HOOLEY'’S A,-FUNCTIONS WHEN r IS LARGE

R. R. Hall

1. Introduction. In an important paper [3], Hooley introduced the function

A,(n):= max card{d,...,d,_(:d\...d,_||n,u;<d;=<eu; Vi}.
Upyeeas Up g

I am interested here in upper bounds for the sum

S (x, )= T A(n)y“™, y>0,
n=x

where w(n) denotes the number of distinct prime factors of n. I follow Hall and
Tenenbaum [2] in denoting by «(r, y) the infimum of the numbers £ for which
S,(x,») <<gx(10gx)'5 and in setting A,:= «(r, 1). The function «(r,y) is known
precisely, for yeR™* \(-;—, 2) and in Theorem 1 I shorten the excluded interval.
In Theorem 2 I improve the known upper bounds for A4, for r=4: in particu-
lar A, <+fr—1 (4=r=18), and at least in this range, Theorem 1B [3] is rein-
stated (cf. [2] concerning this theorem). For r = 19, the result is better than 4, <
33(r+7)/244.

The applications of Hooley’s “new technique” set out in [3] required upper
estimates for A, only. Not only does the more general function a(r,y) seem
interesting, particularly since for certain y there is a simple formula for it, but in
the cases r =2, 3, 4 the upper best bounds, viz

Ay <.21969, A;<.55153, A;<.92752,

have depended on estimates for a(r, y), y#1 [2]. Such information can be ap-
plied to the study of A4, in two ways: by virtue of the fact that «(r, y) is a convex
function of log y, (by Hoélder’s inequality applied to S,(x,y)), and through the
Iteration Inequality of Hall and Tenenbaum [2]: for r=s=1, y,z2>0,

2a(r,¥) < a(r,z) +(s—1) max(sz—1,0) + a(r—s+1, y%/z)
(a(1, y):=y—1). The following information is available from [2]:

THEOREM A. We have A, <r/4, (r=5).

THEOREM B. Forr=2and y ¢ (%, 2) we have a(r,y)=y—1+(r—1)x(y—1),
where x(u):=max(0, u). Moreover a(r,y)=y—14+(r—1)x(y—1) for all y.

The second part of Theorem B follows directly from
A, (n)>>1+47,.(n)/(log n)" 1.
The first part suggests the definitions:
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Ay :=supfy:a(r,z)=z—1, 0<z <y},
Af:=inf{y:a(r,z)=rz—r, y <z < o},

so that 1/2 < A7 <1< At <2 for every r. By the convexity, a(r, y) is continuous
and the supremum and infimum are attained. I shall prove the following.

THEOREM 1. We have lim sup At < (17+7+/7)/27 =1.31556...; more pre-
cisely, forr=4,

17r3 —45r2 4+ 27r + (7r2 —15r +9)3/2
27r(r—1)(r—2) ]
Thus At <4/3 for r=12, At <3/2 for r=4. It is known (cf. [2]) that A <
/(2w —4), AL <1+1//3.
We can deduce an upper bound for A, from knowledge about A7, Af. Let
te€(0,1) be such that

+
At =

O=(1—t)log A;+tlog A}.
Then
a(r,1)=(1—1t)a(r, A7)+ ta(r, AT)
=(1—8(A;—1)+re(AfF—1);
that is,

A < (A7 —1)log AT —r(At—1)log A;
a log(AT/A7) ’

Thus either AT -1 or A; —1 as r— o is sufficient for 4, =o0(r). Combining
Theorem 1 with A7 = 1/2 yields lim sup(A4,/r) <5/22.

We improve on this in Theorem 2 below. It seems very difficult to make any
advance on the result A7 =1/2 which was obtained in [2] from the iteration
method; in its present form this gives Lemma 4 [2] immediately to the right of
1/2: the upper bound achieved exceeds y—1 and deteriorates as r increases.
Nevertheless it is this result, combined with other techniques in the “hybrid
method” which leads to the upper bounds for A, and A3 quoted above.

To deal with A}, or what is the same thing, large y, the technique involving
Fourier transforms initiated by Hooley [3] is appropriate, although in its basic
form this suffers from the drawback that any upper bound achieved for «a(r, y)
must be at least as large as A4/ y—1, where

1 27T 27 . .
h;::(—z—;)—r—:so So |1+e’91+...+e’0r—1|d01...d9r_l

= rS: JO(t)r_IJl(t)i:' ~ %(wr)‘/z, (r— o).

