THE NONEXISTENCE OF STABLE SUBMANIFOLDS,
VARIFOLDS, AND HARMONIC MAPS IN
SUFFICIENTLY PINCHED SIMPLY CONNECTED
RIEMANNIAN MANIFOLDS

Ralph Howard

1. Introduction. A Riemannian manifold M is strictly é-pinched 0 <4 <1 if
and only if all sectional curvatures of M are in the half-open interval (6K, K] for
some K > 0. A compact submanifold of M is stable if it is a local minimum for
the volume functional. In their paper [8] on stable currents, Lawson and Simons
make the following:

CONJECTURE (Lawson-Simons). Let M" be a compact simply connected
strictly %—pinched Riemannian manifold. Then there are no stable submanifolds
(or, more generally, stable integral currents or stable varifolds) in M.

This conjecture has been verified for several classes of manifolds. In partic-
ular, Lawson and Simons [8] show it holds if M” can be isometrically immersed
in a standard sphere with sufficiently small second fundamental form. The
author and S. W. Wei [6] have shown it holds for all metrics in some C? neigh-
borhood of the standard metric on the sphere $” and for all compact hypersur-
faces M" (n=3) in the Buclidean space R”*! which are pointwise ;’;+ 3/(n*+4)
pinched. In this paper we prove

THEOREM 1. There is a constant 6(n, p) > ;} so that if M" is a compact simply
connected strictly &(n, p)-pinched Riemannian manifold of dimension n, then
there are no stable p-dimensional submanifolds, stable p-dimensional integral
currents, or stable p-dimensional varifolds in M.

The number 8(n, p) is exhibited as a root of a transcendental equation and is
in theory computable. Unfortunately lim 6(n, p) =1 as n — co and this limit is
uniform in p. Computer calculations show that for small values of n, p, the values
of 6(n, p) given by our estimates are shown in Table 1. We remark that a theorem
of Fleming and Federer [4] implies that any nonzero homology class in H,(M, Z)
(Z is the ring of integers) contains a stable integral current. Therefore the above
theorem implies that for a simply connected strictly 6(n, p)-pinched Riemannian
manifold, the homology group H,(M, Z) vanishes. Of course, by the classical
sphere theorem, when M is strictly %—pinched then it is homeomorphic to a sphere
and therefore Theorem 1 does not imply any new topological result. However we
feel that proving a simply connected strictly %—pinched Riemannian manifoldis a
homology sphere by verifying the conjecture above not only would be of interest
as a natural variational problem, but provides a good test case for the theory.

Received March 12, 1984. Final revision received February 4, 1985.
Michigan Math. J. 32 (1985).

321



322 RALPH HOWARD

n D o(n, p) n D o(n, p)
2 1 .90612 8 1 .81186
3 1 .85408 6 99161
2 .95637 9 1 .81806
4 1 .83110 8 99315
3 .97305 10 1 .82057
5 1 .82068 9 .99430
4 .98142 50 1 .90144
6 1 .81640 49 -99969
5 .98632 100 1 .93476
7 1 .81537 99 .99988
6 .98447
Table 1

We now give an outline of the proof, without the technical details, in the
special case of submanifolds N” of M ”. This will make what follows clearer. The
proof involves (as does the proofs of the other results quoted) averaging the
second variation formula over a collection of several different deformations of
the submanifold and showing the result is negative. This violates the second
derivative test for stability. It differs from the others in that an integral average
over a continuous family of deformations is used instead of a finite sum. Assume
N7 is an imbedded minimal submanifold of M". Then, following Lawson and
Simons [8], we rewrite the second variation formula as

d2
(1-1) | vole/Ny=| o, TN (),

dt t=0 N
where V is any smooth vector field on M and ¢, its flow (or the one parameter
group of diffeomorphisms it generates), and where I (V, TN,) only depends on
V and the tangent space TN, of N at y. For each x € M let p,(y) = geodesic dis-
tance of y from x. For any smooth function f: R— R (R the real numbers) let
V,.(f) be the gradient of fep,. It is then shown, for M simply connected and
sufficiently pinched and for the proper choice of f, that

(1-2) | T, W) (x) < —c=0

for every p-dimensional subspace W tangent to M. Therefore, by Fubini’s Theo-
rem, for any compact minimal submanifold N?” of M”

2

Vo ar

Vol PN ()= [ || V(). TN Ras (0 O ()

=

< —cvol(N) =0.

