SPECTRAL INVARIANTS OF FOLIATIONS

Connor Lazarov

One of the problems in foliation theory is to relate the transverse geometry of
the foliation to its topological invariants, the exotic classes. In this paper we in-
troduce a spectral invariant related to the transverse geometry for an important
class of foliations and relate it to exotic characteristic numbers.

A Lie group acting by isometries with constant orbit dimension generates a
Riemannian foliation. In this paper we study the case of R" acting locally freely
by isometries, this being an interesting class of foliations; the study of a much
larger class of foliations can also be reduced to that of R”.

Let R"” act by isometries locally freely on a compact oriented (4k —1)-manifold
M. Let f be a symmetric homogeneous polynomial of degree £ in 2k indeter-
minates with integral coefficients. For 8 # 0 in R” we construct an eta function
nr(s; 0). Eta is constructed from the infinitesimal generator of the R action cor-
responding to € and the transverse signature operator (with coefficients) to the
orbits of the R action. We relate the value 5,(s; 0) at s =0 to the Simons charac-
teristic number S;[M ] associated to the codimension 4k —n—1 Riemannian foli-
ation arising from the R” action and f. We assume throughout this paper that
our foliations are oriented.

THEOREM 1. For generic 0, ns(s;0) converges absolutely for Re(s) large and
extends to a meromorphic function on the s plane with a finite value at s =0.
17(0; 0) is independent of 6 and

nr(0;0) = (—1)*2%%*'S [M] mod Z[1].

REMARK. Generic is defined in Section 1. Thus 5,(0; 0) is independent of 8 for
generic 6.

As a corollary to the method of proof we obtain the following.

THEOREM 2. Let R" act by isometries on the compact, oriented 4k manifold
W with boundary M with the action locally free on the boundary. Let yy be the
eta function for the action on M, and let T" be the fixed set for the action on W.
For generic 0,

77(0; 0) = (—1)*2%**! Residue(0, £, ') mod Z.
Here residue is that of [6] and [5].
COROLLARY 2. 9/(0;0) =0 mod Z[$] when n> 2 for generic 0.

REMARK. This allows us to regard 7,(0; #) as an obstruction to extending an
isometric locally free R action to an isometric locally free R” action for n > 2.
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For a closed oriented 4k manifold M, let us consider an isometric R action with
fixed set having connected components I';, and let n(s); be the eta function of
the action on the boundary of a tubular neighborhood of T';. Then we have the
following.

COROLLARY 3. X7,(s); =0 mod Z.

A principal tool is Theorem 3.10 of [3], which relates the eta function of an
operator on the boundary, the index of a certain boundary value problem, and
the heat equation asymptotics.

In Section 1 we discuss the transverse signature operator, define our eta func-
tion, and present examples. In Sections 2 and 3 we give the proofs. We are grate-
ful to Professor Atiyah for a very helpful conversation at Berkeley in 1983.

1. Riemannian foliations, transverse signature operator, Simons class and the
eta function. Recall from [13] that a codimension ¢ Riemannian foliation on M
is given by a family {U,, f;, hij, gi}, where {U;} is a covering, f;: U;— R? a sub-
mersion, g; a Riemannian metric on RY, and (for each x € U;NU;) A} is an iso-
metry of a neighborhood of f;(x) with one of f;(x) which satisfies f; = h;; f;. The
{f ~Y(p)}) are the local leaves. The normal bundle is obtained from U; TR9 by
identification using the d#;;, and the g; yield a metric g on the normal bundle »,
called an adapted metric for the foliation.

