SOME REMARKS ON POSITIVELY CURVED 4-MANIFOLDS

Walter Seaman

1. The aim of this note is to prove the following.

THEOREM. Let M^4 be a compact, connected, oriented, positively curved Riemannian 4-manifold without boundary. Then M admits at most one harmonic 2-form of constant length (up to constant multiples). If M admits such a 2-form, then M is definite.

Background and motivation for the above theorem can be summarized as follows: the Hopf conjecture asserts that $S^2 \times S^2$ admits no metric of strictly positive sectional curvature. We have attempted to gain insight into this conjecture by starting with a positively curved compact, oriented 4-manifold M (with the metric normalized so that the sectional curvature K satisfies $1 \ge K \ge \delta > 0$). From Synge's theorem, M is simply connected. Since M is 4-dimensional, it follows that $H_1(M, \mathbb{Z}) = H_3(M; \mathbb{Z}) = 0$ and $H_2(M; \mathbb{Z}) \cong H^2(M; \mathbb{Z})$ is torsion-free. It follows from [2] that we know M topologically once we know its intersection form.

From a (Riemannian) geometric point of view we know

$$H^2(M; \mathbf{R}) = H^2(M; \mathbf{Z}) \otimes \mathbf{R}$$

as the DeRham cohomology and as the space of harmonic 2-forms (relative to the subsumed metric). It seems natural to ask, then, if there are topological restrictions to the "types" of harmonic 2-forms such a manifold can admit? In [3] we showed that if our M admits a parallel 2-form, then dim $H^2(M; \mathbf{R}) = 1$ and it follows that M is \mathbb{CP}^2 (topologically and even biholomorphically).

In the theorem above we relax the assumption of the existence of a parallel 2-form to the existence of a harmonic 2-form of constant length.

While this assumption is clearly quite strong, it is strictly weaker than parallel, and we can at least still conclude that M is definite, so that we conclude that a smooth topological indefinite four manifold can never support such a metric. As $S^2 \times S^2$, and in fact

$$\mathbf{S}^2 \times \mathbf{S}^2 \# \cdots \# \mathbf{S}^2 \times \mathbf{S}^2 \# \mathbf{CP}^2 \# \cdots \# \mathbf{CP}^2 \# \overline{\mathbf{CP}^2} \# \cdots \# \overline{\mathbf{CP}^2}$$

where either n > 0, or n = 0 and $m \cdot k \neq 0$, are all indefinite, our theorem rules out all such manifolds. In fact, it follows from [1] and [2] that a definite, smooth simply connected compact 4-manifold must be topologically

$$\mathbf{CP}^2 \# \cdots \# \mathbf{CP}^2.$$

Received March 9, 1987. Revision received May 22, 1987. Michigan Math. J. 35 (1988).

Thus, we can summarize as follows: M^4 compact, positively curved admitting a parallel 2-form $\Rightarrow M^4 \approx \mathbb{CP}^2$ (topologically); and M^4 positively curved admitting a harmonic 2-form of constant length $\Rightarrow M^4 \approx \mathbb{CP}^2 \# \cdots \# \mathbb{CP}^2$.

Ultimately, one would like to make conclusions about M without any special assumptions of the types of harmonic 2-forms it admits, and this is the focus of our ongoing work.

Finally, we comment on the significance of the "at most one" portion of our theorem. In [3] we show that on a purely vector space level, if $1 \ge K \ge \delta > 0$ at a point then the Weitzenböck operator R_2 has kernel dimension at most one at that point, and is positive definite on the orthogonal complement to the kernel. Solutions to $R_2X=0$ are the "infinitesimal" version of parallel 2-forms, and our results in [3] follow. Here we show more generally (again, at a purely vector space level), that if R_2 has a nonpositive eigenvalue, then the corresponding eigenspace is one-dimensional and R_2 is positive definite on the orthogonal complement to this eigenspace (this is Proposition 3). Solutions to $\langle R_2X, X\rangle \le 0$ are an "infinitesimal" version of harmonic forms of constant length, and the "at most one" portion of our current theorem shows that, under this assumption globally, uniqueness still follows for a compact 4-manifold.