Thus (d%/dt?) [, ¢ vol(¢,*”’N) < 0 for some x € M, and therefore N cannot be
stable. The main step is proving an inequality of the type (1-2). The estimates
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n &(n) n o(n)

3 .82842 8 .76166

4 .78058 9 .76549

5 76411 10 .76997

6 .75907 50 .88265

7 .75910 100 .92397
Table 2

needed to prove (1-2) follow from the Hessian comparison theorem of Greene
and Wu [5] and the volume comparison theorem of Bishop and Crittenden [1].

Slight changes in the proof also gives a result about nonexistence of stable har-
monic maps. If N” and M" are compact Riemannian manifolds and ¢y: N” - M
is a smooth map, then the energy of ¢ is given by

1
EW) =+ | ldvi*ax.

The function ¢ : N — M is a stable harmonic map if it is a local minimum for the
energy integral viewed as a functional on the set of smooth maps from N to M.

THEOREM 2. For each n=3 there is a 6(n) with % <6(n) <lsuch thatif M isa
simply connected compact strictly 6(n)-pinched Riemannian manifold of dimen-
sion n, then there are no stable harmonic maps y: N— M for any compact
Riemannian manifold N.

As before, 6(n) is exhibited as the root of a transcendental equation and
lim,,_, . 6(nn) =1. For some small values of n the values of é6(#) given by our
proof are shown in Table 2.

2. Variational formulas. Let M” be a complete Riemannian manifold with
metric ( , ) and Riemannian connection V. We now recall the definition of a
varifold on M. Let w: G,(M) — M be the bundle of all unoriented p-planes tan-
gent to M. We represent elements of G,(M) as unit length decomposable p-
vectors £ =e A --- Ae, with the understanding that £ and —£ represent the same
p-plane. A p-dimensional varifold 8 on M is a Radon measure on the Borel
sets of the total space G,(M). It will be assumed all varifolds have compact sup-
port, that is, there is a compact set K € G,(M) with 8(G,(M)\K)=0. The set
of all varifolds on M will be denoted by V,(M). Given any varifold 8 € V,(M)
there is associated to 8 a radon measure |$| on M by |S8|(B)=S8(x"'B) for
all Borel subsets B of M. The mass M(8), or p-dimensional area, of a varifold
S €V, (M) is

2-1 M(8)= = .
@-) M(S)=8(Gp(MN = 1d5(%)

This is related to the geometry of submanifolds of A as follows. Let N be
a compact p-dimensional submanifold of M and define a varifold |N|e V,(M)
by requiring
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@-2) S®dINI© = ATN) ()

S G, (M)
for all continuous functions f: G,(M)— R. (Here Qy is the volume density on
N.) It is clear that the mass of |/V| in the sense of (2-1) is the same as the volume
of N in the usual sense. We also remark that if NV is a p-dimensional integral
current in M (see [3] for the definition), then NV has an “approximate tangent
space” TN, at “almost all” points of its support. Therefore NN also defines a vari-
fold [N| by the formula (2-2). It follows that if M has no stable p-dimensional
varifolds then it will not have any stable p-dimensional submanifolds or integral
currents.

We now give the formulation of the first and second variation formula for
varifolds due to Lawson and Simons [8]. First, if ¢: M — M is a diffeomorphism
then ¢ induces a map ¢y: V,(M) — V,(M). If § € V,(M) then ¢; 8 is the measure
on G,(M), so that

2-3) S d@S)®={_ e H)lontl dS(E)

SGP(M Gp(M)

for all continuous f: G,(M) — R. This clearly implies

@-4) Mer$)={_ lectldse).

Gp
Let ¥ be a smooth vector field on M and let ¢/ be the flow or one parameter
group of diffeomorphisms generated by V. The first and second variations of
S e V,(M) are

d d
2-5 — M(p)k8)= — el dS(§),
2-5) | Mhs) Xo,,w) 7| _ lekelds
dt d?
2-6 — M(p)8) = — YEIdS(8).
(2-6) 2| Mk SGP(M) 27| lekElas

A varifold 8 is minimal or stationary if and only if the first variation (2-5) van-
ishes for all smooth vector fields V on M. A varifold 8 is stable if and only if 8 is
minimal and also the second variation (2-6) is non-negative for all smooth vector
fields V on M. Thus 8 is stable if, to second order, it is a local minimum for the
mass function on the space V,(M) of all varifolds on M.

