REPRESENTING HOMOLOGY CLASSES OF
ALMOST DEFINITE 4-MANIFOLDS

Terry Lawson

1. Introduction. In this note we wish to apply results of gauge theory (cf. [1],
[2], [3]) to study which 2-dimensional homology classes are representable by em-
bedded 2-spheres for almost definite 4-manifolds with odd intersection form. We
work throughout in the differentiable category. Most of our results will concern
simply connected 4-manifolds. Here results of Wall [15] and Freedman [5] imply
that a simply connected 4-manifold with odd intersection form is homeomorphlc
to the connected sum of p copies of CP? and g copies of CP?2, where CP? de-
notes CP? with the other orientation. Let M(p, q) denote a differentiable 4-man-
ifold which is homeomorphic to pCP?*#gCP2. Note that Donaldson has shown
that there exist examples of manifolds AM(1,9) which are not diffeomorphic to
CP2#9CP2. Our results will concern almost definite manifolds where p =1 or 2.

Let us recall what Donaldson’s Theorems A, B, and C say (cf. [1], [2]). The-
orem A says that a definite simply connected 4-manifold must have standard in-
tersection form. It was applied by Kuga [8] and Suciu [13] to study the problem
of representing homology classes in S?x S? and CP? by embedded spheres and
to give estimates on the number of double points of immersed spheres that repre-
sent the homology class. In the course of proving their results, they also gave re-
sults for when some rather special homology classes in manifolds M(p, q) are
represented by embedded spheres. An alternate proof of Kuga’s theorem was
given by Fintushel and Stern [3], and their techniques will be the basis of our re-
sults on M(1,1) and M(1,2). Theorem B says that a simply connected spin 4-
manifold with #3 =1 must have intersection form a standard hyperbolic form of
rank 2. Theorem C says that a simply connected spin 4-manifold with 63 =2
must have intersection form the direct sum of two copies of the standard hyper-
bolic form.

Our main results are the following.

THEOREM 1. If x, y represent generators of H,(M(1,1)) with xy=0, x*=
—y2=1, then ax+ by is not represented by an embedded sphere if ||la|—|b|| =2,
except for +(0,2), +(2,0), (1, —1). If M(1,1) is diffeomorphic to CP*#CP?,
then ax+ by is represented by an embedded sphere if and only if ||a|—|b|| <1 or
(a,b)= +(0,2) or £(2,0) or =(1, —1).

THEOREM 2. Let x be a characteristic homology class m Hz (M(1,2)).

(i) If x is represented by an embedded sphere, then x = —1.
(i) If M(1,2) is diffeomorphic to CP*#2CP? and x*= —1, then x is repre-
sented by an embedded sphere.
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Note that Rohlin’s signature theorem says that in the situation of part (i) we
must have x?>= —1mod 16 (cf. [7]). Note also that Theorem 2 implies that any
realizable characteristic homology class y in 2CP? must have y?= —2, that is,
it must be the sum of the standard generators.

THEOREM 3. Let x be a characteristic homology class in Hy(M(p, q)).
G) Ifp=1,g>2,andx*=—1,0rifp=1, g>3, and x*>= —2, then x is not

represented by an embedded sphere.

Gi) If p=2, g>3, and x*>= —1, then x is not represented by an embedded
sphere.

(iii) If p = q =2 and x is represented by an embedded sphere, then x* =0, that
is, the sphere has trivial normal bundle.

Gv) If p=2, g=3, and x*=0, then x is not represented by an embedded
sphere.

Note that in case (ii) Wall [14, Lemma 6] shows that one can represent any
primitive characteristic class x of H,(M (2, q)), g =3, with x?=2—¢g by an em-
bedded sphere. He also shows [14, Theorem 3] that every primitive ordinary class
in H,(M(2, q)), q =2, can be represented by an embedded sphere. One can use
Rochlin’s genus theorem [11] to show that for AM(2, 2) the only divisible classes
which could be represented by an embedded sphere would have to be of the form
x=ky, where 0<k <3 and y2= +1. If k=1, the class x = y is primitive ordinary
and so can be represented. In any event, y can be represented. When k =2, one
can use [14, Lemma 5] to show that x can be represented. When k = 3, the same
techniques will show only that the class is representable by an embedded torus.
For certain special classes, such as (3,0, 3,0), geometric techniques will allow
one to find spheres which represent them, but the general question —when k=3
and the class is not characteristic —remains open.