Our notation follows that of [3]. In particular, R_2 is the Weitzenbock operator, and harmonic forms X satisfy $0 = \frac{1}{2}\Delta |X|^2 + |\nabla X|^2 + \langle R_2 X, X \rangle$, and the sectional curvature of M, K, satisfies $1 \ge K \ge \delta > 0$. Also, $e_{ij} = e_i \land e_j$ where e_i , e_j are orthonormal vectors, and $\langle R_2 e_{ij}, e_{ij} \rangle = K^{ij} = \sum_{k \ne i} K_{jk} + \sum_{k \ne j} K_{ik} \ge 4\delta$, where K_{ij} = sectional curvature of $\{e_i, e_i\}$.

Finally, since our initial concerns are linear algebraic in R_2 at a point, we identify 2-forms with 2-vectors as in [3].

2. The linear algebra of R_2 . From the definition of R_2 (cf. (3) in [3]), we know that R_2 is a symmetric operator on $\Lambda^2(T_pM)$ for each p. As M is oriented, $\Lambda^2(M) = \Lambda^2_+(M) \oplus \Lambda^2_-(M)$, the eigenspace splitting for the Hodge *-operator.

PROPOSITION 1.
$$R_2: \Lambda_+ \to \Lambda_+$$
 and $R_2: \Lambda_- \to \Lambda_-$.

Proof. It suffices to show $R_2: \Lambda_+ \to \Lambda_+$ since R_2 is symmetric. To show this we need only show

(1)
$$\langle R_2 X_+, X_- \rangle = 0 \quad \forall X_+ \in \Lambda^2_+(T_p M), \ X_- \in \Lambda^2_-(T_p M).$$

There is an oriented orthonormal basis $e_1, ..., e_4$ of T_pM such that

(2)
$$X_{\pm} = \frac{\sqrt{2}}{2} |X_{\pm}| (e_{12} \pm e_{34}).$$

Thus the left-hand side of (1) is

(3)
$$\langle R_2 X_+, X_- \rangle = \frac{1}{2} |X_+| |X_-| \langle R_2(e_{12} + e_{34}), e_{12} - e_{34} \rangle.$$

This last term is equal to 0 using the definition of R_2 ((3) in [3]).

PROPOSITION 2. Fix $p \in M$ and let $r_1 \le r_2 \le \cdots \le r_6$ be the eigenvalues of R_2 on $\Lambda^2(T_pM)$. Assume $r_1 \le 0$. Then $r_i + r_1 \ge 8\delta \ \forall i = 2, ..., 6$.

Proof. Assume $R_2X = r_iX$. Then splitting $X = X_+ + X_-$, we get from Proposition 1 that $R_2X_+ = r_iX_+$. Now take any $X = X_+ + X_-$. Then from (2),

$$|X_{-}|X_{+} + |X_{+}|X_{-} = \sqrt{2} |X_{-}| |X_{+}| e_{12}.$$

Again from Proposition 1 we get

(4)
$$\langle R_2(|X_-|X_+ + |X_+|X_-), |X_-|X_+ + |X_+|X_-\rangle = |X_-|^2 \langle RX_+ X_+\rangle + |X_+|^2 \langle RX_- X_-\rangle.$$

From (4) we have

(5)
$$|X_{-}|^{2}\langle RX_{+}X_{+}\rangle + |X_{+}|^{2}\langle RX_{-}X_{-}\rangle = 2|X_{-}|^{2}|X_{+}|^{2}K^{12} \ge 8\delta|X_{-}|^{2}|X_{+}|^{2}$$

Now assume $R_2X = r_1X$ ($r_1 \le 0$). Then (5) shows that either $X = X_+$ or $X = X_-$. We may assume (by using -* in place of *) that $X = X_+$. Then (5) again shows that, if $RX_- = r_iX_-$,

$$r_1 + r_i \ge 8\delta$$
.

Suppose now that $R_2X_i = r_iX_i$, $i \ge 2$. The above remarks show that, in order to conclude $r_1 + r_i \ge 8\delta$, we need only consider $X_i = X_+ \in \Lambda_+$. Also assume $RX_1 = r_1X_1$ ($X_1 \in \Lambda_+$). Taking X_1, X_i orthogonal unit vectors, there is an orthonormal basis F_1, \ldots, F_4 of T_pM such that

(6)
$$X_1 = \frac{1}{\sqrt{2}} [-F_{12} + F_{34}], \quad X_i = \frac{1}{\sqrt{2}} [F_{13} + F_{24}]$$

as in (9), (10) of [1]. As in that paper, we conclude:

(7)
$$r_1 = K^{12} + 2R_{1243}, \quad r_i = K^{13} - 2R_{4213}$$

and adding these, we obtain

(8)
$$r_1 + r_i = \frac{1}{2}\rho + K_{14} + K_{23} + 2R_{1423},$$

where $\rho = \text{scalar curvature}$.