To be more explicit about the form of the integrands in (2-5) and (2-6) some
notation is needed. For any smooth vector field VV on M define a smooth field of
linear endomorphisms of the tangent spaces to M by

2-7) QRY(X)=VxV.
Extend @" to the full tensor algebra over M as a derivation. Then, on decom-

posable p-vectors, @" is given by

P
(2-8) RY(XIN - AX,) =3 XiA - ARV XN - NX,.
P . P

i=1
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Note that on AP(TM) the square of the extension of @ (denoted by @VG")
differs from the extension of the square of @" (denoted by (@")?). The first vari-
ation formula can then be written as [8, p. 435]

»

|4 _ V
@-9) Meh$)=|_ @ e dse.

For the second variation formula one more piece of notation is needed. We
choose the sign on the curvature tensor so that

R(X,Y)Z=(VxVy—VyVx—VYix y) Z.

X

Then for any vector Ve TM, the Ricci map Ry, : TM, - TM, is given by

(2-10) Ry(X)=R(X,V)V.

The symmetries of the curvature tensor imply that Ry is self-adjoint. Let S e
V,(M) be a stationary varifold. Then the first variation formula implies

(2-11) (@Y Wg, £y ds(£)=0.

S G, (M)
Now assume that @" is a self-adjoint map on tangent spaces (this will be the case
in our applications). Then for any p-vector £, (@'RVE, £)=(@"E, @VE) =@ E|2
In this case (i.e., 8 stationary and @" self-adjoint) the second variation formula
[8, eq. (2.8), p. 435] can be rewritten as

2

d
2-12 —s
( ) dl‘2

| 4 —_ | 4
M= @, pds),

= p

where

(2-13) MRV, £) =2(RVRVE, £y —(RVE, £ —((@RY)%E, £)—(RV &, £).

3. Comparison theorems. We now show that if V is the gradient of a smooth
function then the Hessian comparison theorem of Greene and Wu can be used to
give bounds on the size of the tensor @ appearing in the first and second vari-
ation formulas. If f is a C! function on M then the gradient Vf of f is the
vector field dual to the differential df, that is (Vf, X)=df(X) for all vectors X.
The Hessian D2f of a C? function is the symmetric bilinear form defined on
TM,xTM, by D2f(X,Y)=(XY—VxY)f. For gradient vector fields a straight-
forward calculation shows

(3-1) V=Vf implies (@'X,Y)=D2f(X,Y).

Thus when V = Vf the symmetry of D2f implies that @" is self-adjoint. (There-
fore when V is a gradient field we are justified in using the form of the second
variation formula given by (2-12) and (2-13).)

We now introduce some notation. For any unit vector u tangent to M let
Py(t,u) and P,(¢,u) be the fields of linear maps along the geodesic vy(¢)=
exp(fu) given by
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(3-2) Py (¢, u) =orthogonal projection onto span of v’(¢),
P, (t,u) = (id) — P, (¢, u) = orthogonal projection onto y’(¢)".

Because vy is a geodesic both P;(¢, u) and P,(¢, u) are parallel along . Also,
for each real number A define c), s): R — R by the initial value problems

() +hen(@)=0 o(0)=1, c{(0)=0
S(E)FAS\(£) =0 5,(0)=0, s5(0)=1.

Thus, when A >0, c)(¢) =cos(VA¢) and s,(¢) =sin(VA7)/VA.

If xoe M let p, (x) = geodesic distance at x from xp and let cut(xo) be
the cut locus of xp in M. Then p, is a smooth function on the open set
M\ ({xo}Ucut(xg)). Finally if A and B are self-adjoint linear maps on an inner
product space write A < B to mean that B— A is positive semidefinite. Using the
relation between @ (when V' =Vf) and D?f given by (3-1), the Hessian com-
parison theorem in [5, p. 19] yields the

(3-3)

3.1. COMPARISON THEOREM (Greene-Wu). Let M be a Riemannian mani-
fold and assume

(1) all sectional curvatures of M are in the interval [«, 3],

2) f:(0,)— R issmooth and f’'=0,

3) V=V (fopy,) for some xoe M.
Then on the open set M\ ({xo}Ucut(xg)) the inequalities

cg(p)
sg(p)

S"(P)Pi(p, u)+f"(p) P(p, u)

3-4)
co(p)

Sa(p)

hold where u varies over the unit sphere of TM,_ and p = py,. The lower bound
only holds up to the first positive root of sg(p)=0.

