ON REMOVAL OF PERIODS OF CONJUGATE FUNCTIONS
IN MULTIPLY CONNECTED DOMAINS

D. Khavinson

1. Introduction. Let G be a domain in C bounded by » analytic Jordan curves
Y15 -+ ¥n» I'= U7 7;. Recall the following classical result of M. Heins —see [9].

For each (n—1)-tuple of real numbers Ay, ..., A,_; there exist points ¢}, ..., {,
on I' and a positive harmonic function #(z) in G such that u({)=0 for all
tel'\{¢&,-.., &), u(&) =400, i=1,..., nand the periods of the conjugate func-
tion of u(z) along «4, ..., v, €equal to Ay, ..., A,_; respectively.

The various refinements and applications of this result can be found in [5], [8],
[9]. Also, see [5], [9], [10], [11] for the discussion concerning the corresponding
statement for finite Riemann surfaces and its applications.

In this paper (in §3, Lemmas 1 and 2) we generalize the Heins result in the
following sense.

For each (n—1)-tuple of real numbers Ay,..., A,_; and each positive Borel
measure p on I' satisfying u(y;) >0, i=1,...,n—1 (i=1,..., n) there exist real
(real positive numbers) A\, ..., \,—1 (A, -..» A,) such that the periods of the con-
jugate of the harmonic function defined by the Poisson integral of the measure
pipt]y; =N ply, along vy,...,v,— are equal to Ay, ..., A, ;.

Let us give a brief description of the contents of the paper. In §2 we recall
some basic facts of the function theory in multiply connected domains. For more
details we send the reader to [3], [4], [13], [14].

In §3 we prove Lemmas 1 and 2. In §4, using Lemmas 1 and 2, we construct
the analogs of the Schwarz kernel for the multiply connected domain G which
allow us to reproduce analytic functions in G by means of the boundary values
of their real parts. These kernels are different from those constructed in [2],
[13], [16].

Finally, in §5 we consider certain applications of the results obtained in the
previous sections. In particular, we show the existence in multiply connected
domains of an analytic function in a given class (e.g., Nevanlinna’s class, Hardy
classes, etc.) with prescribed modulus of boundary values.

This problem has been studied in [7], [15]. Also, see [8, Ch. 4, §4]. But the
functions constructed there are essentially different from those we obtain here.

Unfortunately, we have been unable to obtain an appropriate generalization
of the results described above to finite Riemann surfaces. The fact is that the
statements analogous to Lemmas 1 and 2 on a Riemann surface are much more
complicated. The reason for that is that there are two kinds of periods on a sur-
face, that is, periods along the boundary curves and around the handles. There-
fore, one cannot expect formulas for the Schwarz type kernels on the surfaces to
be as simple and clear as in multiply connected domains.
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2. Preliminaries. Let G be a domain in C with an analytic boundary I' =
UJ-1 v,. &(z, §) is the Green function of G with pole at {. dg({,z)/on;, ¢TI,
z€ G is the analog of the Poisson kernel for G (Green’s kernel). Here, d/dn;
denotes the derivative in the direction of the inner normal at {. Let #(z) be a har-
monic function in G and v(z) denote its harmonic conjugate. In general v(z)
may be multivalued. Let v;C G be an analytic curve homologous to v; in G.
Then, the period of v(z) around v; can be expressed in the following form:

A'YjU_S %v—ds— —S 2L—l—ds,
v; 08 v; On
where ds is Lebesgue measure on ;. Now, assume that #(z) is represented by the
Green-Stieltjes integral of a Borel measure u supported on I, that is

ag($,2)
= d .
u(z) SF o 1($)
Consider the sequence of n-connected domains {D‘} such that U2, D' =G,
Dic D+l gD/ = U"—1 71 Let wj(z) denote the harmonic measure of v;,

that is, wj is harmonlc in G, continuous in G and w; |7 =1, wjl|y,=0for k#j,
=1,...,n—1. wf ' denotes the harmonic measure of ~! ] w1th respect to D'. Using
Green S formula and Fubini’s theorem we can compute the periods of v(z) as

follows:

ou ; Ou 0w}
AVJU__SW} o ds= SFE W o ds —S u— ds
_ 1 9g(¢,2) dw;
B Sw{zw Sr on; a (r)} an
1 0 i’,z) dw/
= {S = fd}d(g)
ri 2w
As [ — oo,
1 9
1 dg(§,z) ds
2w an; T;
converges to §-measure at ¢ and
aw’(Z) dw;(z)
on an

uniformly. So, the inner integral converges to (dw;/dn;)(z) pointwise. There-
fore, applying the Lebesgue dominated convergence theorem we obtain that

0w;
M Ay o=—={ () du(s).

