THE SPECTRUM OF THE LAPLACIAN ON
RIEMANNIAN HEISENBERG MANIFOLDS

Carolyn S. Gordon and Edward N. Wilson

1. Introduction. For any compact Riemannian manifold (M, g) let spec(M, g)
denote the collection of eigenvalues, with multiplicities, of the associated Laplace-
Beltrami operator acting on C*(M). Two manifolds (M, g) and (M’, g’) are said
to be isospectral if spec(M, g) =spec(M’, g’). Many examples exist of pairs of iso-
spectral, non-isometric Riemannian manifolds ([3], [6], [10], [12], [15], (171, {18]).
Vigneras gave the first examples of isospectral manifolds with non-isomorphic
fundamental groups. In contrast, some manifolds such as the canonical sphere
S and real projective space P", n < 6, are uniquely determined up to isometry by
spec(M, g). (See e.g. [1], [9].)

In this paper we study the spectrum of the Laplacian of compact Riemannian
Heisenberg manifolds; that is, manifolds of the form (I'\ H#,,, g), where H,, is the
(2n+1)-dimensional Heisenberg group, I' is a uniform discrete subgroup, and g
is a Riemannian metric on I' \ H,, whose lift to A, is left-invariant. The Heisenberg
manifolds are among the few manifolds for which spec(M, g) can be explicitly
computed. By comparing the spectra of various Heisenberg manifolds, we find:

(A) If n=1, (I'\H,, g) is uniquely determined by its spectrum.

(B) If n>1, there exist many choices of pairs (I'\ H,, g) and (I'"\ H,,, g’) that

are isospectral but not isometric.

More specifically, we associate with every uniform discrete subgroup I'' of A, a
positive integer denoted |I'|. Whenever n>1 and |I'| = |I"’|, there exist contin-
uous families of metrics g, and g/ such that for each ¢, (I'\ H,,, g,) is isospectral
to (I'"'\H,, g/). (Note that we are not asserting the existence of continuous iso-
spectral deformations of a metric.) Since |I'| does not always determine the iso-
morphism class of I", we thus obtain examples of isospectral manifolds with non-
isomorphic fundamental groups. In some cases the manifolds are also isospectral
on p-forms for all p=0.

This paper was partly motivated by the following result of [6]. Let G be a nil-
potent Lie group. In [6] we defined a group AIA(G) of “almost inner” auto-
morphisms, and showed that (¢(I')\ G, g) is isospectral to (I'\ G, g) for all p €
AIA (G) whenever I' is any uniform discrete subgroup of G and g any metric aris-
ing from a left-invariant metric on G. The manifolds are isometric if ¢ lies in the
group Inn(G) C AIA(G) of inner automorphisms but are rarely isometric other-
wise. We thus obtained continuous families of non-isometric manifolds all iso-
spectral to (I'\ G, g) under the condition Inn(G) # AIA(G). We do not know
whether this condition is necessary as well as sufficient for the existence of a non-
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trivial isospectral deformation of (I'\ G, g). The Heisenberg groups are among
the simplest examples of nilpotent groups for which Inn(G) = AIA (G). Certainly,
by (A) every 3-dimensional Heisenberg manifold is spectrally rigid; we give evi-
dence supporting (but not proving) our conjecture that no Heisenberg manifold
of any dimension admits a non-trivial continuous isospectral deformation.

The organization of this paper is as follows: After classifying all Riemannian
Heisenberg manifolds in Section 2, we compute their spectra in Section 3. We
construct the examples (B) of isospectral manifolds in Section 4. In Section 5 we
prove (A) and address the question of spectral rigidity in higher dimensions. We
discuss the spectra of the Laplacian on p-forms in an appendix.

It is a pleasure to express our gratitude to Ted Chinburg and David H. Johnson
for very helpful discussions concerning Theorem 5.4 and to David Harbater for
the uniqueness proof of Proposition 2.2.

2. Classification of Riemannian Heisenberg manifolds.

(2.1) DEFINITIONS AND NOTATION. (a) For x, y row vectors in R”, let

1 x ¢ 0 x ¢
¢)) v, y,8) =0 I, 'y |, X&x,y,t)=(0 0 Yy,
0 0 1 0 0 0

where 'y is the transpose of y and I, is the n X n identity matrix. The real (2n+1)-
dimensional Heisenberg group H,, is the Lie subgroup of GL(n+ 2, R) consisting
of all matrices of the form v(x, y, ) and its Lie algebra }, is the Lie subalgebra
of gl(n+2, R) consisting of all matrices of the form X(x, y, t). The matrix expo-
nential maps ¥, diffeomorphically onto H, and satisfies
eXpX(xsy’ t):'y(x,y, f+‘%X‘y),
where x-y is the usual dot product in R”. The product operation in H,, and Lie
bracket in |, are given by
vy, YLy )=y +xL y YLt x- ),
[X(x,y,8), X(x',y',t")]=X(0,0,x-y"—x"-y).

Let 3,={X(0,0,¢): € R}. Then 3, is both the center and the derived subalgebra
of §,. It is convenient to identify the subspace {X(x, y,0): x, y € R"} of §j,, with

R2”. Thus §,, is the vector space direct sum §, = R?>"+3,. The bracket operation
defines a non-singular alternating bilinear form 4: R?"xR?" - R by

3) AX,Y)Z=[X,Y]
for X, YeR?*" and Z = X(0, 0,1). By the standard basis of §j,, we shall mean
S= {Xl: '--an; Yl’ sy Yn’Z]’

(2)

where the first 27 elements of $ are the standard basis of R?”. The non-zero brack-
ets among the elements of 8 are thus given by [X;,Y;]=Z forl=<i=<n.
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(b) A Riemannian Heisenberg manifold is a pair (I'\ H,, g), where I'' is a uni-
form discrete subgroup of H, (“uniform” means that I'\ H,, is compact) and g
is a Riemannian metric on I'\ H,, whose lift to H,, also denoted g, is left H,-
invariant.

(2.2) PROPOSITION. Let T" be a uniform discrete subgroup of H, and let g
and g’ be left-invariant Riemannian metrics on H,. (' \H,, g) is isometric to
(T"'\H,, g’) if and only if there exists an automorphism ¢ of H, such that ¢*g =
g’ and o(I') =Ty ~! for some ve H,,.

Proof. This is a special case of a result proved in [5]. ]
We first classify the uniform discrete subgroups of H,,.

(2.3) DEFINITION. For r=(r|,r2,...,r»)€(Z%)" such that r; divides r;,
1<j=<n, let rZ" (respectively, (1/r)Z") denote the n-tuples x =(x,, ..., Xx,) for
which x; € r;Z (respectively, x; € (1/r;)Z), 1 <i < n. Define

L,={v(x,py,t):xerdZ",yeZ", teZ).

It follows easily from (2) that I', is a uniform discrete subgroup of H,,.

