SPECTRAL THEORY OF SELF-ADJOINT
HANKEL MATRICES

James S. Howland

The purpose of this paper is to determine, up to unitary equivalence, the abso-
lutely continuous part of a bounded symmetric infinite Hankel matrix, in terms
of the symbol of the operator. Since, according to Hartman’s theorem, contin-
uous symbols correspond to compact operators, the continuous spectrum must
be connected somehow with the discontinuities of the symbol. For jump discon-
tinuities, this is born out by the theory of the essential spectrum [6, Chapter 6] in
which each discontinuity contributes a segment to the essential spectrum of
length proportional to the jump.

To the author’s knowledge, the only known result on multiplicity theory for
the continuous spectrum is Rosenblum’s work [8] on the Hilbert matrix, which
he shows by explicit diagonalization to have uniform Lebesgue spectrum of mul-
tiplicity one on the interval [0, 7]. Our main result gives a complete description
of the absolutely continuous part in the case of symbols with a finite number
of smooth jumps. We show that each discontinuity contributes a direct summand
to the absolutely continuous part having uniform Lebesgue spectrum of multi-
plicity one, on a certain interval—the same interval that it contributes to the
essential spectrum.

We shall obtain this result from a theorem first stated by Ismagilov in 1963 [3],
and later proved in [2].

THEOREM (Ismagilov). Let A and B be bounded self-adjoint operators and
set H= A+ B. If the product AB is of trace class, then the absolutely continuous
part of H is unitarily equivalent to the direct sum of the absolutely continuous
parts of A and B.

This theorem is, in fact, a theorem of trace class scattering theory, generalizing
the classic Kato—-Rosenblum theorem on stability of absolutely continuous parts
under trace class perturbations [7, p. 16]. It may be proved as a consequence of
another generalization of the Kato-Rosenblum theorem due to Pearson [$, §7,
p.- 24], which we shall also use.

THEOREM (Pearson). Let A be self-adjoint on 3C, B self-adjoint on 3C', and J
bounded from 3C to 3C'. If BJ—JA is trace class then the wave operator
Q, =s-lime'® Je 4V P,(A)

! — o0

exists, where P,(A) is the projection onto the absolutely continuous subspace
of A.
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This result, with 4 = B, was also proved in an earlier paper of Carey and Pincus
[9, Lemma 4.1, p. 57]. This reference, pointed out by the referee, does not seem
to be known in the scattering theory literature.

For general information about Hankel operators, and references to the litera-
ture, we refer the reader to the excellent recent monograph of Power [6].

1. Hankel operators and symbols. Let /; be the Hilbert space of complex
square-summable one-sided sequences (xg, Xy, X2, ... ). The space /, will be freely
identified with the Hardy space H?(A) by the Fourier correspondence

w .
(cn)— 2 cneme
n=0

which is unitary if the norm on H?(A) is taken to be

1 T . 1/2
(5;; Sz If(e"’)|2d0) :

Here A denotes the unit disc.
An operator H of the form

(Hx),= 2 Cn+kXk
k=0

is called a Hankel operator. A symbol for H is a function f(e'®) such that

27 . ,
(1.1) Cn= 2:”, SO e im0 £ (010 g
for n=0. Since the negative Fourier coefficients of f are arbitrary, the symbol
is far from unique. We denote the Hankel operator with symbol f by H(f).
Note that its adjoint is H(f)*= H(f), where f(e'®) = f(e%). If f is bounded,
Nehari’s theorem [6, Chapter 1] asserts that H(f) is bounded. We shall work
only with bounded symbols f throughout this paper.

1.1. LEMMA. If f and g are bounded and have disjoint supports, then
H(f)*H(g) is trace class.

Proof. Let u(e'®) and v(e’®) be H? functions with Fourier coefficients u; and
vrg. Put A=H(f)*H(g). Then

. k— —
(Au,v)=Um 2 r*Cp x4 1U;0y
rtl nlk

1 . 27 (2« . . - . . _
— s lim 3 S S rkeiltn+k+1)0, ‘“‘*“”"’f(e“”)g(e‘o)u,v,, do dé.
T rt1 nik V0

The sums over / and n give u(e %) and v(e %), while the sum over k gives
(1—re’®=9)~1 Changing variables to §’= —6, ¢’= —¢, and letting r tend to |
therefore gives

CAu, vy = S;" S;“ a(0, $)u(e'®)v(e'®) dode,
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where
1.2) a(0,¢) =(4x%) "' (1-e'""?)"leg(e') e ~'* fle").