Assume that the A’s are orientation preserving. Such a Riemannian foliation is
called oriented. Orientability of the foliation is equivalent to the normal bundle
being oriented. Then g and the orientation give rise to a star operator on 2, the
sections of A*p, and hence a splitting 2 = Q1+ Q™. We can also obtain this split-
ting by using the star operator in R and identifying using dh;;. Let » be the nor-
mal bundle to an oriented Riemannian foliation and Q = C*Av* (A will always
mean the exterior algebra of the complexified bundle). Reinhart [14] introduced
a transverse d and 6. We can, following Paul Baum, describe d invariantly. Let
7 : T*M — v be the map induced by orthogonal projection using a metric on TM
compatible with that on », and

0: COo(T*MRAv*) > CC(Av*)
be given by o(v®@w) =7(v) Aw. A Riemannian foliation gives rise to a unique
Riemannian torsion-free connection on its normal bundle [13]. Let
V:CP(Av*) > C(T*M P Av*)
be the resulting connection on Q. Then d = ¢V. The metric on » and the orienta-
tion give rise to a * operator on Ar*. Then we can define 6 on  to be
(_l)q(k+l)+1 *d*
on k forms. The involution # on © given by i¥%*~D+9/2% on k forms anti-com-
mutes with d+6. Hence @=Q%7+ Q™ where Q%, Q™ are the +1, —1 eigenforms

under ¢. d+6: Q17— Q™ and similarly d+6: 2~ — Q%, and we denote d+6 re-
stricted to 2% by D*. We note also that § is the adjoint operator of d relative to
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(s,t)= S o (s(x), t(x)) dx,

where ( , ) is the metric on Ap* arising from the given metric on » and dx is the
volume form on M. D7 is called the transverse signature operator. For V a vec-
tor bundle we extend D™, via a connection on ¥V, to act on sections of Av@V
(denoted by Q(V)) and on Q7 (V) or Q7 (V) by the construction of [12, p. 57].
We denote the resulting operator by D*® V. A computation similar to that for
the ordinary signature operator yields o(D% ), =0(wv)—i(wv), where 0 is wedge
product,

i(@)(bin - Ab,)=Z(—=1)*Ya, b))y A ---i--- Ab),

and = is an orthogonal projection on v. o(DT®V)=0(DT)®I. D is trans-
versally elliptic to the leaves of the foliation in the sense of [1].

Exotic characteristic classes for foliations are classes that come from the co-
homology of the appropriate classifying space for foliations. A Riemannian foli-
ation has classes that can be obtained from the Simons construction [15] applied
to the unique Riemannian torsion-free connection on » and appropriate poly-
nomials. Let f be a homogeneous polynomial of degree k£ in 2k indeterminates.
Write f as a polynomial in the o;, the elementary symmetric functions. Let ¢ be
the corresponding polynomial of degree 2k in 4k indeterminates obtained by re-
placing o; by o5;. Recall that for an n X n matrix A4, c; is defined by Z¢/¢c;j(A4) =
det(/—(¢/2mw)A). Then ¢(A) is defined to be the result of replacing o;; in ¢ by
c2j(A). Given a codimension 4k —2 Riemannian foliation on M, the Simons con-
struction [15] applied to ¢ and the Riemannian torsion-free connection yields Sy
in H¥*~Y(M;R/Z).

The same polynomial yields a virtual representation u, of SO(4k) defined in
[4, §I, p. 596], and by restriction of SO(4k —m). u, has the property that

ch(us) = f(x{, ..., x2,) +higher order terms.

uy can be described directly as follows. Write f as a polynomial in the g}, the ele-
mentary symmetric functions of 2k indeterminates. Now replace each ¢; by the
corresponding o,; in the 4k indeterminates #;,—1,...,fx —1, (-1, ..., rz‘k' -1
This describes u; as a virtual representation of SO(4k). Let uy= po— p; wWhere
the p are representations. For an oriented Riemannian vector bundle E, p(FE)
is the extension of the principal bundle of E by p. Thus u,(E) makes sense and
uf(E—I-m) =Uf(E).

We need some specific connections on » and 7M. Let R act by isometries on
M with no fixed points. Let X be the infinitesimal generator of the action. The
normal bundle to the resulting foliation has a unique Riemannian torsion-free
connection given on a section s of the normal bundle by

Vy(s) =w(Y)Lx(s)+7Dxy(s),

where 7 is orthogonal projection on the complement of X, w(Y)=(Y, X)/(X, X),
and D is the Riemannian connection on 7M. Analogously, if R acts (possibly
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with fixed points), an isometry invariant connection on 7M is called an X con-
nection if away from the singular set Vy(s) = w(Y)Lx(s)+D,y(s). Given an in-
variant metric on M, such a connection can always be constructed. We will be
interested in operators D+®pj where V is either » or 7M and the connection is
one of the above.