Define £, ={X(x,y,0): xerZ", yeZ"}. Then £, is a lattice in R?*" with lattice
basis {ri Xy, ..., rp Xy, Y1, ..., Y,}. Note that X € £, if and only if exp(X+W)e T,
for some We 3,.

(2.4) THEOREM. The subgroups I, defined in 2.3 classify the uniform discrete
subgroups of H, up to automorphism; that is, if T is any uniform discrete sub-
group of H,, then there exists a unique r for which some automorphism of H,
maps I' to T',. Moreover, for r and s as in 2.3, T', and T are isomorphic groups
if and only r =s.

Proof. Suppose I' is a uniform discrete subgroup of H,. Let log: H, — ), be the
inverse of exp: p, —» H,. For X, Y e},

log(exp Xexp Yexp(—X)exp(—Y))=[X,Y].

It follows that logI" is a discrete spanning set of §,, logI' is closed under the
bracket operation, logI"'N3,=ZW for some W0 in 3,, and

L ={X e R": there exists X’ elogI" such that X — X" € 3,,}

is a lattice in R2”. Since, for every ae R— {0}, X (x, y, t) — X (ax, ay, a*t) defines
an automorphism of §),, moving (l/az)Z to Z, replacement of I' by a suitable auto-
morphic image permits us to assume W = Z. With this assumption, we claim that

there exists r = (ry, r2, ..., ;) as in (2.3) and a lattice basis {U,, ..., U,, Vi, ..., Vy}
for £ such that
) 0=A(U;, U)) =AWV, V})) =AU, V))—b,r; for 1=i,j=n,

where §;; is the Kronecker symbol. To see this, note that 9, ={A(X, Y): X, Ye £}
is an ideal of integers. Let r| be its positive generator and choose U;, V] € £ such
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that A(U;, V;) =r;. For aC R?" the annihilator of RU; + RV, relative to A,
we have a=R?" 72, a+3n=h,—1, and L=ZU,+ZV;+ £LNa. Indeed, expressing
Y e £ in the form aU;+ bV + X with X € q, then ari=AY, V;), bri=AU,;, Y)
are in 9, whence a, be Z and X € £. By induction on n, we obtain (4). The ideal
d; constructed in the jth step of the inductive process is a subideal of 9;_;, so
ri—i|rj. Now choose, for 1<i=<n, elements X}, ¥;!in logI" such that U; — X},
V;—Y;! arein 3,. By (4) and (2.3), the unique linear map of §,, which sends Z to Z,
X} to r; X;, and Y;! to Y; is an automorphism of h, mapping £ to £, and logI" to
log I',. It therefore lifts to an automorphism ¢ of H,, satisfying ¢(I') =T ,.

It remains to show that r is uniquely determined by the isomorphism class of T,.
As an abstract group, I, is prescribed by generators {«;, 8;,y: 1 <i<n} wherey
generates the center of I', and the relations «; 8; ;187! = +'i are satisfied. Sincey
is unique up to inverse and [y "] is the commutator subgroup of I’,, r; is uniquely
determined. Let J={j:r;>r;_;}. For jeJ, I, /[v'/] contains as a direct factor
the free abelian group of rank 2(n—j +1) with generators {&y, Bx:j <k <n}. If
t € Zr, is larger than r;, one can check that the maximal free abelian direct factor
of I', /[v'] has rank <2(n—j+1). Thus J, {r;: je€J}, and hence r are uniquely
determined by the isomorphism class of I',. ]

(2.5) COROLLARY.

(i) Given any Riemannian Heisenberg manifold M =(I"'\H,, g), there is a
unique r as in Definition 2.3 and a left-invariant metric g on H, such that
M is isometric to (I''\H,, g).

(i) If r#r’, the manifolds T''\H, and T'.\\H, have distinct fundamental

groups.
Proof. (i) and (ii) follow from Theorem 2.4 and the fact that the map
Iy = oI e(y)
is an isometry from (I'\ H,, g) to (o(I')\H,,, (¢*) " 'g) for any automorphis{x;
®.

(2.6) REMARKS AND NOTATION. (a) We will identify each automorphism p
of H, with the matrix of its differential ¢, relative to the standard basis 8 (see
(2.1)) of p,,. Let Sp(n, R) ={B e GL(2n, R): ‘8JB = eJ with e = +1}, where

o I,
J_[_I" 0].

We identify 8 e Sp(n, R) with the (2n+1) %X (2n+1) matrix

o ]

0 €]

It is then routine to check that, with these identifications, ST)(n R) is a subgroup of

Aut(H,). The full group Aut(H,) is the set of all matrices of the form o3, with
al,, 0

BeSp(n,R) and a=[ " a2] for some ae R, weR?".
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The inner automorphisms are those for which ¢ =1 and g =1d.

(b) A left-invariant metric g on H,, is uniquely determined by the induced inner
product ¢, ) on §,, where §), is viewed as the tangent space to H,, at the identity.
Conversely, every inner product on §j,, determines a left-invariant metric on H,,.
We will identify g with the matrix of {, ) relative to the standard basis 8 of §,.
For any g, we can choose an inner automorphism ¢ such that R?” is orthogonal
to 3, relative to ¢*g. By Proposition 2.2, (I'\ H,,, g) is isometric to (I'\ H,,, ¢*g)
for every I'. Replacing g by ¢*g we may then assume that g has the form

h 0
) g—[o g2n+1],

with 2 a positive-definite 2n X 2n matrix and g,,,; > 0. From now on, every met-
ric g will be assumed to have the form (5).

(c) Let §, be the 2n X 2n matrix with diagonal entries ry,...,r,,1,...,1, and let
SL(2n,Z) be the group of 2n X 2n matrices with integer entries and determinant
equal to +1. Note that for ¢ € Aut(H,), ¢(I',) =T, if and only if

O et D
o= [3 ] for some weZ” and BeSp(n,R)NS, SL(2n, Z)(S,"I
€

(2.7) THEOREM. Let
9, ={(r,g):re(Z*%)" satisfies 2.3 and g is of the form (10)}.

Define an equivalence relation on 9,, by (r,g)~(r’, g’) tfand only if r=r" and
g’ =pB*g (see 2.6(a) for notations), with BeSp(n, R)NS, SL(2n, Z)8,". (Note
that each equivalence class is discrete.) Using (r, g) to parameterize (I'\H,, g),
9./~ parameterizes the collection of isometry classes of Riemannian Heisenberg
manifolds of dimension 2n+1.

Proof. If g has the form (5) and ¢ =« as in 2.6(a), then g’= o*g again has
the form (5) precisely when w=0. But then o(I',) =TI,y ~! is possible only if
¢(I',) =T,. Thus the theorem follows from Proposition 2.2, Theorem 2.4, and

the remarks in 2.6(b). OJ
(2.8) DEFINITION. Let I" be a uniform discrete subgroup of H,,. Define |I"|=
ryra---r, for r=(ry,..., r,) the unique n-tuple as in Definition 2.3 for which I is

isomorphic to T,.