=Q@"=f"(p) Pi(p,u)+/"(p) Py(p, u)

We give two elementary corollaries to this which are well known in the case § is
a submanifold.

3.2. COROLLARY. Let M" be a complete Riemannian manifold with all sec-
tional curvatures nonpositive. Then for any compactly supported p-dimensional
minimal varifold $ the support, spt(8), of 8 (i.e., the support of the measure
I8]) intersects the cut locus cut(xg) of every point xoe M. Thus if M is simply
connected (so that by the Cartan-Hadamard theorem every cut locus cut(xg) is
empty) then M contains no compactly supported minimal varifolds.

Proof. Let 8 be any varifold so that spt(S8)Ncut(xy) is empty for some x¢ in
M. In the comparison theorem use 8 =0 and f(¢) = -;:tz (then fep, is smoothon
M \cut(xp)) and V'="Vfeop, to get id =Pi(p, u)+P,(p,u) <Q&" on M \cut(xo).
But for a decomposable p-vector £ and the extension of id to A?TM we have
id (&) = p&. Thus, by the first variation formula (2-9),
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d
27| M(ei8)=pM(S).
t =
Therefore 8 is clearly not stationary. ]

3.3. COROLLARY. Let M" be a complete Riemannian manifold with all sec-
tional curvatures < K (where K > 0) and let r < w/2~/K . For xoe M let B,(x,) be
the closed geodesic ball of radius r centered at xqy. If B,(xo)Ncut(xg) is empty
then there are no minimal varifolds 8 € V,(M) with spt(8) € B,(xp).

Proof. This time use 3 =K and f= —cos({~/K ) = —ck(¢) in the comparison
theorem to get for V'=Vfop, that

@Y = K cos(\/K p)(Pi(p, u)+ P2(p, u)) =K cos(~K p)id

on B,(xg). Therefore if 8 is a p-dimensional varifold with spt(8) € B,(xg), then

< _ME@h)zp| L coso(nt) ds(©) >0,
where 7: G,(M) — M is a projection. This implies 8 is not minimal.

The other comparison theorem needed is due to Bishop and Crittenden. If
XxXoe M" then let UM, be the unit sphere in TM, . Then, letting p = p,, and
ue UM, , we can view (p, u) as polar coordinates on M near Xg in the obvious
way. Let 2,7 be the volume density on M and Qs the volume density on UM,
Assume that all sectional curvatures of M are in the interval [«, 8]. Then [1
chap. 11] on the open set M \cut(xp)

(3-4) s6(0)" ™! dp Quam, () <@y =54(0)"""dp Qum, (1),

where the lower bound only holds up to the first positive zero of sg(p). O

4. The main estimate. For the rest of this paper we will be assuming M is a com-
pact simply connected Riemannian manifold with all sectional curvatures in the
half-open interval (6K, K] for some K, 6> 0 and 6 <1. We start by multiplying
the metric by a positive constant to normalize so that all sectional curvatures are
in the open interval (6, 1). We also assume % < 6 < 1. By a well known theorem due
to Klingenberg [2, p. 100] this implies the injectivity radius of M is greater than .

Define a function f: R —> R by

(4-1) f(r):{_cos(t)z""(’) |t <,

1 |t| = .

Then f and f’ are continuous. For any x € M let p,(y) = geodesic distance of y
from x and let V,(f) be the vector field defined by

4-2) Vi) =V (fopx) =S"(px) Vox.

Because the injectivity radius of A is greater than « and f is an even func-
tion (so that fep, is smooth at x), the vector field V,.(f) is continuous and
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smooth off of the locus defined by p, =, and V,(f) =0 on the set defined by
Px=T.