The single integral formula is due to Hooley [4]. Now A, < A5—1 (=(4/7)—1),
Az < hi3—1 (=.57...) so that it appears that for intermediate values of y, such as
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y=1, to be most effective the Fourier transform technique requires the kind of
refinement begun in Lemma 3 [2], and then to be combined with the iteration
method in some way. However, it seems well suited to the study of At; we also
use it in the present paper to obtain the following.

THEOREM 2. There exist constants cy < .9303 and ¢, >1.0655 such that for
r=14, we have that

2r—1
A,<%3\/3—5+2(3\/3—5)‘/2}+00‘c‘( rrz_ )

For 4<r=<13 we have
_17\3/2
,s&.
r+-/(r—1)

In particular, A, <+/r—1 for 3 <r =<18: for such r Theorem 1B [3] follows.

2. The integral K,(o; b, c). Hooley showed that (in the particular case y =1),
a(r,y) < h.(y)—1 where h.(y) denotes the infimum of the numbers £ for which,
as X — oo,

1 1 X . . . dt
S T S 1 exp{yS1 |eif! +efrf 4 ... +e”’r~l’|—t—} dby---do,_, < X¥,
where we have introduced the extra variable 0, for the sake of symmetry —only
the differences between the 6’s matter. Our idea is to estimate the inner integral
by means of an inequality

x<a+bx?—cx*, O=x=r),

using optimal values of a, b, c. A moment’s consideration suggests that the poly-
nomial P(x) = a—x+ bx?—cx* should have a root at x =r and a double roo: at
some point A€ [0, r]. Since the coefficients of x and x3 are known, the poly-
nomial is determined completely by A, indeed

A N2 1 22 1
M a= 2(1 (r+)\)2>’ b=2x <l+(r+>\)2>’ R INT SN T
A natural development would be to consider higher degree polynomials —how-
ever, the term x® already leads to technical difficulties which are as yet unre-
solved. This will be explained when we come to deal with the integral K, (o; b, ¢)
below. Even so, it is worth remarking at this point that one possible snag which
will have occurred to the reader simply does not arise: if we suppose that

Pr(x)=ag—x+ax?—ayx*+ .- —ay x**
=(x=A)?(x =) - (X =N (r = X) (Do + Prx+ -+ + P 1 X7 7V)
and solve for pg, pi, ..., P2x—1 by equating coefficients of x, x>, ..., x*~! we may

rest assured that the coefficients a,, are positive (i.e., the signs are as above), and
that Py (x) has no other root in (0, r) (i.e., it is non-negative). Both assertions
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follow from Descartes’ rule of signs. Negative terms in P(x) present complica-
tions but no serious difficulty and so we should always choose the degree to be a
multiple of 4, with negative leading term.

In [2], the infimum over £ in question was denoted by 4,(y) and we now esti-
mate this. We write 0 =1/X and we note that

X o dt ( 1 )
T
Sle - =log( g )+ O

uniformly on any fixed range |#| < H. We apply our inequality to the innermost
integrand above and find that the integral is

&K, , X@Fbr=—c@r’ =Ny g (g: by, cy),

where

I | 0; Tk i
S (0+| 1+0J 0 BII) dby---do,_,,

1
K,(o;d, C)==S -1 II(o+|0,—6,])?

-1

and the products run over all choices 0 <1, j, k, /, p, g <r except those involving
p=q, (i,j)=(k,I) or (/,k).

We may restrict our attention, by symmetry, totherange <=0, <6, <---<86,_;
and we put x,,,=0,,—0,,_1, 1 < m<r. We simplify the integral above by supposing
p>q in the denominator, and absorbing such factors as (¢+(6,+0,—0,—6;|)
and (o+|260,—260,|) in the numerator into the denominator. Of course in the lat-
ter case, there is a factor of at most 2 lost. So we have K, (o; b, c) << K/(0;d, ¢),
where

.Sl H'(0+|65+9j—0k~0,|)2c

dby---do._,,
6,2 II'(0+0,—0,)2d B0+~ dby -y

K/(o;d,c):= Sl

and where the products are now restricted to p > g, max(i, j) > max(k, /), neither
i nor j is equal to either k or /, and either i# j or k#/, and d=b—(4r—3)c.
In the denominator we write

0+0,—0,=0+Xy, Xp=max(Xgi1,Xg42;--->Xp).