Theorem 2 has characterized which characteristic elements in M(1, 2) are rep-
resented by embedded spheres. We now wish to give some partial results on which
primitive ordinary elements in M (1, 2) are so represented using techniques sim-
ilar to those used in the proof of Theorem 1. The difficulty in applying this tech-
nique more generally is in finding an appropriate pseudofree Euler class to use.
We will concentrate on the classes of the form # =ax + by +cz, where a, b,c=1
and u?=1. Here x, ¥, z are the standard generators with xl=—y?= —z2=1. We
refer to this class as (a, b, ¢). Recall that in M (1, 1) the class (k+2, k) is not rep-
resented by an embedded sphere for £k = 1. We show the following.

THEOREM 4. With the notation above, the class u = (2k+3, 2k +1, 2m), with
k, m =1, is not represented by an embedded 2-sphere if u*>=5.

Recall that in [10] we obtained some restrictions on the normal Euler number
of an embedded real projective plane in a positive definite 4-manifold. Here we
will apply our current techniques to improve those results in a couple of cases.
Our main improvement comes in the case of a characteristic embedding of RP?
in CP2. In [10] we showed that the normal Euler number was greater than or
equal to —1 and was congruent mod 16 to either —1 or 3. We conjectured that
only the values —1 and 3 could occur. Here we will verify that conjecture.
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THEOREM 5. The normal Euler number of a characteristic embedding of RP?
in CP? is either —1 or 3.

2. Proof of Theorem 1. Our argument follows the same outline as that given
by Fintushel and Stern [3] for the case of S?x S2. The reader should be familiar
with that argument as we will concentrate mainly on the points of the argument
which differ in our case. Let u =ax+ by; by replacing x, y by their negatives if
necessary we may assume that a = b+ 2 = 3. Note that Rochlin’s genus theorem
(cf. [11]) can be used to rule out representing all nonzero classes with a common
factor of @ and b except +(2,0), +(0,2), +(1, —1) or when |a|=|b|. Thus we
will assume that ¢ and b are relatively prime. Using the fact that a, b are rela-
tively prime we can choose a’, b’ soab’—a’b=1, 1=a’'<a—1, 1=b’'=b—1(or
b=b'=1). Set v=a’x+b’y. Then u,v generate H,(M(1,1)). Assume that « is
represented by an embedded sphere and let &V denote a tubular neighborhood.
Then 8N~ L(a®*—b?2,1). Let Y=M(1,1)\int N. One computes that H,(Y) =
H;3(Y)=0 and H,(Y) = Z. Now consider the Poincaré duals of u, v which we
will also denote by the same symbols. Then H>%(Y) is generated by the image of
v, which we will denote by v. Now consider the commutative diagram

H*(Y,dY) — H*(Y) 5 H?*QY)
0 1 ; 0
H*(M,N) — H*(M) 4> H*(N).

The map j* is just the cup product with # evaluated on the orientation class times
the generator of H2(NN) given by the Poincaré dual to the disk fiber. Note that
the generator of H*(N)=Z maps to the generator of H*(dN) = Z/(u?). Thus
to compute the cup product in the orbifold X = Y UcdY, we note that this cup
product structure is determined by that of the manifold with boundary Y and
so v?= (uzvz——(uv)z)/uz. Here we are using the identification of H*(M) with
Z. Also i*(v) = uv mod u?. Note

uv=aa’'—bb’ and (aa’—bb’)?>=(a’*-=b*)(a’>-b"*)+1

(using 1= (ab’—a’b)?). Thus i*(v) is a generator and so we can use the class v as
the pseudofree Euler class e when forming the bundle over the pseudofree orbi-
fold. Also e?= —1/u2, and so this will imply u(e) =1. The argument so far has
been a straightforward adaptation of the one in [3] for the case of S?x.S2. What
remains is to show that the index is positive when a = b +2 = 3. Using the same
techniques as in [3] (or the basic formula in [9]) one computes that the index is
—34+2(uv—1v?), so we are reduced to showing that (uv—v?)=2. For the case
of §?x S? this follows easily, since uv—v2=a’(a—a’)+b’(b—>b’) and it is easy
to show this is =2 if @, b=2. In our case, (uw—v?)=a’(a—a’)—b’(b—>b’). We
use 1=ab’—ba’, so a’'(a—a’)—b'(b—b’)—1={(a+b)—(a’+b"))(a’'—b')=1
since each term in the product is =1 with our assumption that a=b6+2=3.
We now need to see why those classes that have not been excluded are repre-
sented in CP?#CP?2. The three exceptional cases are easily represented using
embedded spheres in CP?2 representing the generator or twice the generator. For
[la|—|b|| =1, the easiest way to see that these classes are represented by an em-