3. The main lemmas.

LEMMA 1. Let >0 (or p<0) be a Borel measure on I' such that p(v;) #0,
j=1,...,n—1. Then, for arbitrary real numbers A,,...,A,_, there exists a
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unique vector (M, ..., \,_1) € R"" ! such that A,,..., A,_, are the periods along
Y1is -+ s Yn—1 FeSpectively of the function conjugate to

9g($,2)
6n;
where p|,, =pl,,, ﬁlij jtlys J=1.,n—1,

Proof. We consider u > 0. For p <0 the proof is the same. In view of (1) it
suffices to prove that the following system of linear equations always has a
unique solution

1 ]
u@=-—| di(5),

n=1 dw; ) ow;
(*) g )\ja,‘j=Ai+£ 6n‘ dp, i=1,...,n—1, where a;;=— Svjﬁdﬂ
So, we have to show that det(a;;)i = det[(au) ] #0.Let A:R"'5>R"'be
a linear operator defined by the matrix [(a;;)7~']". Let |x| = max;(]x;|) for all

x=(xy,...,x,_;)€R""!. Note that it suffices to show that aN#0 such that
(I—\A) is a contraction operator, that is, [(/—\A)x]|<0|x], 0<6<1 for all
xeR"™1, (Here, I denotes the identity map on R"~'.) In reality, if x e ker 4,
then |x| < 6|x|. Hence, x=0.

It is convenient to single out the following assertion.

ASSERTION.
n—1
aj;> Y |aj| forall j=1,...,n—1.
i%)
Proof of the assertion. Since
dw; dw;
%150, i%j and 22| <o,
on |,. on |,
J J
we have
" 1 dw; dw; n-1 dw;
Ea a; S 'du‘ S—’dn—ES = dp
i) == 1_1 v, 0 v, on i=1Yv; on
t;éj i#j

n—1 Jw: 0 n—1
= “ldu= —_— ) du.
Sw(ia 3") # Sw ans‘<i§1w1) *

The function 77! w;(z) is equal to 1 on vy, ..., y,—1, €qual to 0 on v,, and har-
monic in G. Hence, (3/0n) (27! w;({)) |,; <0, by the maximum principle. So

P/ n—1
| o (wa(s“)>du(s“)<0
vj ORg \ 1

and the assertion is proved.

Note that we can actually assume that

n—1

0-a;;> 2 |a;j| for some #<1 and all j.
i=1
izj
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Now, let x=(x,...,X,—1), {—NA)x=x"=(x{,...,Xxn_1). Then, according to
our assertion, for all j=1,..., n—1 we have:

n—1
X = |x; =\ '21 a;jXi
i=

=< |x;|[1=Naj;| + [N 2 [a;] |x]
1#]
=< ol (|1 —Naj;| + 6|\ |a;;]).

Taking N\ > 0 small enough that Aa;; <1 for all j we obtain
71 < Bl (1= [N |ay;| (1=6)) = ol x],
where 0 <0y <1. Lemma 1 is proved. ]

The proof of the following statement is very similar to the one of Lemma 1 and
we will omit it (see [8], [11], [12]).

LEMMA 2. Let p>0 (or p<0) be a Borel measure on T' such that p(v;)#0
vj=1,...,n. Then, for arbitrary real numbers A,, ..., A,_, there exist positive
numbers N\, ..., \, such that A,,...,A,_, are the periods of the function conju-

gate of

0g(¢,2)
al’lg-

1 — — -
u(z) = ) SF du(¢), where ;L|7js)\ju|7j for j=1,...,n
around v, ...,vy,—1 respectively. Moreover, all such \=(\y,...,\,_) fill out a
ray in R",

4. Reproducing kernels. Fix zoe G. Let {;evy;, j=1,...,n—1 be arbitrary
fixed points. Let &;; be a 6-mass at {;. Then in view of Lemma 1 applied to

E’IT—I 6§'j3
awi n—1
det[(%?(s“j)) ];fo.

Let (t,-j)i"1 be the inverse matrix of ((6wi/6n§)(§j))1’“'.

THEOREM 1. There exists a function P\(z, ¢) satisfying the following.
(i) Pi(z, ¢) is continuous on G xI' and analytic in G for each fixed {€T'.
(ii) For any ze@G,

Pi(z,)=0, j=1,...,n=1, and | Py(z,0)ds=1.

(iii) For any function f(z)=u(z)+iv(z) analytic in G and such that u(z) is
representable by the Green-Stieltjes integral of the measure p, the fol-
lowing holds: f(z)=[r Pi(z,{) du($)+iv(zo).

The function P,(z, ) satisfying (i)-(iil) is unique.