We must show that this kernel, which is bounded because gf vanishes when 60— ¢
is near zero, defines a trace class operator. Write (1.2) as

a0, ) =b(0, ) h(0) k(9),

where b(0, ¢) is a C* function on the torus which is equal to (1—e’®~#)~' on
the support of g(e‘®) f(e’®). Expanding b(0, ¢) in a Fourier series gives

a0, )= 3 by en(0)e*F(e)

n,j=0

= X buyih,(0)k;j(d),
nj=0

where 4,(0) =e""°h(0) and ki(p)= e Y%k(¢), and where b,; is rapidly decreas-
ing. Hence

A= E bnj(', kj>hn

n,j=0
is an absolutely convergent sum of rank one operators, and so is trace class. [J
2. An abstract theorem. If 7 is self-adjoint on the separable Hilbert space 3C,

we shall write P, (7T) for the absolutely continuous projection of 7, 3C,(T)=
P,(T)3C for the absolutely continuous subspace, and 7, for the absolutely con-

tinuous part of 7, i.e. the restriction of 7" to 3C,(T).
Let 3C2= 3C® 3C, and define an operator J: 3¢ — 3C by

Jf=1<2>=f1+fz-

)

0 I
L=
(7 o)
and note that

@.1) |12 =12+ (LS -
Let A be bounded on 3C and define the self-adjoint operators 7= A -+ A4* on

JC, and
0 A
5=(a o)

on JC2. Note that S is unitarily equivalent to its negative; in fact, WSW*= —S,
where W is the unitary involution

The adjoint of J is

Let L: 3¢ — 3C? be defined by
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I 0
W=
(o -1)
on 3C2.

2.1. THEOREM. Let A be a bounded operator on a separable Hilbert space
JC. If A? is trace class, then the absolutely continuous parts of T and S are uni-
tarily equivalent.

Since S, is unitarily equivalent to —S,, we have:
2.2. COROLLARY. T, is unitarily equivalent to —T,.
Proof of Theorem. We claim that the two-space wave operator

Q. f=slime T Je 'SP (S)f

{ — oo

exists. It suffices to prove this for f in the dense subspace S3C2(S) of 3C2(S); that
is, with f replaced by Sf. This is equivalent to proving the existence of

2.2) s-lim e‘7! JSe =5/ P,(S).

{ — oo

Existence of (2.2) follows from Pearson’s theorem [5, §7, p. 24] because
T(JS)—(JS)S = (A*?, A%)

is trace class.
Moreover, €2, is isometric. For this, it suffices to prove that

2.3) lim |Je =S f|2 = | f?

[ — oC

for fe 3C2(S). Replacing f by Sf, as above, and using (2.1) yields
[Je—iststZ_ ISf|2 — (SLSe—iSlf, e—iS{f)‘

Now by the Riemann-Lebesgue lemma, e ~"5 f — 0 weakly for absolutely contin-
uous vectors, and the operator

0 A
SLS =
(4 0)

is compact. Hence, SLSe ~'5' f — 0 strongly, which gives (2.3).

It follows [4] that Q. 3C? is a reducing subspace of 7" and that the part of 7 in
Q. 3C? is unitarily equivalent to S,.

Now consider the square of T

T?=(A+A*)? = AA*+ A*A+ A%+ A*2,

The last two terms are trace class, so 72 is equivalent to the absolutely contin-
uous part of D = AA*+ A*A. But the product (4.A4*)(A4*4) = AA*2A is also trace
class, so by Ismagilov’s theorem [2], D, is unitarily equivalent to

(AA*), 0
( 0 (A*A), )’
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which is exactly the absolutely continuous part of

§2— AA* 0
0 A*A)
Hence, 72 and S? are unitarily equivalent.
We have now established three facts: (1) 7, contains S,, (2) S, is unitarily

equivalent to —S,, and (3) 72 is unitarily equivalent to S2. Let #(\) and s(\) be
the multiplicity functions of 7, and S,. Our three facts translate into the relations:

(2.4) t(N) =s(N\)

and

(2.5) S(—N)=s(\)

for a.e. A\, and

(2.6) tON2) +t (=N =s(A\/2) +5(—=2\V?)
for a.e. A > 0. Replacing \/? by A > 0 gives

2.7 E(N)F+E(—=N)=5s(AN)+5s(—=A)=25(N)

for A > 0. Using (2.4), (2.7), (2.4) and (2.5) successively, we obtain s(\) <7#()\) =
28(N)—t(—AN)=2s5(N)—s(—N)=s(N). Hence #(\) =s(\) a.e., so that T, and S,
are unitarily equivalent. 1

REMARK. We have not established completeness, that is, that Q. 3¢% = 3C,(T),
although this must hold if 7, has finite multiplicity. It would be interesting to
know if this is true.