DEFINITION OF THE ETA FUNCTION. We will define our eta function in terms
of a first-order operator associated to an isometric R action. Then in Theorem 1.6
we will show that this eta function can be constructed in terms of the action of R
on the kernel and cokernel of the transverse signature operator, thus bringing it
closer to index theory.

Let R act by isometries with no fixed points on M. Let X be the infinitesimal
generator to the action. We can introduce a new metric g° = | X | ~'g, where | X| =
g(X, X)72. 1t follows that X is also an infinitesimal isometry relative to g°. We
want to use g% in the following discussion to define the eta function, so we might
as well assume g(X, X)=1. Let N=M X R with the product metric on N. Let
p: N— M be the projection. Take the orientation on 7NN given by

p*(v)+{X,d/du}.
From [4, p. 576],
AT(N)=AT (@A R+ AT (1)®A™(R?)
AT(N)=AT()@A (R +A (r)@AT(R?).
Here p*v is shortened to » and Nx R? to R2. We consider a representation p of
SO(4k) and a coefficient bundle of p(7N).
(1.2) AY(N)®@p(TN)=A"(»)QAT(R)Qp(TN)+ A~ (») QA (R*)Qp(TN),

and similarly for A™.

Let w be the one form w(Y)=g(Y, X). Then {w, du} is an oriented orthonor-
mal basis for A*(R?). A*(R?) has basis s, =1+iwAdu, s, =du—iwand A~ (R?)
has basis #,=1—iwAdu, t,=du+iw. Let D, D~ be the transverse signature
operators on At (v), A7 (v). Let D*® p be the extension to

AT ()®AT(R*)®p(TN)

obtained by using the connection arising on p(7N) from an X connection on TN
and the flat connection on A*(R?) relative to sy, s, (similarly for D™ ® p). Now
R acts on M X R (trivially on the R factor) and so the action of X extends to 7V,
and hence to AY (V) ® p(TN). We remark that the action of X on AT (N)® p(TN)
coincides with that of X® p obtained by using an X connection. Finally, let ¢ be
the symbol of the ordinary signature operator Dy at the cotangent du. We recall
from [3, p. 63] that Dy = o(d/du+ B), where B is elliptic with symbol given by
(4.6) of [3]. Let

(1.3) Eo=AT"(N)|Mx{0} and E,=A"(N)|Mx{0].
Thus E,, E, are bundles on M. Ej has the decomposition of (1.2) and similarly

1.1
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for E,. We describe a first-order operator 4 which is a matrix of first-order oper-
ators with components A4, A2, A2, A2 on the bundle Ej relative to the above
decomposition (1.2). These are given by

Ay=(—ig(X, X)X, Ap=-0(D*®p),
A= —0(D ®p), Ay =(ig(X,X) ") X.
(Of course we have chosen g(X, X)=1.)

THEOREM (1.5). The operator A on E is self-adjoint and elliptic. In fact,
o(A)=o0(B).

Proof. First we show that each A;; is self-adjoint. This is obvious for 4y, and

Ass. Now g*=0"!= —g, so

(—o(D"®p))*= (D" ®p)o*=(D~ ®p)o.

For a section f of A*(v), let deg(f) be +1 or —1 depending on whether f is in
A% or A°Y. Then o(f®¢;) =(—1)'"' deg(f) S ®s;+1 and deg(D* f) = —deg(f),

and similarly D~ . From these remarks it follows that the remaining two operators
1

are self-adjoint. To prove ellipticity, recall that ¢ = o4,(Dy) and also ¢ "' = —o0.
For v in T*M, d,(B) =0 "'a,(Df). Now
0,(X) =v(X), 0,(D")=0(wv)—i(wv).

