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To George Piranian, on the occasion of his retirement

In this paper we study the total variation of holomorphic functions belonging
to certain Hilbert spaces Dy on certain families of curves I in the open unit disc
U. In other words, we study the rectifiability of the image curves feI'.

For 0= (=1, Dg denotes the space of all f(z)= X7 a,z" whose coefficients
satisfy

(1) > n*7Pg,? < oo,
n=1
Thus D, = H?, Dy, is the Dirichlet space characterized by [ | f’|> < o, and fe D
if and only if f'e H?.
When >0, then fe Dy if and only if

1 ¢r  F(0)dd
@ f=57 S_,r (1—e~z)®

for some Fe L*(—, ). This follows easily from the binomial expansion

(1—e %z)~F =Y b,z"e~"?
n=0
in which b,=T(n+B)/T(B)T(n+1) ~nf~1,

Formula (2) represents f as a certain potential of Fe L? (although the kernel is
not positive). The existence of limits of such potentials, within certain tangential
approach regions, was investigated in [2]; the approach curves that we are about
to define are essentially the boundaries of some of these approach regions. The
present topic is thus closely related to [2], and I wish to thank Alex Nagel and
Joel Shapiro for several relevant discussions.

For 1=~y <o and c¢>0, the approach curves T, . are defined by

(3) T, (r)=rexplicl—-r)/7} (0=r<1).
Writing T, .(r) = re‘?, (3) becomes
4 1—r=(6/c)"

so that vy is the order of contact between I', . and the unit circle T at z =1. In par-
ticular, these curves are tangential when vy > 1.
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The total variation of f on e’ I',, . (a rotated copy of I'; ), i.e., the length of
the curve f(e' I, o), will be denoted by V(f,~,c;t). Thus, for holomorphic f,

1 .
(5) Vifiv,et) = SO | 7" T, (r)| T, o(r)] dr.
Our results will be stated in terms of a maximal variation MV, defined to be
(6) MV(f,v,Cost)= sup V(f,v,c5t)
O<ec=cg

and will involve the classical capacities of order o, 0 = < 1.
Recall that a set £C T has “a-capacity 0” provided that p(£)=0 for every
positive Borel measure p on T whose “energy integral”

™ |7 |7 Hu0—0) du(o) dute)

is finite, where
|sin(6/2)| if 0<ax<l1
—log|sin(6/2)| if a=0.

This is not the usual definition of “«-capacity 0” but it is equivalent to it (see
[1, Chap. III]) and is precisely what will be useful in the present context. Note
that every set of a-capacity 0 has Lebesgue measure O.

The following theorems show how the product 8y governs the size of the
“exceptional set” where the total variation of an fe D; can be infinite on curves
I, .. This size varies from empty (when 3y <1/2) to all of T (when By =1).

® H,(0) =

THEOREM 1. If By < %, S€Dg, and ¢y < o, then MV (f, v, ¢p; t) is a bounded
Junction of t on [—m, w].

THEOREM 2. If% =By<1, feDg, cy<oo, and a=20y—1, then the set of all
e’ where MV (f, v, ¢o; t) = 0 has a-capacity 0.

THEOREM 3. If By =1 then there exists an fe Dg that has V(f,, c; t) = for
every c>0 and every te[—m, w].

For example, when f is in the Dirichlet space D,;,, the exceptional set has
logarithmic capacity O when y =1 (in which case the approach curves are essen-
tially rectilinear) as was proved by Beurling and Zygmund ([1, p. 49], [3, p. 344]);
its possible size increases as vy approaches 2, but still has Lebesgue measure 0 for
v < 2. Theorem 3 shows that the situation changes drastically when v =2; some
J€ D, has infinite variation on every parabolic approach curve.