(2.9) PROPOSITION. The Riemannian volume of a Heisenberg manifold
(') \H,, g) is given by |T,| (det(g))?, where the conventions of 2.6(b) are used
to identify g with a positive-definite matrix.

Proof. Standard computation using the coordinates defined in (2.1). [
3. The spectrum of a Riemannian Heisenberg manifold.

(3.1) DEFINITIONS AND NOTATIONS. Let M = (I"\H,,, g) be a Riemannian
Heisenberg manifold and E°(AM) the space of smooth functions on M. Viewing
functions on M as left I'-invariant functions on A, the Laplace-Beltrami operator
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on E°(M) is given by
2n+1

(1) Af=— % U,

i=1

where Uy, ..., U,, 4+ is any g-orthonormal basis of |),, (see [16]). But

d
Ui f(v) = (d—t)’_of(v exp tU;) = (R, UDS(v),

where R is the quasi-regular representation of H, on L*(I"\ H,), that is,

R(yVS(v)=S(v¥)-

Thus the extension of A to an unbounded operator on L3(I"'\ H,,) is given by A =
—S U RL(UD)Y.

By (M) we mean the spectrum of M in E°(M), that is, the collection of all
eigenvalues, with multiplicities, of A. For I' =T', as in 2.3, we write X(r, g) for
Y (M). Two Riemannian Heisenberg manifolds M and M’ are said to be isospec-
tral if T(M)=X(M’).

(3.2) NOTATION. (a) Let r =(ry, ..., r,) be asin 2.3, §, the 2n X 2n matrix de-
fined in 2.6(c), and A a positive-definite 2n X 2n matrix. For a, b e Z", define

() N a, b) =4x>[a, b](8,h8,) " '[a, b].

Then by X,(r, &) we shall mean the collection of numbers N\ which may be de-
scribed in the form A(a, b), with the understanding that X\ is counted once in
¥ ,(r, h) for each pair (a, b) € Z*>" such that A =\(a, b).

(b) Let g be of the form 2.6(5) and J the 2x X 2n matrix

o 1,
-1, 0]

Since 4 ~'J is similar to the skew-symmetric matrix 4 2 5p , it has pure imag-
inary eigenvalues; we denote them by +v—1d J-Z, 1 <j < n. For ¢ a positive integer
and k = (ky, ..., k;) an n-tuple of non-negative integers, define

4 2.2 n
T 43 2wed?(2ki+1).

82n+1 i=1

—1/2

3) p(c, k)=

By X,(r, g) we shall mean the collection of numbers g which can be written in
the form u(c, k), with the understanding that x occurs 2¢”|I',| =2c¢"ry---r, times
for each pair (c, k) such that u = u(c, k).

(c) Let B denote the dual space of §,. Given a metric g as in 2.6(5), define
#:9%— b, by 7(X)=g(#r, X) and define an inner product {, ) on §;; by (o, 7) =
g(#o, #7). Define n: R - R?"by [X,Y]=h(X,nY)Z, thatis, i(X,nY)=A(X,Y)
for A the alternating form defined in 2.1. Since J is the matrix of A relative to the
standard basis and since we are identifying the inner product 4 with its matrix in
the standard basis, the matrix of % in the standard basis is given by & —1J. Given
I' asin 2.3, let @, =f{reh}: 7(Z)=0 and 7(logI',) CZ}.
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(3.3) THEOREM. For r asin 2.3 and g of the form 2.6(5), the spectrum X(r,g)
of (I''\H,, g) is the join of X(r, h) and £,(r, g) (see 3.2(a, b)) in the sense that
the multiplicity of N\ in X(r, g) is the sum of the multiplicities of \ in X,(r, h) and
Xo(r, g).

(3.4) LEMMA. We use the notation of 3.2. Then:

(a) N\ occurs in £,(r,h) with multiplicity k if and only if \=4=n*(r, 1) for
exactly k elements v in Q,.

(b) X.(r, h) is the spectrum of the Laplace-Beltrami operator on the flat torus
T, n= (£,\R?", h). (See 2.3 for the definition of the lattice £,.)

Proof. (a) follows easily from the definitions. If we identify elements of @, with
their restrictions to R?”, then @, is the dual lattice of £,. Thus (b) follows from
(a) and the classical description of the spectrum of a flat torus (see [1]). ]

(3.5) LEMMA. If h~'J has eigenvalues +~=1d¢, ..., +N—1d?, then there exists
an h-orthonormal basis { X{, ..., X, Y{,...,Y,} of R?" such that (X!, Y!]=d*Z
and all other brackets of basis vectors are zero. In particular, the isometry class
of (H,, g) is uniquely determined by d?/8an+1s .-+ A /82n+1-

Proof. Since 5 (as defined in 3.2(c)) is skew-symmetric relative to /# with eigen-
values +vV—1d¢,..., +V—1d?, there exists an h-orthonormal basis { X7, ..., X},
Y{, ..., Y} of R¥ such that yX/= —d?Y?, nY/ =d?X!. Since [X, Y] =h(X,nY)Z
for all X, Y € R?”, the bracket relations follow. For the second statement, let Z' =
(g2n+1)“l/ZZ. Then @ ={X{,..., X, Y{,..., Y, Z'} is a g-orthonormal basis of §),
with [ X7, Y/ 1=d?\/g2n+1Z’ and with all other brackets trivial. If g is a second
metric such that (d2(&2n+1) "%, ..., 7 (82n 1) P = (dPe5'{3, ... g2, {3) up to
order, then B, admits a g-orthonormal basis & whose elements satisfy the same
bracket relations as @. Thus there exists ¢ € Aut(H,) with g =p*g. ]

By (1) and (2), any subspace of L*(I'\ H,,, @) invariant under the right action
R of H, is also A-invariant. The proof of Theorem 3.3 requires decomposing
L*(I’\\H,,) into irreducible subspaces under R and examining the action of A on
each such subspace.

(3.6) IRREDUCIBLE UNITARY REPRESENTATIONS OF H,,. (a) For 7 € §)} with
7|,;,= {0}, define f,: H, - C by f,(exp X) =exp[27xV—17(X)]. Then f, is a char-
acter of H, and every character of H,, is of this form. If 7€ @, (see 3.2(c)), then
J> may be viewed as a function on I'\ H,,.

(b) For c e R— {0}, define a representation =. of H, on L(R") by

(me(y(x, ¥, 1)) ) (u) =exp[2aV—1c(t+u-y)) f(x+u) forall v(x,y,t)eH,

(see 2.1), where u-y denotes the standard dot product on R”. One can check that
7 is an irreducible unitary representation of H,,.

(3.7) LEMMA. (a) With the notations of 3.6,
{fr:7ebn, 7],,=0}Ufr.: ce R—{0}}

is a complete set of irreducible unitary representations of H,. In particular, any
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irreducible unitary representation of H,, which agrees with w«. on the center of H,
is unitarily equivalent to «..

(b) The representation R defined in 3.1 of H,, on L*(T',\ H,,) decomposes dis-
cretely as the orthogonal direct sum of irreducible unitary representations of H,,
with f, occurring once for each T € @, and with «. occurring |c"||T,|=|c"|ry--r
times for each non-zero integer c.