Next, we have
0i+0j—0k_01= E 6,,xn, —136,,52,
n<r

and we Write
o+|0,~+0j—0k—0,|<<,0+xm, xm=max{xn:5,,7£0}.

We say that x,, appears in a factor of the numerator or denominator if §,,7 0 or
q < m =< p respectively —it is then a candidate to be maximum. Now let 1 <m; <
my < --- <ms<r and consider the variables X, X, , ---, X;n,. We need a formula
for the number of factors in the numerator and denominator in which at least
one of these variables appears. In the denominator this is simply

r S My 1—my
(2 u§0( 2 >’
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where it is understood that my =0, m,, =r when we evaluate the sum. We write
My —m,=1t,, 0<u=<s, and since X #, = r this becomes

1 1 8

2 2

—r’—— ¥ 1.

2 2 ,Eo “
If none of the variables appears in o+ 6, —0, there exists # =<s such that m, <
q < p<m,,,, which accounts for ('5‘) factors, hence the result.

It is helpful in counting to split the product in the numerator into three parts.
The first part comprises factors for which min(i, j) > max(k, /). If none of the
variables x,, ..., X,, appears in such a factor, we must have m, =min(k, /) <
max(i, j) < m,H_l for some u <. The number of factors counted in the first part

is therefore
r+1 S t,+1
4 —4 “ .
( 4 ) u§=:0 4 )

The second part of the product comprises factors in which max(4, /) > min(Z, j) >
min(k, /). If none of the variables appears in such a factor, either there is a «
such that m, <= min(k, /) <max(i, j)<m,,,, or there exist u, v with ¥ <wv and

m, <min(k,!) <min(i, j)<m,,,, my,<max(k, /) <max(i,j)<my,,,.

These possibilities account for

2,(5),.2.()3)

factors, hence the number to be counted is

(D)5 (-LEG) 2 503)-

The third part of the product comprises factors in which min(i, j) <min(k, /). A
similar calculation to the above shows that at least one of the variables appears in

GGG )=LEGH=25)

factors in this part of the product, and hence in

()25 ) (B G 55)

factors of the numerator. After simplification, this is

—_ s s 2
( )( 1)+— > i+ —(4r 3) E t2— { > t;?‘} +r—r2.
u=0 u=0 u=0

Now consider the integral K/(o; dy, cy); we split the range of integration with
respect to xi, ..., X,—1 into (r —1)! parts; in each of which there exists a permuta-
tion p on r—1 symbols such that

Xp(1) = Xp2) = "7 = Xp(r—1)-
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Each integral is majorized (to within <<, ,) by

@ SZ dx,q) Sz dX,(2) Sz AdXp(r—1)

0 (0+X,1))%1 Jx,qy (0+X,02))%2 Xpir—2y (O+Xp_py))er-1’

where the exponents z,, vary with p. We always have

—1
Z1+z2+ - +2,4 =2dy<£>—4cy(;_)<r2 )

In the proof of Theorems 1 and 2 which follow we need a lower bound for
Zpos+Zp_si1+ - +2,_1. Weset my=p(r—s),nmy=p(r—s+1),..., mgy= p(r—1)
so that the variables X, X, --., Xm, are the s largest x’s. It follows that one or
other of them must be chosen as maximum in any factor in which at least one of
them appears. From the above, we deduce that

Zr_s+ -4z, 1=dyrc—by > t;—4cy
u=0 2 2

3) . . .
-y ¥ t{:‘+2cy{ 3 t,f} +2cy(r2—r),
u=90 u=0
using the relation b =d+ (4r—3)c. The numbers ¢, are positive integers whose
sum is . We minimize the right-hand side by varing the 7, —this depends on the
relation between b and ¢ and hence on A.

If instead of the quartic polynomial we had taken P,(x) of degree eight, we
should have had an integral similar to K, but more complicated. In particular,
a lower bound for factors of the form o+ |0; + 0, + 6, — 6,— 0,,— 6,,| in the denom-
inator would be needed. I have found no satisfactory way of dealing with this.
The numerator would be rather complicated, but no more difficult in principle
than the case already considered.