88 TERRY LAWSON

bedded sphere is to regard the total space as the twisted S2 bundle over S2. I am
indebted to A. Suciu for pointing out the usefulness of this viewpoint to me.
Under the standard diffeomorphism the induced automorphism on H, sends x
to u, where u represents a cross-section of the bundle and sends y to v— u« (where
v represents the fiber). Thus ax+ by is sent to (a—b)u+ bv. Thus, if a = b, this
class is sent to a multiple of the fiber which can be represented by tubing together
a number of copies of the fiber. If a— b =1, then this is sent to u+ bv. Since
a cross-section will intersect b disjoint fibers in one point each, one can repre-
sent the desired class by forming connected sums at those b intersection points.
The other cases are reduced to this one by choosing different orientations on the
spheres representing x and y. [l

3. Proofs of Theorems 2 and 3. The proofs of Theorems 2 and 3 are based on
the following lemma, which is a straightforward consequence of Donaldson’s
Theorems B and C.

BASIC LEMMA. Let xe€ H,(M(p, q)) be characteristic.
G) Ifp=1, g>2, and x*= —1, then x is not represented by an embedded

sphere.

Gi) If p=2, g>3, and x*= —1, then x is not represented by an embedded
sphere.

(i) If p=1, g>3, and x*= —2, then x is not represented by an embedded
sphere.

Proof. For (i), excising a neighborhood of an embedded sphere which would
represent x and replacing it by a disk would yield a simply connected 4-manifold
W with rank g and b3 = 1. Since x is characteristic, W is spin and thus gives a con-
tradiction to Donaldson’s Theorem B. Part (ii) follows similarly using Theorem
C. For (iii), first take a connected sum with (CP2, CP') and then use (ii). O

Proof of Theorem 3. Parts (i) and (ii) follow from the basic lemma after tak-
ing connected sum with x2+1 copies of (CP2%, CP!). For part (iii), first note that
classes with x2 = 1 can be ruled out by taking two connected sums with (CP2, CP')
and then applying part (ii). By reversing orientations we see that we also get a
contradiction if x2=< —1. For part (iv), we first add a copy of (CP2, CP') and
then apply part (ii).

Proof of Theorem 2. (i) This follows from 3(iii) by taking connected sum with
(CP%,CPY).

(ii) Suppose x is characteristic and x?= —1. Expressing CP*#2CP? as CP%t
S2x 8% allows us to decompose the quadratic form as (—1Y@ H, with H the
standard hyperbolic form and (—1) represented by CP' c CP?. Since x%?= —1,
the form also decomposes as {x) @ {x)" is even. The classification of even indefi-
nite forms of rank 2 implies there is an isomorphism from H to {x)*. This deter-
mines an automorphism of (—1)@® H, where {(—1) is sent to {x). By Wall [14,
Theorem 2], this automorphism is induced by a diffeomorphism and so x is rep-
resented by an embedded sphere, the image of CP!'cC CP? under this diffeo-
morphism.
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4. Proof of Theorem 4. This follows the same pattern as the proof of Theorem
2. The main difficulty is in finding the appropriate class to use as the pseudofree
Euler class e.

If it were so represented then we could take a regular neighborhood N and
form the orbifold X' = Y UcdY where YUN = M(1,2). We again identify ¥ with
its Poincaré dual, which we also denote by u«, and extend u« to a basis u, v, w of
H?*(M) where v=(k+1,k,m), w=Q2m(k+1),2mk,2m?>+1). Note that u*>=
8k+8—4m?=0mod4. Thus u2=5 implies that #>=8. The map H*(M)—
H?(Y) is surjective with kernel generated by «, and so v, w map to a basis v, w of
H?*(Y)=2Z. If X =Y UcaY as before then the intersection form on X (with ap-
propriate orientation and basis v, w) is given by the matrix

1o )

The class v maps to uv = (x2/2)—1 times the generator of H?(9Y) given by the
Poincare dual of the circle fiber. Since (vv)?>—u?v?=1, v maps to a generator
of H?(3Y) and so may be used as a pseudofree Euler class e for the orbifold
X. From the intersection form we see u(e) =1. Using the technique given in [3,
Section 10] (or [9]) one computes R(x, e) = (x%/2)—3. Thus «? = 8 implies that
R =1, which is a contradiction. |

REMARK. Theoretically, the same technique could be used to exclude repre-
senting other classes with positive square. The main difficulty comes from select-
ing an appropriate pseudofree Euler class. There are examples where it is impos-
sible to select such a class which will work in applying the results of [3] as above.
The situation would improve dramatically, however, if one could prove the ana-
logue of [4, Conjecture 5.7] for minimal classes.

5. Normal bundles of an embedded RP?2. In this section we wish to apply The-
orems 2 and 3 in order to study the normal bundle of an embedded RP? in cer-
tain 4-manifolds and to give a proof of Theorem 5. Our starting point will be a
lemma which is essentially contained in [12].