Fix a point xo € M and a unit decomposable p-vector £ =e;A --- Ae, € A’TM,, .
Our object is to give bounds on (@"*¢ £) and related expressions and their
integrals in terms of the distance of x from xo. Let UM, be the unit sphere of
TM, and p = py . Then denote by (p, u) polar coordinates on M centered at xp.
For ue UM, let Pi(u)=P(0,u) and P,(u)=P,(0, u) (thus Py(u)X =(X, u)u
and P,(u)=id —P;(u)). Then @"*? =0 when p(x)== and the comparison
Theorem 3.1 implies (letting 7 =idTMx0)

ci(p(eNI = (@"*W)x,
(4-3)
< c1(p(x)) P1(u) + S’("‘S’a‘ ();fjc()’;(x” Py (u)

for p(x) < w. (Here we have used that p,(xg) = pyx, (x) = p(x) so that c;(px(x0)) =
ci(p(x)) etc.) This implies the eigenvalues k; <k < - -+ <k, of (@"**)x, (which
are real as @"*") is self-adjoint) satisfy

(4-4) ci(p(x)) = x; < SLONGLX)) 1y

ss(p(x))
When (@"*)x, is extended to APTM, as a derivation its eigenvalues are
Kipg+ sk, l=ih<---<ip=n). Likewise the eigenvalues of @RV @Y) gre
(kiy+ -+ +xi,)* and those of the extension of (@"*?)? are «7 + --- +:<,?;,. Set

g:(t, 6) =middle value of {cl(t), 0, M} ,
ss(t)
g1(t,8)=(&1(1,6))*, 0=t=m,
4-5) 2
g>(t,6) =max iﬁ(f)z, (M } , O=st=m,
s5(2)

g1(¢,0)=g2(¢,0)=0, w<t.

If a<x=<b and y =middle value of {a,0, b} then y2<x2. Also if 4 is a self-
adjoint linear map on any inner product space with largest eigenvalue \, and
smallest eigenvalue \;, then for any unit vector u, A\; < {Au, u)<\,. Therefore
(4-4) and the estimates on Q,, given by (3-4) imply

P2g1(p(x), 8) (s1(p(x))" ' dp Qums,,
(4-6) = (@Y E, £Y2Qpy, RV @YD, £3Q,, pURY*D)2E, £3Q
=P?22(p(x), 8) (s5(p(x)))" ' do Qum, -
whence, if 9 is any one of the integrals
V() 2 V(N 3 Ve ()
| @"Vg 2aum), | <@V £y,

@-7)
p| (@ £yau ),
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then integration in polar coordinates yields

p2vol(s"™) | " g1(p, 8)s1(0)" " dp
(4-8)
=9=p>vol(s"™) | £:(0,8)(s5(0))" " dp.

Next, a lower bound on the integral of (Ry, &, £) is needed. Let x € M have
polar coordinates (p, u) with 0 < p <. Then V,(f) =f'(ox)V(p0y). By the Gauss
lemma the restriction of V(p,) to the geodesic yv(¢) =exp(tu), 0=t <p(x), is
—v’(%). Therefore V(py)x, = —u. So, for X e TM, ,

Ry, (5 (X) =R(X, " (px(x0)) V(px)x, S '(Px | X0)) (Vox)x,
(4-9) = (f"(0x,(X))*R(x, —u)(—u)
= (s1(p(x))*Ry(x).

But R, (1) =0, and if X is a unit vector orthogonal to # then (R, X, X) is the sec-
tional curvature of the plane spanned by « and X, and thus § <{(R, X, X)<1.
This gives that

(4-10) 851(p (X))’ P2 (1) < Ry, (1) < 51(p(x))* P2 (1)
when 0 < p(x) < w. This in turn can be combined with (3-4) to give
(4-11) Ry, (5§ YU = 8P () £, £)51(p(x)" ™+ dp Qup, -

To integrate this ineqﬁality we need

LEMMA (A). Let Q: R" > R be a quadratic form; then

4-12) SS"—l OW)Qgn-1(u) = % vol(S™ 1) trace(Q).
LEMMA (B).
—1
(@-13) Jnr, P20E DB0u, () = 2D yor(sn .

Proof. Let x!, ..., x" be the standard coordinates on R” and let
— iN2
C—Ssn_l (x ) an—l(X).

Then c is independent of i. Also, if i # j then [g,—1 xiijS,,_l(x) =0. Let Q(x) =
2 Qijx'x’. Then

SS”‘I Q(x)QSn—l(X) = "Ei SS""I xixjgsn—l\(X)Q,'j
=CE, Q;i=ctrace(Q).