3. Proof of Theorem 1. Suppose that forl<s<rwehavez,_;+ :--+2,_;1=5.
Then the integral (2) is

1 Zy+za+ -z, —r+l 1\ 1
< (—) (log —) (6<1/2).
o

g

This proposition may be proved by induction on r: we estimate the innermast
integral as << (a+xp(,_2))l‘zr—1 log(1/0) and replace the exponents z;,...,2,_;
by z215---52,-352;_2, Where z;,_,=2,_>+2z,_;—1. Subject to the condition above
this yields

h(y)=< {a+br—0(2r2—’)+2d(;)_40(; )(IZI )}y_r-H

<(a+bri—crY)yy—r+l=ry—r+1,

because P(r)=0. We shall therefore have «a(r, y) =ry—r for suitable values of
¥: MNis at our disposal.
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Recall the formula for z,_s+ --- +z,_; givenin §2, and put I 2 =¢%+s. Since
ty=z10=<u=<s)and 2 t,=r,wehavet<r—sand ¥ t,f < t*+s. Hence it would
be sufficient to have
@ b(ri—t?>—s)—c(r*—t*—4st>—2s*+s)=s/y, l<s<r
where ¢ is chosen to minimize the left-hand side. We choose A so that

b r242ra+3»N?
= =(r—1)>+2,
5) e > (r—1)

and hence the left-hand side of (4) is a decreasing function of ¢. Substituting =
r—s, it is therefore sufficient to have

bQRr—s—1)—c{(4r3—4r*+1)—(6r>—8r+2)s+(4r—4)s2—s3}1=1/y,

for 1 =s <r. Since the left-hand side is concave as a function of s, we need only
check s=1 or r—1. Hence we require both

2(r—1){b—c@2r*=3r+3)}=1/y,
rib—c(r’+r—1)}=1/y.

We choose \ so that b/c =3r%?—5r+3 which is consistent with (5) when r > 3.
Both these inequalities become y=1/2cr(r—1) (r —2) and, on solving the equation
3N242r\=(r—1)(2r—3) and substituting X\ in the formula (1) for c, we obtain
17r3 —45r24-27r 4 (7r2 —15r 4+ 9)3/2
27r(r—1)(r—2) ’

This is the result stated. ]

A = r=3.

4. Proof of Theorem 2. We put y =1, and we show that for suitable A the inte-
gral (2) is <<, (log1/0)"~!. We shall then have

h(1)=a+br’—cr?2—r)y=:¢(\),
say. Substituting for a, b, ¢ from (1) we find that

r(r=1(r+3N)(N—r+1)
2N2(r+N)3 '

Ideally we should like to choose A =+/(r—1) for a minimum, and this is possible
when 4 < r < 13. For larger values of r we have to choose A >/(r—1) to keep b
small —otherwise K,(o; b, ¢) is too large.

A necessary and sufficient condition for the integral (2) to be <<,(log1/c)" ™!
is that

®'(N) =

6) Z1+z+ - +zs=<s, for l=s<r.

This is proved by induction on r; it is clearly true for r =2, and we suppose it true
for r—1, r=3. Let (6) hold. We have

SZ dxp(,-_l) < lOg 1/0’
Xpir—2y (O+Xp—1y)3r—1 (0+X,—2))7 1"
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where z =max(1,z,_;). This gives us an integral similar to (2), with r—2 vari-
ablesand z;,_,=2,_>,+z—1. If z,_;<1and z=1, then

21+t +zi =21t 2+ + 5 =<r—2.
If z,_;=1then
Zitz+ o +z2l o=+ 2+ -+ 2, —1=r—2.

By the induction hypothesis, the remaining integral is << (log1/¢)"~2, and the
induction is complete. Now suppose (6) false, that is, suppose there exists so<r
such that z;+2z,+ --- +2z5,> 5¢. There are two cases: we can find such an sy <r—1
or not. In the first case, (6) is also false for the integral with respect to r— 2 vari-
ables, for z/_,=2z, >+ x(2,_1—1)=2z,_5. If the only so=r—1, then

Z1+z2o+ 42, _2=r—2
but z;+z,+ - +z,_;>r—1land z,_;>1. So
Zr—2=2Zp_2+2,1—1 and z;+z+:--+2/_,>r—2.