Thus if v = w (the dual form to X'), then ¢,(A) = —i on AT (»)®A'(R?) and +i
on A~ (»)®A~(R?). Direct computation on S ®sj, fR¢t; shows that the same is
true for o,(B). If v is orthogonal to w then v(X)=0. On A*(»)® A*(R?) for
*= 4, — we have

o6,(A)=0"lo,(DT®p)=0""O(xv)—i(wv))=0"'o,=0,(B). O

Thus A is elliptic and self-adjoint on M. The eta function n4(s, p) is defined,
at least formally as in [3]:

n4(s, p) = X sign(N)| N[ 775,

the sum taken over the non-zero eigenvalues A of A. The virtual representation
ur is po— p;, so we define

17(8) =n4(s, po) —n4(s, p1).

Now let R” act locally freely by isometries of M. The image of R” is densein a
torus which acts on M. Let 8 be an element of R” which projects to a generator
of the torus. We call such a 8 generic. Let R — R" by sending 1 to 6. Then R acts
on M. Define y¢(s; ) to be:

(1.6) 17(s;0) =ns(s) for this action of R.
SIMPLE EXAMPLE. Let R act on S*~! by

(Z15 -5 226) > (eXP(EN1 )21, - €XP(E N2k E)Z21) -
Then Theorem 1 and the theorem of [9] tell us that
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17(0) = (=) 2%+ (N}, ..., N3/ My - Aok mod Z[3].
If k=1 and we take f= X+ X3, then
7,(0) = —8(N+23)/ M\ \2 mod Z[1].

Again let R act by isometries with no fixed points on M (X the infinitesimal gen-
erator), and let p = pgy or p;. Consider ker (Dt ® p(TM)) in L,(AT () ® p(TM)).
The action of R preserves D* so D' commutes with X. X also acts on the tensor
product either via its action on the bundle A" (»)® p(TM) or using the connec-
tion on p(7M) arising from an X connection, and the actions coincide. Thus X
acts on the kernel. Let X\ be an eigenvalue of X corresponding to an eigenfunction
lying in ker(D*®p). Let

Ky={u: (DT"®p)u=0, —iXu=uj
and
ker(DT®p)y={u: (DT®p)u=0, —X*u=Nuj.

Then ker(DT®p))y=K\+K_). DT ®p is an invariant transversally elliptic oper-
ator, and the constructions of [1] show that ker(D* ® p), and hence K, are finite-
dimensional. Let

n7 (s, p) = sign(\) dim(K\)|N|™° for A#0.

Do the same for D~ to obtain ™ (s, p). For R” acting locally freely by isometries
let @ correspond to a generic R action, so we have »* (s, p,0) and (s, p, 0).

THEOREM (1.6).
ﬂf(S, 9) = _2[(7’+(Ss PO> 0)—7]—(5’ Lo, 0))_(7?+(S: Pl 0)_7?_(*9: P1, 9))]-

REMARK. First note that n*, n~ depend on f. All of the 5 functions involved
will be shown to converge absolutely for Re(s) large, extending to a meromor-
phic function with a finite value as s = 0. The proof of (1.6) will be given in Sec-
tion 4.

2. Proofs of the main theorems. Let M be a closed oriented 4k —1 Riemannian
manifold and let R” act locally freely by isometries. R” then acts through a torus
T contained in the isometry group of M. By [10, Theorem 3] (see appendix), some
multiple of A by a power of 2 bounds an oriented 7 manifold W. We can as-
sume that W has an invariant metric which is a product near the boundary. [t
will clearly be enough to prove Theorem 1 when M = dW. Let X be the infinitesi-
mal generator of the isometric R action on W given by a generic § in R” and » the
complement of X in 7M. An orientation on R and M induces one on ».