The proofs of Theorems 1 and 2 will use the following estimate of the total
variation of the elementary functions Gg given by

©) Ga(z)=(1—-2)"" (|]z]<1, 0<B<1).
LEMMA. There exists A= A(B, v, ¢y) < oo so that
(10) MV(Gg,v,c0;t) <A|t| P (—m=<t=m).
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Proof: Write G for Gg, T for I, .. The left side of (10) is the supremum, as ¢
ranges over (0, ¢;), of

1 :
(11) So |G’ (e T'(r))| |T(r)| dr.
Since G'(z) =pB(1—z) #~1, the inequality
I—r+|x] _ x| <1t
[1—re™ = |1—re™| — ’

valid for 0=r<1, —w<x =<, shows that
|G’ (e""T(r))| = A{l—r+||t| —c(1—r)Y/7|}=F-1
where A = 8(1+ 7)P*1. Since (3) gives

()| <1+ S (1—r) 1+,
Y

the change of variables 1 —r = x" shows that (11) is not larger than the sum of
I= S‘ yxY " dx ] cdx
C o (x|t —ex]y A o {x7+|[t[—ex}1*FC

It will be enough to obtain upper bounds for I and II for 0 <7 <1/2.
To estimate I, put 6=1/2¢,. Then t—cx>¢/2 if 0<x <6t and 0 < c < ¢y, SO

that
1+8
Sj’ <(%> (£8)7 <21+B57¢ 67

because y—1—-B=(y—1)(B+1)—By=—B%, and

and II=AS

1 1 1
y—1—y—By _ —By
Saz<7Sazx dx < 5(6t) .

To estimate II, put cx =ts. This shows that

o tds

o {(ts/c)Y+t|1—s|}1HE”

When y=1, it follows that II <A(cy, 8)¢ ", for 0<c=<c,. When v>1, put
€= %t"‘l, and split the last’ integral into two parts:

w do  21*B
2 _BS =
Sll—s|>e< ! € Ul+ﬁ ﬁ

II<AS

t—ﬁ"/

and

Sl | <c7(1+l3)t1—7—ﬁ7§1+es—7(1+ﬁ)ds
1-s|=<e

1—¢

< c'y(1+B) . tl_7—37-26- (1— e)_7(l+'3)
< (2C)7(1+B)t—ﬁv_

These inequalities prove (10). L
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Proof of Theorems 1 and 2. Since Dy C Dy if >0, we may assume >0 in
Theorem 1. Every fe D; is then related to an Fe L?asin (2). If 0<c=cy, it
follows that

(12) Vs, c;t)s-z%S:r |F(6)] MV(Gy, v, co; t—0) df.

By (8) and the lemma, (12) implies

(13) MV(f, 7, c();z)sAS:r |F(0)| H, (t—0) db

for some A=A(B,v,c)) <. When By<j3 then Hg eL? and the Schwarz

inequality shows that the integral in (13) is bounded. This proves Theorem 1.
To prove Theorem 2, it will suffice to show that

(14) |7 MV 030 duny <o

for every pu for which (7) is finite when a =28y —1. By (13) and the Schwarz
inequality,

|” MV(vesnanny=al” |F@)do|" Hp,(—0)dpo
s,4|[1~"||§g’_r1r ji dﬂ(s)du(t)S;Hﬁy(t—G)HBY(O—S)dO.

This proves (14), because the innermost integral, the convolution of Hg, with
Hyg,, is less than a constant times H,g,_; = H,,. This follows most easily from the
fact that the Fourier coefficients of H, are = |n|*~! [4, p. 186].

REMARK. The preceding proof shows that
(15) X" MV (£, v, co; ) dt < oo

if fe Dgand By <1, since (7) is finite with Lebesgue measure in place of g, for all
a<l.

Proof of Theorem 3. We assume now that 8y=1. If {n;} is an increasing
sequence of positive integers, put

a=k"'nf7", f=3 az™
k=1
Then fe Dg, and
2f' ()= 3 apmz™= Y k~'nfz".
K=1 k=1

If {n,} increases sufficiently rapidly, ramiliar estimates show that the last power
series is dominated in the annulus
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an

by its kth term; to be more precise, one can choose {n,;]} so that

1 1
Qk=[z:1——<|z|<l———}
s

B
, arh,  hHg
(16) |/ (z)| > 0 - 10k (ze Q).

The length of I, N Q; exceeds
1 \Vv
an A-(——) =An;?

since By =1, where A>0 depends on y and c.
It follows from (16) and (17) that the part of e" I, ¢ in {; contributes more
than A/(10k) to V(f, v, c; t). Since X 1/k = oo, we have V(f, v, c; t) =co.
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