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1. Introduction. Suppose that X is a complete Riemannian manifold. The
Laplacian A of X is essentially self adjoint on the space of smooth compactly
supported functions. This means that A has a unique self adjoint extension to
L*X. In general, A may have both point and continuous spectrum. We say that w
is an eigenvalue of A if there exists a square integrable ¢ € L>X with A¢ = w¢.
The symbol N(\) will denote the number of eigenvalues of A, which are less
than \.

For a general noncompact manifold X, standard techniques do not yield any
estimate of N(\). In particular, the usual Neumann comparison only applies if \
is below the essential spectrum of A. The presence of continuous spectrum also
causes serious difficulties in applying the heat kernel method.

In this paper, we study two specific classes of noncompact Riemannian mani-
folds. These are the manifolds with cylindrical ends, and the manifolds whose
ends are isometric to the ends in locally symmetric spaces of rational rank one.
Using the explicit metric structure on the ends of these manifolds, we employ
a modified Neumann comparison to estimate N(A). The main result is the
following.

THEOREM 1.1. Suppose that X is a complete Riemannian manifold having a
finite number of ends. Moreover, assume that either (i) each end is cylindrical or
(ii) each end is isometric to an end in a locally symmetric space of Q-rank 1.
Then N(\) has at most polynomial growth in \.

If X=K\G/T is a locally symmetric space of Q-rank one, then it is also
interesting to consider the Casimir operator acting on a non-trivial K-type. Our
method extends easily to prove the following.

COROLLARY 1.2. Let X be a locally symmetric space of Q-rank one. Sup-
pose that N(\) is the number of eigenvalues of the Casimir operator, belonging
to a fixed K-type, which are less than \. Then N(\) has at most polynomial
growth in \.

Part (ii) of Theorem 1.1 resolves the trace class dilemma, for Q-rank one, as
formulated by Borel and Garland [4] and Osborne and Warner [11, 12]. These
authors proved that N(\) is finite for fixed \. That is, there are no accumulation
points of the set of eigenvalues. However, their method, which is based on the
theory of Eisenstein systems, only yielded a growth estimate when X is a locally
symmetric space of real rank one. The importance and applications of our bound
on N(\) are clearly described in [11] and [12].
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2. Neumann comparisons. We begin by summarizing some known techniques
in the spectral analysis of differential operators. For further details, the reader
may consult [6], [8], and [13].

Let X be a complete Riemannian manifold. We suppose that X has finitely
many ends. Thus X =W U, X;, where W is a compact manifold with boundary
and X;, i=1,..., k, are the ends of X. Let dW;, i=1,..., k, be the components
of the boundary of W, denoted dW. One assumes that each X; is attached to W
along W, =34.X;.

The Laplacian A of X is a second order differential operator defined on smooth
compactly supported functions. Since X is complete, A extends uniquely to
an unbounded self adjoint operator acting on L2X. This self adjoint operator
will also be denoted by A. We need to consider another self adjoint operator A
which is the Laplacian acting on L>W @®; L>X;, with Neumann boundary con-
ditions on each component of 8W and each 8X;, i=1, ..., k. Clearly, L*X and
L*W @, L*X; are isomorphic Hilbert spaces. However, A and A have different do-
mains of definition. Thus, these two operators need not have the same spectrum.

Recall that the essential spectrum of a self adjoint operator, acting on a given
Hilbert space, consists of cluster points of its spectrum and eigenvalues of infinite
multiplicity. Equivalently, the complement of the essential spectrum is the set of
isolated eigenvalues having finite multiplicity. A special case of the decomposi-
tion principle of [6] and [8] is the following.

PROPOSITION 2.1 (Decomposition Principle). The operators A and A have
the same essential spectrum.

We now turn to the Neumann comparisons. Suppose that v is a positive lower
bound on the essential spectrum of A. If A < v, let N(\) be the number of eigen-
values of A, counted to multiplicity, which are less than \. Clearly, N()) is finite,
since A < v. Similarly, let N(\) be the number of eigenvalues of A, which are less
than \. A special case of the Neumann comparison of [8] and [13] is the following.

PROPOSITION 2.2 (Neumann Comparison). Suppose that v is a positive lower
bound on the essential spectrum-of A. If \<+, then one has N(\) < N(\).

For general manifolds with finitely many ends, we cannot achieve a significant
modification or improvement of Proposition 2.2. However, the ends of the man-
ifolds studied in this paper have specific additional geometric structure. Given a
real number ¢ = 0, we will formulate certain conditions @, defined by the vanish-
ing of a finite number of integrals. These conditions are A-invariant and so they
determine a A-invariant subspace H, of L*W @;L*X;. Let y(t) be a positive
lower bound for the essential spectrum of A in H,. If A <+y(¢), let N,(\) be the
number of eigenvalues of A, corresponding to eigenfunctions which satisfy the
conditions @,, and are less than A. Similarly, let NV,(A\) be the number of eigen-
values of A which correspond to eigenfunctions satisfying the conditions @, and
are less than N\. The Neumann comparison of [8] and [13], in this context is the
following.
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PROPOSITION 2.3 (Modified Neumann Comparison). Suppose that y(t) is a
positive lower bound for the essential spectrum of A acting in H,. If \<v(t),
then one has N;(\) < N,(\).

Modified Neumann comparisons in similar geometric settings were used in [5],
[71, and [9].