Let U, be a neighborhood of M in W taken so that its closure is contained in
a neighborhood C on which the metric is a product. Let ¥ be a C™ function de-
fined on a neighborhood of M in W with values in [0, 1] whose support is con-
tained in U, and which is 1 on a neighborhood of M and 0 outside U,. We can
assume that we have an X connection V on 7W so that, in a neighborhood of C,
V=w®Lx+ D, as in Section 1.
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Let © be the inward normal coordinate at 6/ which we can assume is de-
fined throughout C. From [3, §4] the ordinary signature operator D;}; becomes
old/du+ B] and D3 ® p(TW) becomes o[d/du+ B® p(TW)] on C. From (1.4)
we have the operator 4 on AY(TW)®p(TW) | M and on C=M %[0, ¢) we can
take of{d/du+ A]. Thus on W we can consider the operator

D,=yold/du+Al+(1—V¥)Dy®op,
D,: AY(TW)Rp(TW) - A~ (TW)R p(TW).

Near M, D,=ol[d/du+ A]; away from M, D, =D ®p. From (1.5) we con-
clude ¢(D,)=o(Djy). Thus from (3.10) of [3] we conclude that 74(s, p) con-
verges absolutely for Re(s) large and extends meromorphically with a finite value
at zero. Further, 174(0, p) —2{,, a(x) is an integer, where a(x) is the constant
term in the asymptotic expansion coming from the heat kernel of D} D, and its
adjoint on the double of W. We take p = pg, p; to obtain

(2.1)

14(0, p;j)—2 Swaj(x) dx is an integer.

PROPOSITION (2.2). {,,, ato(x) dx—§p, a1 (x) dx = (=1)%22K |, o(Kv) and thus
17(0;0) = (=1)*2%*1{,, o(Kv) mod Z[1].

Proof. Here Ky is the curvature of the connection V. We wish to apply Theo-
rem II of [2] to conclude that ap(x) — a;(x) is a product of Chern forms of the
virtual bundle po(TW)— pi(TW). We proceed in the manner that [2] treats the
signature operator (cf. §§5, 6). On the bundle A(TW)® p(TW) we have the met-
ric g on TW and an invariant metric 4 on p(TW) with V constructed so as 1o pre-
serve h. Then we get from this data «(x) satisfying (2.2)-(2.5) of [2]. We consider
the change g — N2g. As in [2, p. 306] introduce the map on forms e(p) = ANy on
p-forms. Relative to the new metric go we get a new operator Ay with components

(—igo(X, X) V)X, —0o(Df®p), —o0o(Ds ®p), (igo(X,X) V)X,

and a new Dg i and hence a new Dy ,. The X connection does not change. We
let L =(—ig(X,X) "?)X. A direct computation shows egpe ' =0, eaoLloe ™' =
X"'oL, and (from [2]) e(Dd ®p)e ' =\"'D*®p. Thus eDy e '=7\"'D,.

As in [2, §5], ag, o; and o9 — «; are regular invariants of the metric of weight
zero. If we jointly change g to N®g and the metric / to p24, then V is unaffected
and so D, is independent of the change in 4. Thus « is a joint invariant of g and
h of weight zero, and so we conclude (as in [2, pp. 309-310]) that « is a polynom-
ial in the Pontryagin forms of g and the Chern forms of p(7W). Then the identi-
cal argument of [2, pp. 310-311] enables us to conclude

(2.3) ag(x) —a(x) = X (chj(po(TW) — p(TW)) F,(P1(8)5 ---))5

where the sum is taken over 2/ +4v = 4k. However the virtual representation # =
po— ey has the property that ch(u,) starts in degree 4k with the term f(x, ..., x3,),
and this is represented by the form (—1)%¢(Ky). Thus

@.4) [, (o —aix) dx=(=D*{ Fop(Kv).
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Here Ky is the curvature of V. However ¢(Ky) as a form vanishes identically when,
in the notation of Section 1, V=wL y + D, (see Remark 3.1A). V was chosen to be
wLx + D, on the support of ¥ and away from this support D, = Dy ® p. Thus by
the locality property (2.3) of [2], Fp(x) is the term coming from the correspond-
ing term for Dj}, ® p(TW), and this has been computed [2, p. 311] to be 22X, ]

Let Fy be the codimension 4k —2 Riemannian foliation given by the R action
on M. Then we have the following.

PROPOSITION (2.5). {,, ¢(Kv) = S;(F)[M] mod Z.