The argument in [3] ((14) through (17)) now shows that $r_1 + r_i \ge 8\delta$.

PROPOSITION 3. Let X, Y be nonzero vectors in $\Lambda^2 T_p M$ such that $\langle R_2 X, X \rangle \leq 0$ and $\langle X, Y \rangle = 0$. Then $\langle R_2 Y, Y \rangle \geq 8\delta |Y|^2$.

Proof. Let e_1 be a unit eigenvector for the minimum R_2 eigenvalue r_1 (≤ 0). Proposition 2 shows that $r_i \geq 8\delta + |r_1|$ for i = 2, ..., 6. Decompose orthogonally $X = x_1 e_1 + X'$, $Y = y_1 e_1 + Y'$. Then $\langle R_2 Y', Y' \rangle \geq (8\delta + |r_1|)|Y'|^2$ and $\langle R_2 X', X' \rangle \geq (8\delta + |r_1|)|X'|^2$.

Now $0 \ge \langle R_2 X, X \rangle \ge x_1^2 r_1 + (8\delta + |r_1|) |X'|^2$, so we have

(9)
$$\frac{|r_1|}{8\delta + |r_1|} \ge \frac{|X'|^2}{x_1^2}.$$

Also,
$$0 = x, y_1 + \langle X', Y' \rangle$$
 so $y_1^2 = \langle X', Y' \rangle^2 / x_1^2$. Hence
$$\langle R_2 Y, Y \rangle = y_1^2 r_1 + \langle R Y', Y' \rangle \ge \frac{\langle X', Y' \rangle^2}{x_1^2} r_1 + (8\delta + |r_1|) |Y'|^2$$
$$\ge |Y'|^2 \frac{|X'|^2}{x_1^2} r_1 + (8\delta + |r_1|) |Y'|^2.$$

Using (9), we now obtain:

(10)
$$\langle R_2 Y, Y \rangle \ge |Y'|^2 \left(\frac{-r_1^2}{8\delta + |r_1|} + 8\delta + |r_1| \right)$$

$$= |Y'|^2 \left(\frac{8\delta |r_1|}{|r_1| + 8\delta} \right) + 8\delta |Y'|^2.$$

Again, we have

$$y_1^2 = \frac{\langle X', Y' \rangle^2}{x_1^2} \le |Y'|^2 \frac{|X'|^2}{x_1^2} \le \frac{|Y'|^2 |r_1|}{8\delta + |r_1|}$$

(by (9)). Therefore, $8\delta y_1^2 \le |Y'|^2 \cdot 8\delta |r_1|/|r_1| + 8\delta$, and so (10) yields $\langle R_2 Y, Y \rangle = 8\delta |Y|^2 + 8\delta |Y'|^2 = 8\delta |Y|^2$.

3. Proof of the theorem in §1. If X is a harmonic form, then as noted,

(11)
$$0 = \frac{1}{2}\Delta |X|^2 + |\nabla X|^2 + \langle R_2, X, X \rangle,$$

where $|\nabla X|_p^2 = \sum_i |\nabla_{e_i} X|_p^2$, e_i an orthonormal basis for $T_p M$. In particular, for any harmonic X, integrating (13) over M yields

$$(12) \qquad \qquad \int_{M} \langle R_2 X X \rangle \le 0$$

with equality if and only if X is parallel. Polarizing (11) we obtain, for any harmonic X and Y,

(13)
$$0 = \frac{1}{2}\Delta\langle XY\rangle + \langle \nabla X, \nabla Y\rangle + \langle R_2 X, Y\rangle$$

where $\langle \nabla X, \nabla Y \rangle_p = \sum_i \langle \nabla_{e_i} X, \nabla_{e_i} Y \rangle$.