Proof. (a) For « an arbitrary irreducible unitary representation, w(+y) is a scalar
multiple of the identity operator Id for each v in the center of H,,. Hence there
exists ce R such that 7 (y(0,0, ¢)) =exp[2w~v—1ct]Id for every teR. If ¢=0,
7 must be a character and otherwise the Stone-von Neumann Theorem [19] states
that = is unitarily equivalent to =« (see [8, pp. 824-825] for a discussion of this
theorem). Alternatively, one may prove (a) by applying the Kirillov theory of
representations of nilpotent Lie groups (see [13], [14], or [11]).

(b) follows either from the general results on compact nilmanifolds described
in [13] (in particular Theorem 37), or by carrying out a straightforward Fourier
analysis of L2(I',\ H,,). O

Proof of Theorem 3.3. Given any unitary representation = of H, on a Hilbert
space 3C, one may define on the space of analytic vectors in JC the Laplacian
2n+1

“) Arg=— El [7(UN1?,

i=
where {U;: 1 <i<2n+1} is any g-orthonormal basis of §,,. By the remarks in 3.1,
X (r, g) is the compilation of the spectra of the operators A, , as w ranges over
all representations occurring in the direct sum decomposition of R. L3(£,\ R>")
may be identified with the subspace 3C; of L? (I'\ H,,) spanned by the characters
f-»» T€ Q,. Since the center of H, acts trivially on this space, (1) implies that the
spectrum of A on JC, is just the spectrum of the torus 7, , and thus is given by
X, (r, h) (see Lemma 3.4). To complete the proof, it therefore suffices to show
that the eigenvalues of both A; ., and A, __ ., ce R—{0}, are the numbers u(c, k)
defined in 3.2(b).

Let {X]{,..., X}, Y{, ..., Y} be the orthonormal basis of (R?"_ h) defined in Lem-
ma 3.5 and let ¢ be the unique linear map which fixes Z and maps X7 to d; X;,
Y/tod;Y;, 1<i=<n.By2.1and 3.5, ¢y is an automorphism of §,,. Continuing to
denote by ¢ the corresponding automorphism of H,,, .= w.ey is an irreducible
unitary representation of H, which agrees with «. on the center of H,, and hence,
by Lemma 3.7(a), is unitarily equivalent to w.. By (4), A, . is similar to A, _,
and thus has the same eigenvalues. Since {X{,..., X}, Y{,..., Y, gz,,HZ] is an
orthonormal basis of (§,, g) and (7l).(X})=diw.(X;), etc.,

Arg=— ! [7c(Z)]*— i dH{ (X)) + 7 (YP)).

82n+1 i=1
By 3.6(b), for u = (uy, ..., u,) e R” and f(u) a smooth square integrable function,
we have
o°f

©) (Awé,gf)(u)=[ o

2.2 n n
ey > d?(Zvrcu,-)z}f(u) E df—5(u).

&2n+1 i=1
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Now recall that as k= (ky, k3, ..., k,) ranges over all n-tuples of non-negative
integers, the Hermite functions

kl+k2+"'+kn
hi(v) =exp[|v|?/2]

vfi---qvkn
form an orthogonal Hilbert basis of L>(R") and satisfy
(V2 — 0% v hy= Rki+1)h; for 1<i=<n.

For A (u) = hi(V27|c| u), it follows from (5) that 4 is an eigenfunction of A .
with eigenvalue u(c, k) given by 3.2(b). By our remarks above, the proof is now
complete. O

exp[—|v|?*]

4. Isospectral Heisenberg manifolds which are not isometric.

(4.1) THEOREM. Let M=(I','\H,,g) and M'=(I',\H,, g’), where

_[h 0 ] and g,_[h’ 0 ]
& 0 Ean+1 0 gén-i—l .

Then M and M’ are isospectral if the following four conditions are satisfied.
(@) g2n+1=83n+15
®) || =|T,| (see 2.8); _
(c) h'='oha forsomeae ST)(n, R) (see 2.6(a) for the definition of Sp(n, R));
(d) L,=a 6L, for some 2nx2n matrix o satisfying ‘cha=h (£, and £,
defined as in 2.3).
Under conditions (a)—-(d), M and M’ are isometric if and only if r=r’ and i1 is
possible to choose o in (c) and o in (d) so that o is the identity.

Proof. Condition (c) implies that #~!J and (#’)~'J have the same eigenvalues.
Indeed, ‘aJa =eJ (e = +1) and h’='aha, so (h’')"'J=a " '(eh~'J)a. Hence
(h’)~'J has the same eigenvalues as e# ~'J and hence as # ~'J. Consequently (a)-
(¢) and Definition 3.2(b) imply that X,(r, g)=X,(r’, g’).

Using (¢) and (d) with = denoting isometry, we have

(L AR, B)y=(L AR, (¢« '0)*a*h)) = (L, \R*, h)

and thus X,(r’, /'Y= X,(r, h) by Lemma 3.4. By Theorem 3.3, X(r,g)=X(r’, g’).

By Theorem 2.7, M and M’ are isometric if and only if r=r’ and g’= ¢*g for
some ¢ of the form

B O ~
°=1, » BeSp(n,R),
€

satisfying ¢(I',) =I",. Choosing o =8 in (c), the condition ¢(I',) =I", means o
can be chosen to be the identity. ]

(4.2) REMARKS. (i) Conditions (c) and (d) of Theorem 4.1 are equivalent to:
(c) (h’)_lJ and # ~'J have the same eigenvalues;
(d) &, h’'s, ="Y(6,hd,)y for some y e SL(2n, Z), with §,, 6,- the diagonal ma-
trices defined in 2.6(c).
Indeed, we showed that (c) implies (¢’) in the proof of (4.1), and the converse fol-
lows trivially with o € Sp(#n, R) the transformation mapping the A-orthonormal
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basis of R?" (given by Lemma 3.5) to the corresponding #’-orthonormal basis.
We could therefore have simplified (c) by stipulating that o € Sp(n, R), but this
would entail replacing the isometry condition ¢ = Id by a more cumbersome con-
dition. The elements ¢ in (d) and ¢ in (d’) are related by ¢ = a8,y ~ 18,7 !. Using
(d’), the isometry conditions become

r=r" and &,¢8 '=aeSp(n,R)NS, SL(2n,2Z)s,".

(ii) We do not know the extent to which the conditions (a)-(d) of Theorem 4.1
are necessary as well as sufficient for M and M’ to be isospectral. We will see later
(in proving Theorem 5.1) that (a) is necessary if one is to separately have X (r, #) =
T(r’',h’) and Xo(r, g) =X,(r’, g’). Given (c), (d) is equivalent to asserting that
the tori 7, , and 7,- ,- are not only isospectral but isometric. It is difficult to imag-
ine how the multiplicities in X,(r, g) could match those of X,(r’, g’) if (b) were
not satisfied.