Again (6) is false for the reduced integral and the induction is complete.
Obviously (6) is equivalent to

D z,_s+-r-+z,_122d(£)—4c(;)(r;1)—-(r—s—l),

and we recall the formula (3) for the left-hand side. We need
s 2 s s
8) 2c{ S tg} —c S ti—b I t2=—(r—s—1)—dr—2c(r*—r)
u=0 u=0 u=0
for 1 =s < r and any integers ¢, =1 such that I ¢, =r. Once again we put 3 2=
t2+s so that ¢t < r—s; moreover, 3 t,fs t4+s, and (8) reduces to
) ct*+(4cs—b)t?’= —(r—s—1)—b(r—s)+cr’—2s*—r+s).

The left-hand side has a minimum when ¢? = (b/2c) —2s if this does not exceed
(r—s)?, otherwise it is decreasing. We consider two cases.

Case (i), (r—s)*+2s=b/2c.
We put t2=(b/2c)—s, and we need

2¢c
By hypothesis, (r—s)?>—2(r—s)+1=(b/2c)—2r+1; that is,
r—s—1=(b/2c)—2r+1)V2,

2
c(i—zs) =r—s—14+b(r—s)—c(r—s)(2r+2s—1).

From (1) we have

1
-—2—(r2+2r)\+3)\2),

and so for r =4 we have b/2c=r?/2>2r—1, also b=4rc> (2r+2s—1)c. Hence

b _
2¢
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it will be sufficient to have
c(b/2c)? < ((b/2c)—2r+1)/2,
If we set N=:ur, v:=p%/(1+ pn)?, this reduces to
1 3
= 2(2r—1
(10) G+v) <1— 2r—1) )
4yp (142p+3pu2)r2

In consideration of case (ii), we shall choose v = (3+/3 —5)/4 so that the left-hand
side is equal to 27/32, and p=.28443...; the inequality (10) holds for r=14.

Case (ii), (r—s)*+2s<b/2c.
The function of 7 in (9) is decreasing for # < r—s and to make it a minimum we
put £ =r—s, so that we need

an c(r—s)*+@cs—b)(r—s)>+(1+b—Q2r+2s—1)c)(r—s) =1.

There is equality when s =r—1. The left-hand side is equal to
S(r—s)+c(r—s){ds(r—s)—2r—2s+1}+ b(r—s),

where f(x):=cx*—bx?+x. We put x = \z so that f(x) = %x{ vz —(1+2v)z+2)
and set »=(3+/3—5)/4 so that f has a double zero which occurs at z =1+4+/3;
indeed,

J(x)= %(3\/3—5)2(2—1—\/3)2(Z+2+2\/3).

There is a maximum at z=1, x=A>2 for x> .28, r=14. It follows that for
25xs-§-(1+\/3))\, we have

8
f(x)=min {2—41), g-l—(l +\/3)} > 1.
Hence (11) is satisfied for 25r—ss-§-(1+\/3))\ as the left-hand side exceeds
S(r—s). For r—s=2(1++/3)\ we have

1++/3
3

Since > .28 we have s<r/2, and for 1=s=<r/2 (r=14), we have

b(r—s)=

(1+2v)=1, J(r—s)=0.

4s(r—s)—2r—2s+1=0.

Hence (11) is satisfied on this range also.
We have now proved that (11) is valid for r =14 when A= ur (u as above).

Hence
ur 14+2p v [2r—1
D=—(>0-— — .
(1) = T (U= p)+ = 2u3( = )

We find that

373 —=5+2(3/3—5)?
8

and we put co= (1+2»)/2p—1, ¢, =v/2u>. This gives the result stated for r = 14.

%(1_,,)= =.13524...,
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When 4 < r <13 we can choose A =+/(r —1) optimally, checking the various in-
equalities by direct computation.

Added in proof. In accordance with current practice I re-define
A7 =sup{y:S,(x,z) <x(logx)*~!, 0<z <y},
At =inf{y:S,(x,z) < x(log x)*~ ', y<z < }.

Theorem 1 still holds, and provides a sharp bound for S,(x, z) for z> A}. Simi-
larly, Ay =1/2 and for z<1/2, S,(x,z) is known to within constants.
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