The value of c is the same for all quadratic forms and may be found by letting
Q(x) = |x|?. Then
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vol(s" )= 0¥ 0s.-1(x) =ctrace(Q) =nc.

To prove part (B) note that Py (u) X = (X, u)u so the function u - {(Pj(u)&, &) isa
quadratic form on 7M, . Choose an orthonormal basis ey, ..., e, of TM, with
eiN--- Ne,=§&. Then

PieNE= S eyh - APy(e)e; A Ney =1 © I=i=p
REE= & @ 18€)e; =10 p+i=<i=n
and so trace(u — (Py(u)é&, £)) = p. Thus by part (A)
_P n—1
[ opr P1aOE Bur, ()= vol(s"7).

Xo

But P, (u) =I—P1(U), SO

SUMXO P2E D, (W= TE 0w, ()= (PIE BYBum, (1)

-1
= pvol(s" )= P yor(sn—1y = L=DP g1y,
n n
This completes the proof of the lemma. L]

Using (4-13) the inequality (4-11) can be integrated over M and then integrated
by parts to get

(n—Dp
n

| Ryt 50> vol(s"™") { " 8s1(0)"* ' dp

(4-14)
=p(n—1)vol(s"™") | " 5ei(0)%s1(0)" " dp.
Combining the above gives

The main estimate. If M(QY, £) is given by (2-13) and under the hypothesis
and notation of this section then

4-15) [ om@s9, £)@u(x) < pvol(S"™)F,, »(8)
where F,, ,(6) is the continuous function of 6 given by

Frp(®) =\ (2pg2(1,8) (s5(1))"™"
(4-16)
—(p+1)gi(t,8)51(t)" ' —(n—1)8ci(2)*s1(£)" ") dit

and

(4-17) Fyp(1)=—(n—p) S: cos2(¢) sin”~!(¢) dt <O0.
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Proof. The inequality (4-15) follows at once from (4-6), (4-7), (4-14) and the
definition of IM(Q@Y, £). It is clear that F, »(6) is a continuous function of 6.
When §=1 then g;(¢,8) =g2(¢,8) =cs(t)*=c,(¢)*> =cos?(¢) and s5(¢) =s,(¢) =
sin(#). This implies (4-17) and completes the proof. [

5. Proof of the theorem.
5.1. THEOREM. Let F, ,(6) be given by (4-16) and set
(5-1) 8(n, p)=inf{8: 6>+ and F, ,(8) <0}.

Then ng compact simply connected strictly 6(n, p)-pinched Riemannian mani-
Jold of dimension n supports any stable p-dimensional varifolds.

Proof. First note that F), ,(1) <0 and so % =< 6(n, p) <1. To simplify notation
set 6 =6(n, p). By normalizing we may assume all sectional curvatures of M are
in the interval (8, 1). Let f be the function given by (4-1). Then we wish to use the
method of proof outlined in the introduction along with the estimate (4-15) to
show M has no stable varifolds. The only problem is that the vector field V,(f) is
not smooth so we must first approximate f by smooth functions. The functions
f and f’ are continuous and f” is bounded and also continuous everywhere
except at the points w and —«. Choose ¢ >0 so that «+ ¢ is less than the injec-
tivity radius of M. Then it is not hard to show the existence of smooth functions
Jr (k=1,2,...) with fi(—t)=fi(t), fr converging to f uniformly, f{ con-
verging to f’ uniformly, f{(¢) uniformly bounded with respect to both ¢ and &,
J¥ converging uniformly to f on all compact sets disjoint from {x, —7}, and
each f; constant on the interval {@w + ¢, ).

Then for each & and each x € M the vector field V,(fx) = V(fx°py) is smooth
on M and converges uniformly to V,(f) as k — co. Because the functions fi’ are
uniformly bounded with respect to & the comparison Theorem 3.1 implies the
components of @*Y¥) can be bounded independently of x and k. Therefore
M(R"*VYE, £) can be bounded by a constant independent of x, k, £. For fixed £
tangent to M at a point xy the function x — sm(a"x(f K £) converges to the func-
tion x - M(Q*V), £) except on the set defined by p, (x) =w. Thus the conver-
gence is almost everywhere.