(4.3) THEOREM. Let n>1and let T, and I's be uniform discrete subgroups of
H,asin23. If r#s but |T',|=|Ts| (i.e., ry--r,=51++-5,), then there exist con-
tinuous families {g,: t =0} and {g/: t =0} of non-isometric left-invariant Rie-
mannian metrics on H, such that ('’\H,, g,) is isospectral to (I's\ H,, g{) for
every t =0.

We note that by Corollary 2.5 the manifolds I',\ H,, and I's\ H,, have different.
fundamental groups, so the isospectral manifolds of Theorem 4.3 are not homeo-
morphic.

Proof. Consider diagonal matrices g and g’ with diagonal entries ay,...,a,,
bh seey bn: 82n+1 and alls crey a;“ bf: seey blln gén+l’ where ai, bl’ bZ’ ceey bn, 82n+1 are
arbitrary in R* and the remaining entries are defined by g5,+1=8&2n+1, b, =b1,
a,=a,, and (for 1<=i<n—1) b/=b;,, al = aj+1 = (r;/s;)*a;. We claim that
(') \H,, g) is isospectral to (I'y\\ H,, g’) for every choice of the n+2 parameters
ai, by, ..., b,, g2,+1- Indeed, we have conditions (a) and (b) of Theorem (4.1), so
it suffices to check conditions (c¢’) and (d’) of (4.2). By definition, a;, b;, =a;b,
and, for 1<i=<n-—1, a/b}=a;, 1b;i+. This verifies (c’) since, in the notation of
2.6(5), & ~'J has eigenvalues +(—a;b;) "2, etc. Next note that 8,48, has diagonal
entries riay, ..., ra,, by, ..., b,. By definition, b{, ..., b}, is a permutation of
by, ..., b,and s?al =r?a; for 1 <i <n—1. From |T',| = |T], it follows that s2a), =
r2a, as well. The entries of ;4’8 are thus a permutation of those of 8,46, and
this verifies (d’). '

Using Theorem (2.7), it follows that for one-parameter families of metrics g;
and g/ arising in this way from a suitably chosen path in our (#+ 2)-dimensicnal
parameter space, g;, is not isometric to g,, for ¢, ¢, and similarly for g;, and
g1, O

(4.49) REMARK. The metric g constructed in the proof of 4.3 depends on n+-2
positive parameters b, ..., b,, a;, and g5, +. Following 3.2(c), denote the eigen-
values of 417 by +v—1d¢,..., £vV—1d2. As the b;’s vary (with g, arbitrary but
fixed), (d,, ..., d,) takes on every valuein Rt x --- xR,
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(4.5) THEOREM. Let M = ('’ \H,, g) and M'=(I's\H,,, g’) be the isospectral
manifolds constructed as in the proof of Theorem 4.3. If di=d,=--- =d, (see
4.4), then M and M’ are isospectral on p-forms for every p=0.

Proof. See the appendix. ]

(4.6) REMARK. Let n> 1. One can construct continuous families of metrics g,
and g/ on the same manifold I',\ H,, such that (I',\ H,,, g,) is isospectral (on func-
tions) but not isometric to (I',\ H,,, g/). To see this, use the same notations as in
Theorem (4.3) for g and g’ but now take a4, ..., a,, b, and g,,, as free param-
eters and define the remaining entries by g4,41=gan+1, @ = (rn/r1)’a,, bi= b,
and (for l<i<n—1) af 1= (ri/ris1)’ai, bis1=bli1=a!b!/a; .. As in the proof
of Theorem (4.3), one checks that (¢’) and (d’) are satisfied; for example, from
the defining relations, a;1b;,=a/b; 1<i=<n-—1) and

ai---a,bi---by=a;---ayb---by,

whence a,b,=a;, b,;,. Hence (I''\H,,g) and (I''\H,, g’) are isospectral. Since
the manifolds are in this case diffeomorphic, one must check directly, using the last
statement of Theorem (4.1), that for generic choices of the parameters, (I':\ H,;, g)
and (I''\H,, g’) are not isometric.

5. Spectral rigidity. A continuous isospectral deformation of a Riemannian
manifold (M, g) is a continuous family g,, # =0, of Riemannian metrics on M
such that go =g and (M, g,) is isospectral to (M, g) for all ¢. The deformation is
non-trivial if (M, g,) is non-isometric to (M, g) for all r > 0. We conjecture that
no Heisenberg manifold admits a non-trivial continuous isospectral deformation.
We will see (Theorem 5.4) that the conjecture is true in dimension 3; in fact, any
two isospectral 3-dimensional Heisenberg manifolds are isometric. The following
theorem supports the conjecture in higher dimensions.

(5.1) THEOREM. As in Theorem 2.7, we parameterize n-dimensional Heisen-
berg manifolds by pairs (r,g)e€ 9,,. For (r,g)e 9,,

S={(r',g)ed,: Xi(r,h)=X,(r',h’) and Z,(r,g)=X,(r', g")}
is a countable set.

Proof. If (r’, g’) € S then (I''\ H,,, g) and (I',"\ H,, g’) are isospectral by The-
orem 3.3 and, by Lemma 3.4., so are the flat tori 7, , and 7,- ;.. It is well known
that isospectral manifolds have the same volume. By Proposition 2.9 and its ana-
log for flat tori, we therefore have

IT,|(det g)/?>=|T',|(det g’)/? and |T,|(det #)"/?=|T,.|(det h")"/2.

Since det g = (det 2)g2,+1, it follows that g5,,.1=g5%,+1-

Every flat torus is isometric to 7} ; for some flat metric # on R?”. Kneser, in
unpublished work, proved that the number of isometry classes of flat tori which
are isospectral to a given flat torus is finite. Thus there are metrics 2V, ..., 4™
such that for every (r’, g’) € S, there exists j such that 7, ;- is isometric to 7, ,u);
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that is, there exists a linear map y such that #’ = y*4"Y? and ¥(£,) = £,. Thelast
condition forces ¥ to lie in the discrete set 8, SL(2#n, Z)8,-! and we conclude that
there are only countably many possibilities for the pairs (r’, #’).

(5.2) REMARKS. Suppose g,;, =0, is a continuous family of isospectral Rie-
mannian metrics on (I',\ H,) with g = go. If the deformation is non-trivial, The-
orem 5.1 implies that for all 70 sufficiently small, X,(r, #,)#= X,(r, ) and
Xo(r,g,) #X,(r,g) even though X(r,g,)=X(r, g). It is easy to check that the
asymptotic distribution of eigenvalues in X,(r, #) differs from that in X,(r,g).
In dimensions 3 and 5, X,(r, g) has higher order than X,(r, #) (the proof in di-
mension 3 is given in 5.4); in dimensions 7 and higher the situation is reversed.
Thus in dimension =7, for example, if X(r,g,)=X(r,g) then X,(r, h) and
X ,(r, h) must agree except for subsets of asymptotically lower order. Perhaps
this is enough to imply that X,(r, #;) = X(r, h) and hence that the deformation
is trivial.