Let F be the codimension 4k —n—1 foliation of M given by the R" action on
M. We remark that the Simons class S, (Fy) mod Z is independent of the choice
of adapted metric on the normal bundle to Fy (see 3.5).

PROPOSITION (2.6). For generic 8, Sy(F)[M]1=S;(F)[M] mod Z.

The proofs of (2.5) and (2.6) will be given in Section 3 where we discuss Simons
classes. The proof of Theorem 1 follows from these propositions. We have already
shown convergence and that 5,(0, 0) = (—1)*2%*1S,(F;)[M ] mod Z[1]. S,(Fy)
mod Z is the same for g or g(X, X) "?g since both are adapted metrics, and so
Theorem 1 follows from (2.6).

Now we consider Theorem 2. We first note that the residue is that of [6] and [5].
We note that when R is a subgroup of R” which is dense in the boundary-preserv-
ing isometry group of W, the fixed set of the R action is the same as that of the R”
action and is contained in the interior of W. Let {I';} be the set of components of
the fixed set I'. Each I'; is orientable and the boundary of a tubular neighborhood
of T'; inherits an orientation from W. The form ¢(Kv) certainly vanishes outside
the union of disjoint tubular neighborhoods by our remarks in the proof of (2.2),
and the theory of [5] applied to W (and keeping in mind that ¢(Kvy) vanishes near
dW) shows that

SW‘D(K") = 3 Res(X, f,T)),

where the residue is given by the right-hand side of (2.1) of [5] and also by the
left-hand side of Theorem 2 of [6].

Corollary 2 is really a consequence of [8]. In this paper we defined and studied,
for certain transversally elliptic operators, an R/Z invariant called virtindex. This
invariant came out of studying the transverse index (1], [16]) and hence is related
to K theory. From [8, Theorem 2] we have

virtindexg(Dy ®uy) = —22*~1§,(F)[M] mod Z[1],

where D, is the transverse signature operator to a generic R action, and u, is the
virtual bundle obtained from the virtual representation #, and the normal bundle
to Fy. Then we show in [8], using K theory, that if n > 2, then

virtindexz (D,” ®us) =0.
Thus S;(F)[M] and hence 7,(0; 0) is zero mod Z[1].
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Finally, the last corollary follows from Theorem 2 by taking W as the union of
disjoint tubular neighborhoods of the I';; we do not need 1 since M is actually dW.

3. Simons classes and the proofs of (2.5), (2.6). Recall the X\ construction from
[7, p. 64]. Given connections V%, V! and a polynomial ¢, N(V!, V%) (¢) is a differ-
ential form satisfying d\(V', V) (¢) = ¢(K;) — ©(Kp), where K; is the curvature
of V'. Let V! be the Riemannian torsion-free connection on the normal bundle
to F,, V" the connection on the line bundle (X) which is globally flat relative to
X/|X|and V! = w® Lx + D} an X connection on TM (D'is the Riemannian con-
nection on 7M). Then V' and V 1+ v’ are connections on 7M.

LEMMA (3.1). A\(VL, V4 VL) () =0 as a form if ¢ has degree 2k.

Proof. Choose local coordinates {x, yi, ..., y4} = U, where g =4k —2 with X =
d/dx. Let us consider the local framing {X/|X|, 8/9y1,...,8/3y,} and h: U - RY
given by A(x,y)=y. Let 6, and 6, be the local connection matrices of V! and
vil4 v, We show that 6, and 6, lie in A*Q(TR**~2). Then a direct computation
shows MV, V14+ V1) (p) is a sum of terms o(a ¥ TN (do+ 1[0, 001)’ AQY), where
o= 0;— 0 is in H*QY(RY), Qo = dby + [0, 0] and do + [0, 60] are in F*Q*(RY),
and i+ j+v=2k—1. Thus each summand is of degree at least 4k — 1, hence zero.

To show that 6, is in the given ideal use the definition of V! and the invariance
of this connection. Then a direct computation shows i(X) and Ly annihilate 6,.
For 6y, introduce p, the orthogonal projection on X. Then

(Vl+vhs=(pVips, aVixns).

