =constant-Y.

We now will show that if M has a 2-form of constant length then M is definite.

Let X=X, 4+X_. Now 0= (R, XX)=( R, X, X )+ (R, X_,X_)so(5)im-
plies that at no point can we have | X, |?=|X_|% We can assume |X,|2>|X_|?
everywhere. We have |X_|2(R, XX) =<0 so

| X_ 2R X 4, X )+ | X_ | R, X_, X_y=<0,
and from (5) we get
| X_ |2 (R X1, X )+ X_ PR, X_, X_)
=0=88|X,|?|X_]|?
S| X R X, X )+ | X_|2(R X, X 1)
Hence we obtain:
(18) 0=(| X, |>—|X_|){R;X_,X_) everywhere on M,

which implies (RX_, X_) = 0 everywhere on M. If X_ # 0 then (12) now implies
X_ is parallel and, from [3], b, =1 which contradicts the existence of X, . Thus
X_=0. We now know X =X, and hence (RX,, X,)=<0. One more applica-
tion of (5) now shows that, for any X_, (RX_,X_) = 88| X_|? which via (12)

means there are no harmonic forms of the type X_, so M is (positive) definite.
O
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