(iv) Moreover, the kernel Pi(z,{) can be written in the form Py(z,{)=

Ri(z, £)+iR\(z, ¢), where
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— 2 A(§)

ag($,z) S 3g(§j,2)} and
ong i ng

1
Rl(z’ g_):‘ o {

Aj(§)=_ztjl ;‘

Proof. (i) Fix ¢eT'. According to Lemma 1 applied to 37~ d¢;» there exist
A(), ..., Ap—1($) such that the function

dg(s, z) _”“ 3g($),2)
0 )

1
Riz 0 =5 {

has a single-valued conjugate R;(z, ¢) in G. Set R(zo, {)=0. From the linear
system (*) one can see that A;({), j=1,...,n—1 are continuous on I'. Putting
Pi(z, £)=Ri(z, ¢)+iR,(z, §) we complete the proof of (i).

(ii) Let p be a measure on I'. Form the integrals

1 ag($,z) _
@ u(@) =5 | S du();
©) |
n— a s
@ ={ Rz 0 du©)=u@—5 N ESLZ where n= [ 4,6 duo);
1 ng; I
@ Fz) = Pi(z,8) dp() = u(2) +ivi (2),

(vi(z) is a conjugate of #,(z)). In view of Lemma 1 the numbers »;, j=1,...,n—1
are uniquely determined from the system (x). Take

ag(i‘_f’ Z)
6n;j ’

Set A\j=0,...,N;=1,N;;1=0,...,\,_;=0. Then, u,(z) =0. On the other hand,
according to (i), u;(z) = Ry(z, {;). So, Pi(z, {;) =0+ic. But R(z9, {;) =0, hence
Py(z, $;)=0. Letting u(z)=1 and putting \;=--- =\,_; =0, we obtain that
u,(z) =1. Therefore

u(z)=

l<j=<n-—1.

Srpl(z, ¢)ds = uy +iv, =1+ ic.

As above we verify that ¢ =0.

(iii) Let f(z) = u(z) +iv(z) be an analytic and single-valued function in G such
that u#(z) is representable in the form (2). Then, all\;=0, j=1,...,n—1. Hence,
f(z)=F(z)+iv(zg).

To prove the uniqueness suppose that 3P(z, {) satisfying (i)-(iii). Take an
arbitrary measure g on I'. Form u(z), u;(z), F(z) as in (2)-(4). Using the prop-
erties (i)-(iii), we obtain:
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n—1
F(z)= SFP(Z, £) [du(s“)— ? N ‘sfj]

n—1

=[P 0 du(O)= 3 N P& 5) = || P(a, §) ().

At the same time since P;(z, {) also satisfies (i)-(iii) we can verify that

F@)=| Pz, 1) du(s).

Since p was arbitrary, we conclude that P = P,.

(iv) Again, let us take an arbitrary measure ¢ on I'. Form the integrals (2) and
(3). Then, u,(z) has a single-valued conjugate. Therefore, \;... A\,,_;in (3) can be
obtained as the solutions of the system (*) with p= X7~! 6¢;- In view of (1),
—{r (dw;/dn¢) dy, i=1,...,n—1 play the role of A; in (). Therefore,

n—1 aw,

aw,- -1
= —igl fjiS d\b(i‘), i=1,...,n—1, where ((£;)) =((5‘@(§’j)>) .
On the other hand, )\j = {r Aj($) dy¥({). Hence, for an arbitrary ¢, we have
n-1 aw,- .
I [100+ S 10| aver =0

and the statement follows. The theorem is proved. O

Using Lemma 2 instead of Lemma 1 one can obtain the following theorem. We
shall omit the proof.

THEOREM 2. Fix arbitrary points ¢, ...,y On vy, ..., v, respectively. There
exists a unique function Py(z, ¢) satisfying the following properties.
(i) Py(z, ) is continuous on G X I' and analytic single-valued in G as a func-

tion of z.
() RePue.D=Ri(z =5 D) LS m g“‘w“},
ne 1 ¢
where all N;j(§)>0onT. Py(zo, §;) =1 for j=1,...,n (2 is a fixed point
in G).

(iii) If f(z) =u(z)+iv(z) is a single-valued analytic function in G and u(z) is
representable in the form (2) with the measure p, then

S@)={ P2z, ) du()+iv(z0).

REMARK. Using the measure p’ = — X7 &, in Lemma 2, one can construct the
kernel P5(z, ¢) having the same reproducing properties as the kernel P,(z, {) in
Theorem 2 and such that

1 (adg(s,
Re Pi(z, D= { 82D | & ) 25 z)}
T on g— 1 an;j

where all A%({) <O.
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S. Applications. The following theorem is a classical result of Bieberbach and
Grunsky (see [6], [8]). For a different approach due to L. Ahlfors, see [1]. Our
proof (based on Lemma 2 and Theorem 2), although discovered independently,
is almost the same as that due to M. Heins in [11] or H. Grunsky in [8].