2.3. COROLLARY. If, in addition, A is congruent to a self-adjoint operator
B, then T, is unitarily equivalent to B,® —B,.

Proof. If A= UBU where U is unitary, then A A*= UB?U* and A*4 = U*B*U.
Hence, 72 is unitarily equivalent to B2 @ B2. In terms of multiplicities, this says
that

EN)FHL(—=N)=2(b(N)+b(—N))
for a.e. A>0. By Corollary 2.1, #(A\) =¢(—)\) a.e., so we obtain
t(N)=b(N)+Db(—N),
which is equivalent to the result. ]

2.4. REMARK. If A = UBU where B is only normal, we obtain A A*= U|B|*U*
and A*4 = U*[BIZU, and so, by the same proof, 7, is unitarily equivalent to
—|B|a®|B|,.

3. Symmetry of absolutely continuous parts. In this section, we digress to
prove a result on symmetry of the spectrum of H(f) in the origin. For the corre-
sponding result for essential spectra, see [6, p. 59 and p. 61, problem 6]. The
result is very general; there is no condition (except boundedness) on f except
near +1. We assume that H(f) is self-adjoint.
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3.1. THEOREM. If f(e'®) is C? on a neighborhood of +1 and —1, then the
absolutely continuous parts of H(f) and — H(f) are unitarily equivalent.

Proof. If g =3(f+f), then gis also C? near +1 and satisfies g = g, and H(g)=
H(f). Let x(e‘%) be a non-negative C® function which vanishes near +1, but
x =1 off a neighborhood of +1 where g is C?, with x =%. Then the absolutely
continuous part of H(g) = H(xg)+ H(g(1—x)) is unitarily equivalent to that of
H(xg), since g(1—x) is C? and hence H(g(1—x)) is trace class. (See Lemma 5.2
below.)

We may therefore assume that f vanishes near +1, and f=/f. Write f=

J++f_, where
_J f(&) Im&=0,
f+(£)_{ 0 Img<O.
Then f, = f_. Thus

H(f)=H(f)+H(/-)=H(f)+H(f:)",

where H(f,.)?=H(f_)*H(f,) is trace class by Lemma 1.1. The result follows
from Corollary 2.2 with A =H(f,).

4. A special case. In this section, we shall determine the absolutely continuous
spectrum for symbols with jumps only at a point £ and its complex conjugate £.
The general case is reduced to this one in the next section.

For |£| =1, the diagonal unitary operator

D(£): "0 gindgn
is translation on H?(A):
D(§): f(e") — f(ke"),
and so has the group property D(££) = D(£)D(€’). One computes that
“4.1) H(D())=D(EYH(S)D(§).

This corresponds to the new Hankel matrix (¢”%"”c,,.,). Note that (4.1) ex-
presses a congruence, and is a unitary equivalence only for £ = +1.
Let H, be the Hilbert matrix, with ¢, = (n+1)"'. H, has the symbol

fite®y=0, 0<@<2mw,

which has a jump of magnitude 27 at £ =e’® =1. According to Rosenblum [8],
H, has only absolutely continuous spectrum, with uniform multiplicity one on
[0, «].

Let fg’: =DE fls and HE ‘—‘D(E)H[D(E)

For ¢£=—1, H_; is unitarily equivalent to H,. It has the sequence c,=
(—=1)"(n+1)"! and the symbol

fo(eY=0+w, —w<b<m,

which jumps by 27 at £ = —1.
Let o be a complex number, and define the self-adjoint operator
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T(¢, )=aH +aHg.
The symbol o f;+aff of T(§, o) has a jump 27w at &, and a jump 27 & at £

4.1. THEOREM. (@) The operators H, and H_, have Lebesgue spectrum with
uniform multiplicity 1 on (0, w].

(b) The absolutely continuous part of T(&, ) has uniform multiplicity 1 on the
interval [ —|o|w, |a|x].