(5.3) PROPOSITION. If M and M’ are isospectral Riemannian Heisenberg
manifolds of dimension 3 or 5, then M and M’ are locally isometric.

Proof. Let (H,, g) be the simply-connected covering of a Riemannian Heisen-
berg manifold M. We may assume g is of the form 2.6(5). By Lemma 3.5, we
may choose an orthonormal basis &' = {X{, ..., X}, Y{, ..., Y,, Z'} of §, relative
to g such that [ X/, Y/]1=a;Z’ (i=1,...,n), with 0<a,=<--- =a, and such that
all other brackets of basis vectors equal zero. (a; = d? (g2, + 1)‘/ 2 after reordering.)
Moreover, by 3.5, the a;’s uniquely determine the isometry class of (H,, g) and
hence determine M up to local isometry. Thus we need only show that when n=1
or 2, X (M) determines the a;’s. Recall that X (M) determines the volume of M
and the integrals over M of 7 and of 2|R|*—2|p|*+ 572, where R and p are the
curvature tensor and Ricci tensor of M and 7 is the scalar curvature. (See [1].)
In our case M is locally homogeneous, so 7 is constant and R, and p, are inde-
pendent of p € M; thus (M) determines 7 and 2|R|?2—2|p|?+572. By a stan-
dard computation one finds that

=__ E als |R|2_'— Eal+ Eazajs and |P|2__ Eal + 2 _alaj

t—l 1—1 r#] !—] l;ﬁj

In particular, when n =1, 7 uniquely determines a;; when n=2,
7 and 2|R|*—2|p|*+ 572
together determine a; and a,. O

(5.49) THEOREM. A three-dimensional Heisenberg manifold M is uniquely de-
termined up to isometry by the spectrum X (M).

Proof. Let M and M’ be isospectral 3-dimensional Heisenberg manifolds. By
Theorem 2.7, we may assume that M= (I''\H,,g) and M’'=(I",.\H,, g’) for
some r,r’'e Z* and g, g’ of the form 2.6(5). By Lemma 3.5, there exists an ortho-
normal basis { Xy, Yy, Zo} of B relative to g such that Zy=g3 127 and [Xo, Yol =
d*Z=d*(g3)"*Zy= (g3 /det k)’ 27, since d*=det(h~'J)=det #~'. Hence the
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proof of Proposition 5.3 shows that X (M) determines g3 /det(#) as well as the
volume r(det g)l/2 = r(det(h)g3)1/2. Therefore

(1) g3/g3=det(h)/det(h’) =r'/r.

We claim that M is isometric to M’ provided that r =r’. Indeed, if r=r’, (1)
says that g; = g4 and det(h#) =det(h’); consequently X,(r, g) =X,(r,g’) by 3.2.
Since X(r,g)=X(r’, g’), it follows that X,(r, #) = X,(r, h’); that is, by Lemma
3.4 the tori 7,,, and T, ;- are isospectral. But any two isospectral flat two-dimen-
sional tori are necessarily isometric (see [1]). Hence 4’ =‘BAB for some 3 satisfy-
ing B(£,) = L£,, where £, is defined by (2.3). Since det A=det #’, B € SL(2,R).
But SL(2, R) € Sp(l, R), so 3 extends to an automorphism

_(B 0
@) ¢—(0 E)

of H;, where e =det(8). ¢(I',) =T, and g’ = ‘pg¢, so M is isometric to M’ as
claimed.

We are left to show that the condition X(r, g)=X(r’, g’) implies r =r’. Con-
sider the asymptotic distribution of eigenvalues. By a subset A of the join of
X(r,g) and X(r’, g’), we shall mean a subcollection of elements with possible
repetitions. For s >0, ng(A) will denote the number of elements of A, counted
with multiplicities, which are less than s. ngs(X,(r, A)) is the number of points of
Z? whose norm relative to the inner product (8,46,) ! is less than s'/2. Hence
ng(X(r, h)) =0(s) and n(X,(r’, h’)) = O(s). To estimate ny(X,(r, g)), set A=
47rz/g3 and B=27r/(det(h))1/2. It follows from (1) and 3.2 that the elements of
X,(r,g) and of X,(r’, g’) are of the form

u(c, k)=Ac*+Bc(2k+1) and
w'(c, k) =AWwr/ryc+Br/r) ek +1),

respectively. p(c, k) <s if and only if ¢ < (S/A)'/2 and 2k+1< (s—Acz)/(Bc).
Hence

(3)

[(s/A)/2] [(s—Ac?)/(Bc)] (/A2 s — Ac?
cr ~ S S —

T, (r,g))= d
ns(X2(r, g)) R P . g de
J odd
=2rs¥?/(VAB) = O(s*/?),
3/2

and similarly ngs(X,(r’, 2’)) = O(s”/“). (We note that the first-order approxima-
tions do not immediately distinguish X, (7, g) and £,(r’, g’) when r # r’, since for
A’'=A(r'/r) and B’ =B(r'/r)V2, r'/((A")/2B’)=r/(AY?B).) Let A be the “sym-
metric difference” of X,(r,g) and X,(r’, g’) in the sense that each element of
Xo(r,g)UX,(r’, g’) occurs in A with multiplicity equal to the absolute value of the
difference of its multiplicities in £,(r, g) and X,(r’, g’). Since X(r,g)=X (', g’),
A is contained in the join of X{(r, #) and X,(r’, h’) and hence must satisfy n,(A) <
O(s). We will show that the assumption r <r’ implies n3(A) is at least O(s log(s)),
a contradiction. It will follow that r = r’ and, by symmetry, r =r’. We consider
four cases.
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Case 1. Suppose A and B are rationally independent. Then by (3), u(cy, k1) =
u(ca, ky) only if ¢y =c,, k1= k,. That is, u(c, k) has multiplicity 2cr in X,(r, g).
On the other hand, the multiplicity of u(c, k) in ,(r’, g’) is a (possibly zero)
multiple of 2r’. For any ¢ such that cr is not divisible by r’, u(c, k) occurs in A
with multiplicity at least 2 for every k. Thus we obtain approximately (s —Ac?)/Bc
eigenvalues in A for each such c¢. A therefore contains a subcollection of order
approximately

s/
(const)s 1 B 7' (s/c—Ac)dc=O(slog(s)),

=

where (const)=r/r’.

Case 2. Suppose A and B are rationally dependent and (r’/r)'/ 2 is irrational.
Then by (3), X2(r, g)NEL(r’, g’) =D and n,(A) = O(s?).

Case 3. Suppose A and B are rationally dependent and (r’/r)"? is rational but
not equal to 2. We may assume, after multiplying all elements of X,(r, g) and
X,(r’, g’) by a suitable constant, that 4 and B are relatively prime positive inte-
gers. Write (r’/r)'/zzp/q with (p, g) =1. By assumption, p > q. (3) implies

q*u(c, k)= Ac’q?+Bc(Rk+1)q?,

“ 2 2.2
qn(c,k)=Ac“p“+Bc(2k+1)pq.