CONNECTING LEMMA (cf. [12]). Let M be a simply connected oriented 4-
manifold. If RP?>C M is a characteristic embedding with normal Euler number
n, then there is a characteristic embedding of S* in M#S*x S? representing a
homology class ¢ with ¢? equal to either n+2 or n—2.

Proof. We regard M as the connected sum of S* with M, and use the decom-
position of % as S!x D3UD?x S2 Let B denote the Mébius band and fix a
standard embedding of B in S!xD?c S'x D3. Since M is simply connected we
can adjust the embedding of RP? so that it agrees with the embedding of B after
an isotopy. Thus all of the information from the embedding is contained in a
relative embedding of a disk (D?,dD?) in (D*x S*#M, S*x S?) which is stan-
dardized on the boundary. In particular, the normal Euler number » can be re-
garded as coming from comparing a standard section of the normal bundle over
the M&bius band restricted to the boundary circle and the restriction of a section
from the remaining disk. Now in the case where M is itself S* we know that the
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normal Euler number must be either 2 or —2, and both values occur. Thus there
are two embedded disks D;, D, in D?x S2 which are standard on the boundary
giving normal Euler numbers —2 and +2.

Consider now our assumed characteristic embedding of RP? in M which we
have made standard on the Mobius band B. Let us now call the remaining em-
bedded disk D; in D?x S?#M. Using each of the disks D;, D, we can form two
different embeddings of the sphere in the connected sum S2 x S2#M via D;UD; C
D?xS?UD?x S*#M. These will represent elements of the form 2x+ciy+2z in
H,(S?x S*#M). The two possible Euler numbers (= self intersection numbers)
are n+2. Thus 4c;+z%>=n+2. Hence |c2—c;| =1 and one of the ¢; is even.
Since the original RP? was characteristic, the class z will be characteristic. Thus
with the choice of D; with c¢; even, we obtain a characteristic homology class in
H,(S?x S2#M) which is represented by an embedded sphere and whose square
is either n4+2 or n—2. O

We have called the above lemma a connecting lemma since it serves as a mech-
anism to connect up the two problems of representing a given homology class
by an embedded sphere and determining the normal bundle of an embedded
RP? which is characteristic. Although it might have been stated more generally
without the emphasis on the characteristic elements, we have chosen this state-
ment since it sets up the application of Theorems 2 and 3. We now prove The-
orem 5.

Proof of Theoreni 5. From our characteristic embedding of RP? in CP? we ob-
tain (by the connecting lemma) a characteristic embedding of S? in M(2, 1) with
square n = 2. But Theorem 2(i), with the orientation reversed, says that this square
must be 1. Hence n = —1 or 3. Both values are easily realized (cf. [10]). 0

REMARKS. The connecting lemma can be used to get other results about em-
bedded characteristic RP?’s in M(p,0) or M(p,1). A characteristic RP? in
M(p, 0) leads by the connecting lemma to a characteristic sphere in M(p+1,1)
with square n+2. Now if p>1, Theorem 3(i) implies n+2 =2 and hence n=0.
If p>2 then we can conclude that » =1, using the second part of Theorem 3(i).
Recall that in [10] we showed that when p < 8 we actually have n= —2+ p, but
the technique used there broke down when p = 8. Thus we will obtain some new
results when p =8 but unfortunately not as strong as the expected result that
n= —2+ p (which we get only for p=1, 2, 3). Also note that these new results
apply only to characteristic RP?’s where the results of [10] applied more gener-
ally. A new result can be obtained concerning characteristic embeddings of RP?
in M(p,1). If we apply the connecting lemma and Theorem 3(ii), we can con-
clude that n+2 =2, hence n=0, when p>2. Applying Theorem 3(iii) will im-
ply that for a characteristic embedding of RP? in M(1,1) we must have n= +2.
Note that this implies Theorem 5. Finally, Theorem 3(iv) implies that a charac-
teristic RP? in M(2,1) will have n= —1.

Rochlin also gave a technique in [12] for connecting problems about nor-
mal Euler numbers of embedded Klein bottles in M to embedded spheres in
2(S?x S?)#M. The square of the homology class of the corresponding sphere



HOMOLOGY CLASSES OF ALMOST DEFINITE 4-MANIFOLDS 91

will be n, n+4, or n—4, where n is the original normal Euler number of the Klein
bottle. If the Klein bottle is characteristic, the sphere may be chosen to be char-
acteristic. Using this technique and Theorem 3(iv) one can show that a charac-
teristic Klein bottle in CP? must have normal Euler number n= —3. It was al-
ready known that n—1=0, +4mod 16 (cf. [6]).
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