Now assume that 8 is any minimal varifold in V,(M). Then by the second vari-
ation formula (2-12), the main estimate (4-15), Fubini’s theorem and Lebesgue’s

dominated convergence theorem
2

3 —_ V()
lim | o M(GY, £) ps (x) AS(£)

Mo 080 (x) = |

t= Gp(M) sM

<pvol(S"""YM(8)F,, ,(8) =<0,
and thus for some k=1, xe M
dZ

s _OM(go,';x‘fk’S) <0.

=

Therefore 8 is not stable.
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5.2. REMARK. We now indicate the dependence of 6(n, p) on n. The relevant
relations are

(5'2) 6(p+ls n)>6(ps n)’
(5-3) lim é6(n, p)=1.

The limit is uniform in p.
First note

4 Fopri®)—Fop® =2 e2(,0)S5)" dt = | g1t 8)51()" " dt >0

as g2,(¢,06) = g1(t,6) and Ss5(¢) = s1(¢). This, together with the definition of
é6(n, p), proves (5-2).
To prove (5-3) choose any §g in the open interval (%, 1) and set

1
(5-5) r(80) = ——( \/FE)M

For 6e [‘]1, Sol, ss(m/2V8)=1/N6 >r(dy). Therefore ss(f)=r(5y) on some
mterval 9(0). Moreover the length of 9(6) is bounded uniformly from below for
6 in [4, 60]. Also, g»(¢,6) is bounded below by a positive constant when ﬁ_<_
o< 60, 0 =< ¢ =< . Therefore there is a positive constant A(5p) > 0 such that for all

o€ [4’60]

(5-6) 2 g2t 8)53(0)" ™" dt = A(80) r(30)" "

From this, the definition of F), ,(6), and (5-4) it follows that there is a B(8¢) >0
such that

(5-7) Fp, p(8) = Fp,1(8) = A(80) r(80)" ' —nB(80)

for all 6 [4, d0]. But r(do) >1, so the last inequality implies F}, ,(6) =0 with
7 =< 6 < §p can only hold for finitely many #. This proves (5-3).

6. Harmonic maps. Let N” and M " be compact Riemannian manifolds and
¥: N - M a smooth map. Then the energy of ¢ is defined to be

1 1
&1 ED =2 lavPov="| 3 uen vuedty

i=1
where ey, ..., e, is an orthonormal basis for the tangent space to N. A map
Y : N — M is harmonic if and only if it is a critical point for the energy integral. If
¥ : N — M is harmonic then it is possible to write the second variation formula
for the energy integral as ([7, p. 126])

d2
dr?

where V is any smooth vector field on M and

(6-2)

E(o/¥)={ 3 3@a", ynenQy
t=0 N
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(6-3) IRV, X)=|RYX|*—(Rv X, X).

The harmonic map v is stable if the second variation (6-2) is non-negative for
all smooth vector fields V on M. Now assume M is as in Section 4. Let f be given
by (4-1) and using the notation and estimates of Section 4 we find, for X #0,

(6-4) | 3e(@%, X)0u(x) <vol(S"")F, (8) 1 X I,
where
(6-5) F®) = (2(6,8)55())" " = (n—=1)sci()(s1(1))" ) at.

So for any harmonic map ¢: N - M"

p
E(e/ oo =| S| 3@%, y.enux)n

i=1

2
b i

t=0

(6-6)
< pvol(S" " HYE(Y)F.(5).

But E(¥) =0 with equality if and only if ¢ is constant and
6-7) Fo(1)=—(n—2) S: cos(¢) sin"~'(¢) dt,

which is negative when n = 3. Therefore the proof of Theorem 5.1 can easily be
modified to give

6.1. THEOREM. Let n=3, F,(6) be given by (6-5), and set
(6-8) 8(n) =inf{6: 6 > 5 and F,(8) <0}.

Then if M is a compact simply connected strictly 6(n)-pinched Riemannian man-
ifold of dimension n there are no nonconstant stable harmonic maps y: N - M
Jor any compact Riemannian manifold N.

6.2. REMARK. As in Remark 5.2, it can be shown that 6(n) —1 as n — oo,

ACKNOWLEDGEMENT. The computer calculations for the tables of values of
6(n, p) and 6(n) were done by Valerie Miller.
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