A direct computation — together with the facts that #V'=V’ on » and that V% is
locally pulled back, via A, from R?—will yield the result. The computations are
similar to those in [9].

REMARK (3.1A). Since the connection matrix 6, lies in the ideal of forms I =
A*Q(TR**~2), the curvature K lies in 72 and hence ¢(K) = 0 as a form (since ¢ is
a polynomial of deg 2k and ¢(K) e I*¥). This same remark shows that ¢(Ky) =0
for an X connection on W outside the set where V# ow®@ Ly +D,.

LEMMA (3.2). S,(V5) =8,V + Vi),
Proof. This is (1.2) of [9]. O

REMARK. We will use the notation S, and S, to mean the same thing when f
and ¢ are related as in Section 1.

LEMMA (3.3). S,(V!)=S8,(VT1+ v,
Proof. According to [15, p. 31], S,(V')—S,(V"+ V%) as a function on 4k —1
cycles is given by integrating (over the cycle) the expression

2k—1
(2k) Sm o (o AQZ 1) d,

where 0 =0,—00, Q,=t%0%+t(do+[0,0,])+Qo. It is then easily seen that this
4k —1 form is just A\(V!, V+V %) (), which is zero. O
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Now let V be an X connection on TW and let D be the Riemannian connection
on TW. On TW restricted to M we have the following.

LEMMA (3.4). S,(V)=S,(V") in H¥*~Y(M;R/Z).

Proof. On a collar of aW, V=w®Lx + D,, the metric is a product, and D=
D'+ D where D' is flat relative to 8/8u. Then V=V'+ D™ and so the lemma
follows from (1.2) of [9]. ]

Thus we have the following.

PROPOSITION (3.5). S,(Fp) =S,(V). S,(Fy) is independent of the choice of
adapted metric.

Proof of (2.5). By (3.14) of [15],
S,(NIMI=S,D)M]=| \¥,D)@)={ ar¥,D)@)={ o[ o).

By theorem (5.15) of [15] we have S, (D")[M]1={, ¢(D). Since D=D'4+ D",
S‘F(Dl) =S,(D). Thus S, (Fp)[M]1=S,(V)IM]1=§, ¢(V). (Note: we have used
the notation ¢(V) in place of ¢(Kvy).)

Now we prove independence of the metric. We remark that it is true for S;(F)
for any codimension ¢ Riemannian foliation F. For the remainder of this proof
let V and V! be the Riemannian torsion-free connections on the normal bundle of
F relative to two adapted metrics. By [15],

So(V)(@)=S,(V)(0) = | NV, V) (p)

for o a smooth simplex. Let {x,...,X,, y1, ..., 4} be local coordinates for which
y1=--- =y, =constant define the local leaves of the foliation. The connection
matrices 0, 0! of V, V! relative to the local framing {9/dy1, ..., d/dy4} both lie in
the ideal of forms I = {dy,, ..., dy,} and then, by direct computation, A(V, vH(e)
lies in 72~ where v is the degree of ¢. In our case v =2k, g=4k—2,and 2v—1=
4k —1, so that A(V, V) (¢) =0 as a form. O

Proof of (2.6). Again X is the generator of the R action on M. Take
X=X1,X2, ...,Xn

to be the commuting vector fields which, at each point, generate F. Let » and
v be the normal bundles to F and F, and V and V? the Riemannian torsion-free
connections on v and vy. vg=rv+{X>5,..., X,} and we let v be flat relative to
X5,...,X,. Then, by (4.2)-(4.5),

SAF)=S,(V), S,(F)=5,(V), S,(V+V")=5,(V),
So(VOIMI=S,(DIMI=| NV’ V+V")(p).

Thus it will be sufficient to show \ = 0.
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We choose local coordinates U ={xy,..., X,, Y1, ..., ¥4} such that X;=43/dx;
and y; = constant describe the local leaves of F. Then

Xp=+++ =Xp=Y|= -+ =}y, =constant
describe the local leaves of Fy. Let f: U— R? and g: U — R*~2 be given by

f(xsy)_;ys g(x’y)=(x2’“'sxn’yls'“’yq)'

Let w be the local connection matrix of V relative to {3/dyy, ..., 3/dy,} and wy of
v relative to {3/8x3, ..., 8/0x,, 8/3¥1, ..., d/9yq}. Thenwe f*A(dyy, ..., dyg)and
wg € g*N(dXxs2,...,dx,,dy,, ...,dyg). Let I = g*N(dx3,...,dy;). w and wy are in 1.