THEOREM 3. Let §,..., §, be arbitrary fixed points on vy, ..., vy, respectively.
Then, for each j, 1< j=<n, ¢(z) = P,(z, ;) is the unique function giving a con-
Sformal mapping of G onto an n-sheeted right half-plane {Re w> 0} such that
#(§) =0, j=1,...,n, ¢(z9)=1. Moreover, ¥(z)=(d(z)—1)/($(z)+1) is the
unique function mapping G conformally onto an n-sheeted unit disk such that
W) =1, j=1,...,n, and Y(z¢) =0.

Proof. Re Py(z,£) >0, Py(zo, {;)=1and

an;. 3!1;1-

J

1 n
Re Py(z, §;) |I‘=—2? {? A5 (£5)

where A($) >0, j=1,...,n

ag(f,ﬂ)

an;, =0 for {el', {#{;

(see [6], [13]). A standard argument shows that w= ¢(z) maps each v; onto
Re w=0. Hence, for any we {Re w> 0}, it follows from the argument principle
that ¢(z) —w has precisely #n zeroes in G. Since for any ¢’ giving such a con-

formal mapping,
a ) . g s 3§
Ek ( g(z, §j) +lt':'g(z s“,))
an;. ang

J
(where all \; > 0), the uniqueness follows immediately from Lemma 2 and the
normalization ¢’(z9) =1. The second statement is a direct corollary of the first.
The theorem is proved. O

To discuss further applications of the results in Sections 3 and 4, let us recall
the definitions of the basic classes of analytic functions in multiply connected
domains. For more detailed information, we refer the reader to [3], [4], [13],
[14], and [15].

An analytic function belongs to the class N(G) (Nevanlinna’s class) or to
HP?(G) (Hardy’s class), 0< p<oo if In™|f| or, respectively, |f|? have a har-
monic majorant in G. fe H®(G) if fis bounded in G. f(z) belongs to N*t(G)
(Smirnov’s class) if f(z) € N(G) and {|; p:In* | f| ds} are uniformly absolutely
continuous (I'V = dD’ are the same as in §2). It is known that N(G) D N*(G) D
HP(G) for all p>0.

THEOREM 4. Let p($) >0 be a function on I' such that
(5) Sr lIn p(§)| ds < oo.

(i) 3/1(z) € N(G) such that | f({)| |r= p($) a.e. (f($) denotes the boundary
values of f).
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(i) 3/(z) e N*(G) (different from f\(z)) such that | /,({)| = p(¢) a.e.on T,
(iii) If, in addition to (5), p(¢) satisfies

6) Sr pP($)ds <o for a certain p>0

or p({) is bounded on T', then 3 fe HP(G) such that | f({)|=p($) a.e. on T.
Proof. (i) Define
Si(z) = eXP(L Pi(z,$) Inp(%) dS)-
Then, in view of the construction of P(z, {), In| fj| is representable by a Green-

Stieltjes integral in G, that is,

1 g (z,
In|£i(2)[=—~ SF g;;n dpu(¢), where

n—1

dp=1npds~3 )by, | A me)ds, j=1,., 01

Hence, |In|fi|| has a harmonic majorant in G (see [14]). Thus, f;€N(G).
According to the version of Fatou’s theorem for Green-Stieltjes integrals obtained
in [13], we get

d
In|£i(¢)] =d—’s‘(§)=ln p(t) a.e.on T

So, |fi|=p a.e.
(i)-(iii) Let In p($) = In™ p($) —1In~ p(§). Define

f@)= exp(ﬁr P3(z,§) In* p({) ds),

f1@)= exp(—SI, Pa(z,§) In” p(§) ds).

Then, in view of the construction of the kernels P, and P5 (see Theorem 2 and
the following remark), we obtain that In|f’| and In|f”| are representable in G
by the Green-Stieltjes integrals of measures whose singular parts are non-posi-
tive. This (see [13, Theorem 1.5]) implies that f’, f” e N*(G) and, therefore,
feN(G). Also, In|f|=In|f’|+In|f”|=In* p—In" p=Inpa.e. onT. If p({)
also satisfies (6) or is bounded, then using the results from [13, Theorem 4.3] we
obtain that fe H?(G) or fe H”(G). The proof is complete. O

REMARK. The problem of existence of a function in a given class with a given
modulus of its boundary values has been investigated by H. Grunsky in [7] and
by S. Ya. Khavinson and G. C. Tumarkin in [15]. The functions they constructed
could, in general, have <(n—1) zeroes in G. Also, in their construction they
were using the methods of the theory of extremal problems. Required functions
appeared as solutions of extremal problems. So, in [7] and in [15] there was not a
direct construction of such functions. On the other hand the logarithm of the
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modulus of functions constructed in [7] and [15] is representable by a Green-
Stieltjes integral with an absolutely continuous measure. Functions constructed
in Theorem 4 fail to have this property. At the same time they do not vanish in
G. So, one can say that Theorem 4 and results in {7] and [15] supplement each
other.

oW
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