We shall now prove that if X and Y are harmonic 2-forms with constant length then X is a constant multiple of Y. Assume $|Y|^2 \equiv 1$. Now (11) yields that $\langle R_2 X, X \rangle = -|\nabla X|^2 \leq 0$, and $\langle R_2 Y, Y \rangle = -|\nabla Y|^2 \leq 0$ everywhere on M. Also, $X - \langle XY \rangle Y$ is everywhere orthogonal to Y, so Proposition 3 of §2 yields

(14)
$$\langle R_2(X - \langle XY \rangle Y), X - \langle XY \rangle Y \rangle \ge 8\delta |X - \langle XY \rangle|^2,$$

which reduces to

$$(15) \langle R_2 X X \rangle - 2 \langle X Y \rangle \langle R_2 X, Y \rangle + \langle X Y \rangle^2 \langle R_2 Y, Y \rangle \ge 8\delta |X \wedge Y|^2.$$

Using (13) and the above remarks, (15) yields

$$(16) \quad -|\nabla X|^2 + 2\langle XY\rangle\langle\nabla X, \nabla Y\rangle - \langle XY\rangle^2|\nabla Y|^2 + \langle XY\rangle\Delta\langle X, Y\rangle \ge 8\delta|X\wedge Y|^2.$$

Now Proposition 3 implies that $\langle XY \rangle$ is never 0, since both $\langle R_2X, X \rangle \leq 0$ and $\langle R_2Y, Y \rangle \leq 0$, and X, Y are never 0. We may therefore assume that $\langle XY \rangle > 0$ everywhere on M. Also, using the Cauchy-Schwartz inequality twice, we have $\langle \nabla X, \nabla Y \rangle \leq |\nabla X| |\nabla Y|$. Using this in (16), we get

$$(17) \qquad -(|\nabla X| - \langle XY \rangle |\nabla Y|)^2 + \langle XY \rangle \Delta \langle XY \rangle \ge 8\delta |X \wedge Y|^2;$$

hence $\langle XY \rangle \Delta \langle XY \rangle \ge 8\delta |X \wedge Y|^2$ and since $\langle XY \rangle > 0$, we get $\Delta \langle XY \rangle \ge 0$ everywhere, so $\langle X, Y \rangle$ is constant and $|X \wedge Y| \equiv 0$. Therefore X = fY for some function f. But then constant $= |X|^2 = \langle X, fY \rangle = f \cdot \text{constant}$, so f is constant. Thus $X = \text{constant} \cdot Y$.

We now will show that if M has a 2-form of constant length then M is definite. Let $X = X_+ + X_-$. Now $0 \ge \langle R_2 X X \rangle = \langle R_2 X_+, X_+ \rangle + \langle R_2 X_-, X_- \rangle$ so (5) implies that at no point can we have $|X_+|^2 = |X_-|^2$. We can assume $|X_+|^2 > |X_-|^2$ everywhere. We have $|X_-|^2 \langle R_2 X X \rangle \le 0$ so

$$|X_{-}|^{2}\langle R_{2}X_{+}, X_{+}\rangle + |X_{-}|^{2}\langle R_{2}X_{-}, X_{-}\rangle \leq 0,$$

and from (5) we get

$$\begin{split} |X_{-}|^{2} \langle R_{2}X_{+}, X_{+} \rangle + |X_{-}|^{2} \langle R_{2}X_{-}, X_{-} \rangle \\ &\leq 0 \leq 8\delta |X_{+}|^{2} |X_{-}|^{2} \\ &\leq |X_{+}|^{2} \langle R_{2}X_{-}, X_{-} \rangle + |X_{-}|^{2} \langle R_{2}X_{+}, X_{+} \rangle. \end{split}$$

Hence we obtain:

(18)
$$0 \le (|X_+|^2 - |X_-|^2) \langle R_2 X_-, X_- \rangle$$
 everywhere on M ,

which implies $\langle RX_-, X_- \rangle \ge 0$ everywhere on M. If $X_- \ne 0$ then (12) now implies X_- is parallel and, from [3], $b_2 = 1$ which contradicts the existence of X_+ . Thus $X_- \equiv 0$. We now know $X = X_+$ and hence $\langle RX_+, X_+ \rangle \le 0$. One more application of (5) now shows that, for any X_- , $\langle RX_-, X_- \rangle \ge 8\delta |X_-|^2$ which via (12) means there are no harmonic forms of the type X_- , so M is (positive) definite.

REFERENCES

- 1. S. Donaldson, An application of gauge theory to four dimensional topology, J. Differential Geom. 18 (1983), 279-315.
- 2. M. Freedman, *The topology of four dimensional manifolds*, J. Differential Geom. 17 (1982), 357-454.
- 3. W. Seaman, Two forms on four manifolds, Proc. Amer. Math. Soc. 101 (1987), 353-357.

Department of Mathematics University of Iowa Iowa City, Iowa 52242