AV, V+V7) (@) = (2k) Sm  elona? =l dr,

where 0 = wl—ow, Q,=t?w?+1(do+[0, w])+dw+ w?. Since o, w are in 7, Q, is in
I? and so (o AQZ 1) e 1% ~1=0, O

4. Proof of Theorem (1.6). First, for a section of E, of the form

S=1®s1+ 252,

we have (DT ®p)f=0 if and only if (D*®p)f;=0 (j=1,2); similarly for
g1®t+g,®1, and D~ ®p. For simplicity we will shorten DT ®p to Dt and
similarly for D ™. Recall we have also changed metrics so that g(X, X) =1.

Now recall 4 from (1.4). Let A0 be an eigenvalue of A4 and let A4, C L,(E}p)
be the finite-dimensional subspace consisting of all eigenvectors with eigenvalue
A. Let By, be the subspace of A4, spanned by

([1Q®51+ /285, +81® 11+ 8:Rt,: DY f;=D"g;=0, j=1,2}.

Notice that D f; =0 if and only if —oD * f;=0 and similarly for D~. Let C) be
a complementary subspace to B,.

LEMMA (4.1). There is a map E\: A, — A_, mapping C, injectively onto a
complement for B_,. Hence dim Cy =dim C_,.

Proof. Consider ¥ f;&®s; +g;®¢; in Ay. From the definition of A, the fact that
f is an eigenvector, and the relations

o(p®s) =(—1)/*'deg(0) o @111,  o(e®1))=(—1)/*'deg(¢) o®s;-1,
deg (D" p) =deg(D ™ ¢) = —deg(e),
it follows that
—iXf1—deg(g2) D g2=\f1,
—iXf>+deg(g)D " g1=N/2,
iXg)—deg(f2) D" fo=X\gi,
iXg,+deg(f1))D* fi=\g>.
Let Ex(f)=—D™ g:®s51+D " g1®s:—D" 21+ D" f1®1,.

4.2)
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A direct computation using (4.2) and the fact that D%, D~ commute with X
implies that E,(f) is an eigenvector of 4 with eigenvalue —X\. If f#0is in C,,
then one of D* f;, D™ g; is nonzero and D*D "¢ or D™ D" =0 implies D" ¢ or
D™ ¢ =0 by adjointness. Hence for f#0 in C), E\(f)#0 and E\,(f) is not in
B_,. Thus E, on C, is injective into a complement for B_,. The same argument
applied to —\ yields the result. ]

Thus 54(s; p) can be computed in terms of eigenfunctions of 4 in ker(D* ® p),
ker(D~®p). Let {f\}, A€ P be a basis of eigenfunctions of 4 in ker(D*®p)
and {g\}, Ae Q for Ain ker(D~ ®p). From (4.2), —iXf, = Nf\ and iXg) = Ag);
thus

14(s; p) = Epsign(—N) |\ T+ Zgsign(N) [N 7°

= —279"(s; 0)+277 (55 0).
Hence Theorem (1.6) follows. ]

Appendix. The following are theorems from [10, §2]. OF will denote the bor-
dism group of oriented closed G manifolds.

THEOREM 2 [10]. Let H be the identity component of a compact Abelian group
G and M an oriented G manifold with the action of H having no fixed points on
M. Then the bordism class of M is null in Of@Z[%].

THEOREM 3 [10]. Let g be the number of connected components of the com-
pact Abelian group G. Then OS®Z [1g] is zero in odd dimensions.

Theorem 3 is relevant to us. We take G to be a torus 7 to conclude that
O;’:@Z[%] is zero in odd dimensions. The proofs follow the lines of [11], using a
detailed analysis of the relative bordism groups.
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