Subcase a. Suppose (p, B) =1. By (4) and the fact that (p, q®)=1, p |’ (c, k)
for all pairs (c, k). On the other hand, if p divides both u(c, k) and u(c, k+1),
then p divides u(c, k+1)—u(c, k) =2Bc. Thus p | 2c. By our assumptions, p > 2.
For all ¢ such that p ¥ 2¢ and for all &, either u(c, k) or u(c, k+1) occurs in A with
the same multiplicity as in X,(r, g). It follows that ny(A) = 0(33/2).

Subcase b. Suppose (p, B) > 1. Choose a common prime factor py of p and B.
Dol q’p'(c, k) for all (c, k). However, since (pg, Aq?) =1, po|q?u(c, k) only if
Do | c. It again follows that ng(A) = O(s*?).

Case 4. Suppose A and B are rationally dependent and r’/r =4. As in Case 3
we may assume that 4 and B are relatively prime positive integers. By (3),

p(c, k)= Ac*+Bc(2k+1),

) ,
p(c,k)=4Ac“+2Bc(2k+1).

Thus u’(c, k) = u(2c, k) for every c, k. However, since r’=4r, p is counted 8cr
times in X5 (r’, g’) for every c such that . = u’(c, k), but is counted only 2(2c)r =
4cr times in X,(r, g) for each such c. Define X, (resp. Xoqq) to be the collec-
tion of all p satisfying u = u(c, k) for some even (resp. odd) positive integer ¢ and
some k, with the understanding that g occurs 2c¢r times for each even (resp. odd)
c such that u = u(c, k). Then X,(r, g) is the join of X, and X qq while Z,(r7, g’)
is the join of two copies of X.yen, SO A is the symmetric difference of X, and
X oda- If either A or B is even, then all elements of X434 are odd while all elements
of Teven are even; hence A = Z,(r, g) and ny(A) = O(s*?). Thus we may assume
that A and B are both odd.

u(c, kYy=c(Ac+ B+2Bk). In particular, c|u(c, k). We consider the elements
u(c, k) which satisfy the following conditions:
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(a) c is a prime; ¢=3. (Hence Ac+ B+ 2Bk is even.)

(b) g=3(Ac+B+2Bk)is a prime

(¢) g > mc, where m=max{3(A+B),2}.
If A=2, the definition of g in (b) implies that Ag?> u(c, k); if A=1, (b) and (c)
together imply Ag2 > u(c, k). It follows that u(gq, k) > u(c, k) for every choice of
k. Thus if u(c, k) = n(é, k) for some pair (¢, k) # (c, k), then &< q. But ¢ divides
p(c, k) =2cq, so ¢ must equal 2, ¢, or 2c. Clearly u(c, k) # p(c, k) when k#Kk,
so the multiplicity of u(c, k) in X,qq is precisely 2cr, and its multiplicity in X.yen
is one of 0, 4r, 4cr, or 4cr+4r. In any case, u(c, k) has multiplicity at least
2(¢—2)r>2crin A. Thus it suffices to show that the number of pairs (c, k) satis-
fying (a)-(c), each counted %cr times and with u(c, k) =2cq < s, has order greater
than O(s).

Condition (b) is equivalent to

(b") n(c, k)=2cq where g is prime and g = 3(Ac+ B) mod B.

Let N(s) denote the number of elements u(c, k) <s satisfying (a), (b’), and (c),
each counted 2 cr times. Note that these conditions imply that ¢ < (s/2m)'/ 2. Fix
o with 0 < « < +. For s sufficiently large so that s* < (s/2m)'/2 we have

(6) N@s)= —cr[ (———— — (Ac+B), B) (mc,E(Ac+B),B)],

3<c=s® 3
¢ prime

where 7 (x, n, B) denotes the number of primes congruent to # modulo B which
are less than x.
By the prime number theorem (see [2]), w(x, n, B) is approximately
1 X
¢(B) log x

for large x,

where ¢ is the Euler function. Hence there exist b;, b, € R* depending only on B
such that b,x/log(x) < w(x, n, B) < b,x/log(x) for all x=3. (Dependency of b,
and b, on n can be avoided since # lies in one of only finitely many congruence
classes modulo B.) In particular each term in (6) is greater than

2 s mc s
7 — Py S pr e
() 3 r (bl 2clog(s/2c) ba log mc >> bi logs bis

for some constants b{, b5 R*, since 3 < c <s® Again by the prime number the-
orem, the number of primes ¢ in the interval [3, x] is greater than b; x/log(x) for
some constant 3. Hence, by (6) and (7),

1+« 2a

s s
N ” —_— ”
(s)> bi (log s)? b3 log s

for some b{, b4 e R* independent of s. It follows that n;(A) is at least
S1+01
o{— ).
( (log 5)? )
Thus in all cases ng(A) is at least O(slog(s)) as claimed. This completes the
proof. Ol
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Appendix. The spectrum on p-forms. If (M", g) is a compact Riemannian
manifold, the Laplace-Beltrami operator A acts on the space E” (M) of smooth
p-forms by

(1 A=dé+4d,

where 6 = (—1)"?+*D+lx g%, % being the Hodge-* operator of (M, g). If fe
C*(M) and 7€ EP(M), then ([6, Proposition 4.3]):

) A7) =(AS)T+S(AT)—2Vyaq s 7.

Now suppose that M =TI"\ G (where G is a connected Lie group and I'" a uniform
discrete subgroup) and that the metric g on M lifts to a left-invariant metric on
G. Elements of the exterior algebra A”(g*), where g* is the dual space of the Lie
algebra of g, may be viewed first as left-invariant p-forms on G and then as ele-
ments of EP(I'\ G). With this interpretation,

3 EP(P\G)=C®(T'\G)®A”(g*).

Note that if Uy, ..., U, is a basis of g orthonormal with respect to g, then Vgaq 7=

7 (Ui f)Vy,7. It therefore follows, from (2) and from equation (1) of Section 3
(with H, replaced by G), that JCR A”(g*) is A-invariant whenever 3C is a sub-
space of C*(I"'\ G) invariant under the right action of G.

(A.1) LEMMA. Let I" and T be uniform discrete subgroups of a Lie group G,
let g’ be a left-invariant Riemannian metric on G, let ¢ € Aut(G), and set g=
p*g’. Let A and A’ denote the Laplacians of (I'\G, g) and (I''\G, g’). Denote
by R and R’ the right actions of G on C*(I'\ G) and C*(I'’'\ G), respectively,
and let 3 C C*(I'\G) and 3¢’ Cc C*(X'\ G) be subspaces invariant under R and
R’, respectively. If R | 5 is unitarily equivalent to R’>¢ | 3, then the action of A
on IR AP(g*) is equivalent to that of A’ on 3T R AP (g*).

Proof. This lemma is a straightforward application of (2). The details are given
in [6, §4.4]. (The additional hypotheses in [6], that I' =TI"" and that ¢ is an ‘“al-
most inner” automorphism, are not needed in the proof.) O

We now specialize to Heisenberg manifolds.

