THE BEST CONSTANT IN A BMO-INEQUALITY
FOR THE BEURLING-AHLFORS TRANSFORM

T. Iwaniec

Introduction. The Beurling-Ahlfors operator 7f for fe L?(C) is defined by
the following relation between Fourier transforms:

(TH"(E) =m(&) f(§),
where m(§¢) = (E/|.§|)2 for every £ e C—{0}.
Clearly 7 is a unitary operator on L2(C) commuting with translations and di-
lations. Another definition of 7 is the convolution formula

., L f@de)
TH@=—pv. [ 5 0

where p.v. means the principal value and do(#) the Lebesgue measure in C. This
operator can be regarded as an analogue of the Hilbert transform in the complex
plane with an even kernel.

The importance of the Beurling—Ahlfors operator to the elliptic equations {[3],
[4], [13]) as well as to quasiconformal mappings in the plane lies in the fact that
it changes the complex derivative d; into d;: in symbols,

aw aw
0 (5 ) o
for every w in the Sobolev space W5(C). We shall appeal to this formula to eval-
uate 7'f for some particular functions f.

As an operator of Calderon-Zygmund type, the Beurling-Ahlfors transform
is bounded in L?(C) for all 1 < p < co. This breaks down for p = . However, in
this limiting case 7 extends to a bounded operator from L(C) into BMO-spaces
[12].

Fix 1 = p <. A function feL,’;C(R") is said to be of bounded mean oscilla-
tion (briefly, BMO,) if

P 1/p
dx) < oo,

|/ ovio, = sup(§,
where the supremum is taken over all balls B in R” and
1
Bl

b

fe=§ ryay

{ rod |, fOrdy=1ra

is the average of f on B.
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All BMO,, spaces for 1 < p < co are essentially equivalent; namely,

|.f lemo, = C(p, g, n)| f|emo,
for 1= p, g <. Actually, by Holder’s inequality,

) |/ lemo, = [fBmO,

whenever 1 = p<qg <oo.
The purpose of this paper is to identify the L* — BMO, norm of the Beurling-
Ahlfors operator.

THEOREM 1. We have
1/2

3) (I, r@-a@nsldo@) =<3

for every ball B C C and every function fe L*(C) such that | f(z)| <1, a.e. This
inequality is sharp.

Interest in the BMO-inequalities is motivated by their relations with quasicon-
formal mappings. In this connection we mention the beautiful results of Reimann
[11], who discovered that quasiconformal mappings are invariant transforma-
tions of independent variables for BMO-functions. We also refer to several deep
results due to Jones [9] and Astala and Gehring [1], who characterized domains
having the BMO-extension property.

1. Preliminaries. It clearly suffices to prove (3) when B is the unit disk in C.
From now on we shall assume that

B={zeC;|z|<1}] and Q={reC; |t|=1].

The following formulas are worth recording. For every integer £ =0 set

(4) P () =Z"xp(2).
Then
(5) Tor(z) = —2 " ?xq(2).
In order to see these we apply (1) to the functions
1 —k—
wi(2) = =72 xp (@) +2 7 xa (D)

Based on formula (1) we also derive that, for

z \2
(6) p(z)= —> xp(2),

|z|
@) Tp(z) = (1+log|z]*) xg ().

In this case (1) applies to w(z) =(z log|z|2)xB (z). Formulas (4) and (5) immedi-
ately imply the following.
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COROLLARY 1. Let 3C*(B) denote the space of functions square integrable
and analytic in B. Then, for every he 3C*(B),

(&) T(xgh)(z)=0
Jor zeB.

2. Certain orthogonality properties of 7. The proof of Theorem 1 depends
on the orthogonality properties of 7. We begin with the following fundamental
identities:

© | S Te(2) do(2) = | e(2) Tf(2) do(2),

(10) | 77 Te®@ do(2) = | 1) 8@ do(2),
for every f, ge L*(C).
The sets B and Q induce naturally an orthogonal decomposition of L?(C),
L*(C)=L*B)®LXQ),

obtained by decomposing any function f into the sum f= xg.f+ xqof- This de-
composition is not invariant under the Beurling-Ahlfors transform. However,
we have the following lemma.

LEMMA 1. Let be L*(B) and we L*(Q). Then the functions Tb and To are
orthogonal in L*(B) and in L*(Q), that is,

an | T6(2)To(z) do(z) =0;
also,

SQ Th(z)To(z) do(z) =O.
Moreover,
(12) § Tbz)do(z)=o0.

Proof. In view of identity (9), the integral in (11) takes the form

S (Th) xp T®) = SbT(xBﬁ) = SB bT(xpT).

Observe that 7w e 3¢2(B) and by Corollary 1 the function T(xgTw) vanishes
on B. Hence the equality (11) follows. The second equality follows from (11) to-
gether with the fact that 7" is a unitary operator on L2(C) and the supports of &
and w are disjoint.

Now replace 7w in (11) by xg, which is obviously in JC%(B), and repeat the
same arguments to obtain (12). L]
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COROLLARY 2. Let fe L*(C). Then

(13) fNTr=@nal?=] 116 +] (To—(Tw)s]?,

where b and w are L*(B) and L*(Q) components of f, respectively.
Notice that [b| < xg and |w| =< xg, Whenever |f|=<1.
Proof. Identity (13) is a simple consequence of (11) and (12). ]

Corollary 2 leads naturally to two independent extremal problems. We begin
by considering the simpler one.

3. The estimate in L2(B)NL>(C).

LEMMA 2. Let b be measurable and such that |b(z)| < xg(z), a.e. Then

(14) &; |Th(z)|? do(z) <1.

The inequality is sharp.