REMARK. It would be interesting to find an explicit diagonalization of 7(¢, «)
similar to that of H, in [8].

Proof of Theorem 4.1. Part (a) has already been proved. For part (b), take
A=aD:H,D;. Then T=A+ A* and

A’ = ?H(f)H(fy) = «*H(f)*H(f)

is trace class by Lemma 1.1. If o were real, the result would follow immedizately
from Corollary 2.3 with B = «H,. In general, it follows from Remark 2.4. [l

REMARK. If a = pe'® and £ =e’’, the sequence corresponding to the Hankel
matrix 7(£, ) is ¢, =2p(n+1) "' cos(nd +34).

5. The main theorem. For a function f(§¢) on the circle, define

f(Ex)= lim f(te'™)

h—-0x

and define the jump at £ to be
JE)=1(¢-)—f(E+).

We shall call f(&) piecewise C?if fis C? on the complement of a finite number
of points &, ..., &, at which f(£+) and f'(¢£+) exist. If £ is a jump of such a
function, define the interval

1) =[—31j(®)], 31/ (&)]

whenever £25£1. If £= =1, take I(£) =[0,1(£)] (or [1/j(£),0] if j(%) is nega-
tive). Let M (£) be the operator of multiplication by X on L,(I(£),d\).

5.1. THEOREM. If f is piecewise C? and H(f) is self-adjoint then the abso-
lutely continuous part of H(f) is unitarily equivalent to the direct sum

@gM(s),

where & runs over all jumps of f with Im £ =0.

IMPORTANT REMARK. Note that the symbol f is defined by (1.1), which is
slightly non-standard.

We shall require:

5.2. LEMMA. If f is continuous and piecewise C?, then H(f) is trace class.
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Proof. Integration by parts shows that the Fourier coefficients ¢, of f are
O(n~2). The result follows from [1, Corollary 1.4]. CJ

Note that the derivative of f may jump at &.

Proof of Theorem 5.1. If H(f) is self-adjoint, then f= f+#4 where he H".
Since 4= _f—_f, h can have only jump discontinuities, and is therefore contin-
uous by a theorem of Lindel6f [6, p. 60]. It follows that f and f have the same
points of discontinuity, so that if £ is a jump of f then so is £ and j () =/ (¥).
Moreover, the function g =3(f+ f) has the same jumps as f, and of the same
magnitude, and satisfies g = g. Replacing f by g, we may assume that f = f.

Let &4, ..., £, be the jumps of f with Im &; = 0. Choose a C* partition of unity
Yo, Y1, ---» ¥n such that (i) ¢;=4;, (i) ¥4,..., ¥, have disjoint supports, and
(iii) ¢; is identically one on a neighborhood of &; (i=1,...,n). Then y,=
1— (Y1 + --- +¢,) vanishes in a neighborhood of all jumps. Write

H(f)=HW )+ - +HWYn )+ HWo f).

The last term is trace class, and so makes no contribution to the absolutely con-
tinuous part. The remaining terms have pairwise trace class products; for example,

HWh HW ) =HWW Y HW f)=HW [)*HY2 f)

is trace class by Lemma 1.1. By Ismagilov’s theorem, H(f), is unitarily equiva-
lent to the direct sum

n
@® 2 Hi S )a-
=
It remains to show that H(y; f), is unitarily equivalent to 7(¢;, «;), wWith o; =
J(&;). The difference of these two operators is Hankel with symbol

g=fvi—(a; fi+a; f1).

But g, which is obviously piecewise C?, is also continuous since the jumps at
¢; and &; cancel. By Lemma 5.1, H(g) is trace class. L]

6. Concluding remarks. The proof has made use of the fact that certain Hankel
operators are trace class. We have relied for this on some rather crude suffi-
cient conditions. Much better conditions, even characterizations, for nuclearity
of Hankel operators are known [6, Chapter 3]. Essentially, something a little
better than differentiability is required, where we have assumed C2. Thus our
theorems (3.1 and 5.1) admit improvement in this direction.

We have not pushed the smoothness hypotheses for two reasons: (1) We desired
to present simple, easily stated hypotheses. Both characterizations of nuclearity
in [6], for example, involve the analytic symbol, while our symbols are never
analytic, since H® functions do not jump. (2) In general, trace class methods
in scattering theory rarely yield the sharpest results, so that we would hope to
obtain the best results by some other means.
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