(A.2) NOTATION. For I', the uniform discrete subgroup of H,, defined in 2.3,
we will denote by JC, ; the space of all C* functions on I',\ H,, which vanish on
the center of H,, and by 3C, > the complementary subspace of C*(I",\ H,,) invar-
iant under the right action of H,,. (Note that the action of H, on any irreducible
subspace of JC, , is equivalent to the representation =« defined in 3.6 for some c.)
By the remarks above, if g is any left-invariant Riemannian metric on H,, and A
is the Laplace-Beltrami operator of (I',\ H,,, g), then 3C, ;& A”(g*) is A-invari-
ant, i =1, 2. Denote by #(r, g) the collection of eigenvalues, with multiplicities,
of A on 3C, ;®AP(g*).

(A.3) PROPOSITION. We use notation A.2 and let

“lo g
& 0 82n+1
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as in 2.6(5). Then 4(r, g) is uniquely determined by |T',|, 82,41, and the eigen-
values of h~'J (see 3.2(b)).

Proof. Suppose |I',;| =|Ts| and let

g,_[h' 0 ]
0 gan41

be another metric on H, such that #~'J and (#’)~'J have the same eigenvalues
and g5,41= g5n+1- The argument given in remark 4.2(i) shows that 4’ =‘ah« for
some « € Sp(#n, R) and hence

0
g'=p*g for go=[g l]eAut(H,,).

Let R, and R; denote the action of H,, on C*(I',\ H,) and C*(I';\ H,,) as defined
in 3.1. By Lemma 3.7(b), for every integer ¢, w. occurs in R, with the same mul-
tiplicity as in R;. Moreover, since ¢ acts as the identity on the center of H,,, w o ¢
is unitarily equivalent to w.. (See 3.7(a).) It follows that R;o¢ | 3¢y s is unitarily
equivalent to R, | sc, - Thus C8(r,g)=X¥%(r’,g’) by Lemma A.l. O

X¥(r, g) depends more intricately on I', and g except in the special case of
Theorem 4.5, that is, the case in which the eigenvalues +v—1d7Z, ..., £v—1 d,f of
hlg satisfy dy=d,=---=d,,.

Proof of Theorem 4.5. From Proposition A.3, it suffices to prove that Z{(r, g) =
X¥(s,g’). By Lemma 3.7(b),

) 3,1= @ Rf, and 3¢,= @ RS,
TEQ@, TE Qg

where f; is defined in 3.6(a) and @, in 3.2(c). Use g to define n: h, — b, #: h% = b,
and an inner product ¢, «) on b}, with g’ used to define analogous objects »’, #,
and (-, «)’. Since X (r, h) = X (s, h’) by the proof of Theorem (4.3), Lemma (3.4)
implies the existence of a bijection §: @, — Q@ such that {07, 07)’ ={7, 7). We will
show below that for each 7€ @, there exists ¢ € Aut(H,,) such that 7=07-p,.
But then f; = fp,° ¢, which means that R, | gy, is unitarily equivalent to Rs° ¢ | RS,
(where R, and R; denote, as usual, the right actions of H, on C*(I',\ H,,) and
C*(I's\ H,)). By (4) and Lemma (4.1), it will follow that Z{(r, g) = X%(s, g’).

Our assumption that d; =d, = --- = d,, implies that n% = —d(Id). Since the &-
orthonormal basis of Lemma (3.5) arose by taking real and imaginary parts of
eigenvectors in b,? of 75, in the present case any unit vector in §, can serve as the
first vector of such a basis. Thus we may choose an A-orthonormal basis & =
{U, i, ..., U,, V,} and an A’-orthonormal basis &' = {U{, V{, ..., U}, V;;} of R*"
such that

(6) (U, Vil=dEZ=[U, V{1 (1=<i=n),

with all other brackets of pairs of elements in & (resp., &3’) being trivial, and
such that

) Uy =<7, 70" i, Ui =<7, 7~ 2#(07).
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By (6), there exists ¢ € Aut(H,) satisfying ¢.(U;) = U}, ¢« (V:) =V7, and ¢.(Z) =
Z. Then g=¢*g’ and by (7), 7o, =17. ]

In contrast to Theorem 4.5, the following computation suggests that Z}(r, g)
may often distinguish the isospectral manifolds of Theorem 4.3 when the d,’s are
distinct.

(A.4) PROPOSITION. We use the notation of A.2 and 3.2(c). For e @,, let
n
a(7) =477, T), A=% > d?,
i=1
B(7)=4n2go, 1 g, # T In#r), Bo(T)=a(r)+A+VA2+B(7).

Then Ti(r, g) is the collection of numbers \ of the form A= a(r) or A\=L8.(7)
for some 7€ ®,. \ occurs in Li(r, g) 2n—1 times for each € @, such that A=
a(7), and once for each € Q, such that \=08,(7) or A\=08_(7).

Proof. Let 7€ Q,, with f,(exp X ) =exp[2av—17(x)] asin 3.6. Then grad f, =
2w —1#7. For o€ b}, (2) yields

8) A(f,0)=f{4n X7, 7Y0+ Ao —4nV—1V}, o).

Let £=(#)"'Z/gsn+1. Thus £(Z)=1and & | 27 =0. Using (1) and Lemma 3.5, an
easy computation shows that for o €);,,

© Ao=0(Z) g2 3 df e =240(2)¢.
Using the standard formula (see [7]),
g(VxY,U)=3{g([X, Y], U)—g(Y,[X,U])—g(X,[Y,U])}] for X,Y,Uel,,
together with Vy(#o0) = #Vyxo, routine computation yields
(10) Viro=—30(Z)(#) " 'q#7+50(n#7) g2n 11 £.

From (8), (9), and (10), we see that if ¢ belongs to the (27— 1)-dimensional sub-
space orthogonal to both ¢ and # ~!5#7, then f,o is an eigenvector of A for the
eigenvalue a(7) = 47 (7, 7). Moreover, on the two-dimensional subspace spanned
by £, £ and f,(# 'n#7), A—a(7)Id is described by the 2 x 2 matrix

n —v—1
g2n+1‘21df4 —27N=Tgnsrn#r|® | _ 2A4 >n B(7)
I = =
27w—1 0 27V —1 0
Since the eigenvalues of this matrix are 4+ \/ A%+ B(7), the Proposition now
follows from (4). ]

(A.5) REMARKS. In [4], the pairs of manifolds isospectral on functions which
were constructed in the proof of Theorem 4.3 will be re-examined. It will be shown
that in certain cases where the d;’s are not all equal, the spectrum of the Laplacian
on 1-forms distinguishes the manifolds. Proposition (A.4) will be used heavily in
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this demonstration. To our knowledge, these examples provide the first known
instance of manifolds isospectral on functions yet non-isospectral on p-forms for
some p.
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11.

12.

13.

14.
15.

16.
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19.
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