Proof. Inequality (14) is an immediate consequence of the fact that 7" is an
isometry in L2(C):

1 1

— {70 2=—~§ 2=§ bI2=<1.

) |70 =g [ IolP =, 1ol <

This argument also shows how to achieve equality in (14). For this we require
(i) xo(z)7Th(z) =0 and (ii) |b(z)| = xg(z). Certainly the function p defined by
(6) satisfies these two requirements. This ends the proof of Lemma 2. J

§B|Tb|25

4. The estimate in L2(2)NL®(C).
LEMMA 3. Let we L*(C) be such that |»(z)| < xq(z), a.e. Then

(15) fB |Tw(z) — (Tw)p|? do(z) <S8.

The inequality is sharp.
For the extremal function see the remark after the proof.

Proof. Clearly xgTw e JC2(B), and for z € B we have the following Taylor ex-

pansion:

__ 1l ewder) 1 3 k(  —k—2
To()=——| =50 = =" % (e D2t |17 2a(0) dor)

= 3 (k+1)cezh,
k=0

where

(16) k= -—igt—k_zw(t)da(t)
s
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for k=0,1,2,.... Since ¢cp=Tw(0) =(Tw)g,
(17) Tw(iz)—(To)g= 3 (k+1)cpzX
k=1

for z € B. This last series is also well defined when we drop the assumption we
L?(C), because of the following uniform estimate:

1 —k—2 1 -3 —
|ck|s7r§9|t| da(t)swsﬂ|t| do(t)=2

for k=1,2,.... Here we have

-3 _ ® 2 4
(18) | 1t doty=2x " r2dr=2m.
Notice that
I 1
2k . 2k+1 —
§B|z| do(z)-2§0r dr=-—=

for k=1,2,3,.... This, together with the mutual orthogonality of the functions
z¥xg(z) and (17), gives

(19) SB lTw(z)—(Tw)B|2da(z)=k§I(k+1)|Ck|2,

where ¢, are defined by (16).

Our goal now is to maximize the above series subject to the conditions |w(z)| =<
Xq(z), we L?(C). Variational arguments suggest consideration of the following
auxilliary function, analytic in :

(20) Q(t) = —;lr—él (k+1)crt %2

This function appears in the corresponding Lagrange-Euler equation. It turns
out that the local maxima must take the form
w(t) =xgq(t) exp[—iarg G(¢)]

(cf. [5]). But, in order to avoid a delicate question on existence of the extremals,
we do not exploit this extra information.
From the definition of ¢, it follows that

S ternle = 5 e+ na| - [ e do )|
=1

on K=1
— Sw(t)(i(t) do(t) < SQ |@(2)| do(t).

Hence, by Holder’s inequality,

o 1/2 1/2
> 5 w+vlal=|[ 11w lao| " || 1070
k=1 Q2 Q
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We appeal now to the fact that the functions ¢ “k_2|t|3/2, k=1,2,..., are mutu-
ally orthogonal in L?(Q) and that

o dr 2
—2k—1 _ _
Jo 14 do(t)=2n |, P2k T 2k_1
for k=1,2,3, ....
This gives
1 oo ke 2
JoleP 1P oy =—5 | | 3 tetn)gee 20| dot)
1 = o
(23) =53 (k+1)2|ck|2SQ|r| 2k=1 do(t)
_2 2 k+1) =
— 2 ——lal*=— 2 (k+1)|ci|?.
'ﬂ' = T k=1

This, together with (22) and (18), implies

oo o 172
S (k+1)|ck)?= /i 27 ( > (k+1)|ck|2> .
k=1 T k=1

Hence
(24) S (k+1)|ck|*=<8.
k=1

Finally, in view of (19) the proof of inequality (15) is complete.

To achieve equality in (24) w must have equality in (21), (22), and (23), which
can occur (respectively) under the following conditions:

(i) w(@)=Q()/|C(¢)|, a.e. in Q;

(i) |¢]P|@)|>=\|¢| 73, a.e. in @ with A>0;

(iii) ¢, =0for k=2,3,4,....
Since #3@(¢) is analytic in Q, condition (ii) constrains that @(¢) =at 3, a e C for
t € Q. Then (i) becomes

3
(25) w(t)=ei9(—|§|—) xq(t), 0=0<2m.

Finally, we require (iii). Here luck is with us, since for w defined by (25) the co-
efficients ¢, with k= 2 vanish. The proof of Lemma 3 is complete. O

REMARK. It is a classical result that the norm of a linear bounded operator
in a Banach space is attained (if at all) on the extremal points of the unit ball.
For L<(2) the only extremal points are the unimodular functions. Obviously they
are not in L2(C). That is why we could not expect the extremals for inequality
(15) to be in the class L2(Q)NL=(C). On the other hand, inequality (15), which
was proved originally for we L3(Q)NL®(C), extends now to all we L*(C). The
equality in (15) is attained, in this extension, only for the function (25).

Theorem 1 follows readily from Corollary 2 and Lemmas 2 and 3.
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EPILOGUE. By (2) we also have
(26) 17f Mo, <3| fllw-

However, this inequality is not sharp. The John-Nirenberg Lemma [8] implies
the following.

There exists p> 0 such that
27 &Bexp[p_lTb—(Tb)BI]<oo

for every b, with |b(z)| = xg(z), a.e.

In order to estimate u consider the following example:

2
p(z) = (é—l) X8 (2).-

By (7), Tp(z) = (1+log|z|2)xB (z). A computation shows that
2 et
ﬂz +
(1—pns)e 1+p
for |u| <1. We believe that (27) holds for every b and |u| < 1. If this happens to

be true, then several interesting L”-estimates for 7" and consequently for the de-
rivatives of a quasiconformal mapping would follow ([2], [6], [7], [10]).

[ explu|To—(To)sl]1= <o
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