3. Manifolds with cylindrical ends. Let W" be a compact Riemannian mani-
fold with boundary. Here m is the dimension of W. We suppose that the metric
of W is a product near each component Z;, i =1, ..., k of the boundary. One may
attach a semi-infinite cylinder R* X Z; to each boundary component, where R is
the positive real line. The union X = W U;R* x Z; is called a manifold with cylin-
drical ends. The spectral theory of these manifolds played an important role
in [1].

Suppose that A and A are as in Section 2. Here X; =R* x Z;. The following
proposition is readily verified.

PROPOSITION 3.1. The essential spectrum of A, acting in L*X, is the entire
half line [0, o).

Proof. The decomposition principle, Proposition 2.1, states that A and A have
the same essential spectrum. Since W is compact, A has no essential spectrum in
L*W ([10]). Thus A has the same essential spectrum as A acting on the disjoint
union L*(R* X Z), i=1,...,k, with Neumann boundary conditions on each
0 % Z;. The result now follows from an elementary computation using the product
metric structure of R x Z;. O

The Neumann comparison of Proposition 2.2 only applies below the essential
spectrum. Thus, Proposition 3.1 indicates some difficulty in studying the point
spectrum of A. We will therefore formulate a modified Neumann comparison
and use Proposition 2.3.

Let ¢ € L2X be an eigenfunction of A, with eigenvalue w. Our basic construc-
tion is motivated by considering the restriction of ¢ to each end of X. Suppose
that ; ; are the eigenfunctions and y; ; are the eigenvalues of the Laplacian on
the compact manifold Z;.

One may expand ¢, on each end R* x Z;, in a series:

#r,2)= 3 a/r)b,2).
p:

Since A¢ = w¢, the a;(r) must satisfy the ordinary differential equations
g2
Fdj‘f‘(ﬂi,j—“w)aj =0.

Now a;(r)e L*(R™), and this forces a; =0 for p; ; < w. Thus, we may write

(3:2) d(r,z)= % air)y; j(z)

pl.,"j>w
for (r,z)eR* x Z;.
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Equation (3.2) suggests the formulation of certain integral conditions ®,, for
any ¢ = 0. Suppose that fe L’X = LW @; L>(R* x Z;) is written as f= f ®; f.
We say that f satisfies the conditions @, if the following integrals vanish.

(3.3) |, Atr 2w (@) dvol(2) =0, if =t

A priori, these conditions are only defined for smooth functions. However, they
extend by continuity to all of L2X.

Consider the Laplacian A acting on LW @®;L*(R* xZ;) with Neumann
boundary conditions. The additional side conditions define a closed subspace H,
of L*W @; L>(R* x Z;). Moreover, H, is A invariant.

Let u(#) be the smallest eigenvalue y; ; which is greater than ¢. That is, pu(¢) =
min; min;{g; ;| p;, ;>¢}. One has the following.

LEMMA 3.4. The essential spectrum of A, acting in the space H,, is the half
line [pu(t), ). Moreover, all eigenfunctions of A are contained in L*w.

Proof. Since W is compact, the Laplacian A has pure point spectrum in L2,
when Neumann boundary conditions are imposed ([10]). The spectrum on each
end R* x Z; is computed using the product metric structure. The conclusions of
Lemma 3.4 follow directly. O

We now use the modified Neumann comparison of Proposition 2.3. This leads
to the following.

LEMMA 3.5. Let M(\, t) be the number of eigenvalues of A, acting in L*X,
which are less than \ and contained in the interval [t,u(t)). For A\>0, one has
M\, t) < C,N™?2. Here C, is independent of t.

Proof. Let N,(\) be the number of eigenvalues of A, acting in L2X, which are
less than \ and correspond to eigenfunctions satisfying the conditions @,. The
equation (3.2) shows that M(\, ) <N,(\). That is, any eigenfunction corre-
sponding to an eigenvalue w € [¢, u(¢)] must satisfy the conditions @, of (3.3). By
Proposition 2.3 and Lemma 3.4, we know that N,(\) < N,(\). Here N,(\) is the
number of eigenvalues of A, acting in H,, which are less than \. Since all eigen-
functions of A are contained in L>W, we have N,(\) < C;\"/? by the standard
asymptotic formula [10] for the compact manifold W. In summary, M(\, ¢) <
N,(\) < N,(\) < C; N2, This proves Lemma 3.5. O

The main result of this section is the following.

THEOREM 3.6. Let X be an m-dimensional Riemannian manifold with
cylindrical ends. Suppose that N(\) is the number of eigenvalues of A, acting in
L2X, which are less than \. One has N(\) < C, N" ™2 for \>0.

Proof. Choose an increasing sequence f; so that the intervals [#;, u(¢;)) cover
the half line [0, o). The standard asymptotic formula [10] for the compact mani-
folds Z; allows us to require that C; /%"~ <, < u(t;) < C, 1%~V for some
constants C; and C4. The result now follows from Lemma 3.5 and an elementary
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counting argument. The number of intervals [#;, u(¢;)) which intersect [0, \) is
bounded by a constant multiple of A\"~1/2, Lemma 3.5 guarantees that the
number of eigenvalues in any single interval [¢;, u(#;)) is bounded by a constant
multiple of /2. Thus N(\) < C, N"/2\"=D/2 which proves Theorem 3.6. [

4. Symmetric spaces of rational rank one. Let X = K\G/T be a locally sym-
metric space of Q-rank one. Here G is a semisimple Lie group and I is an arith-
metic subgroup. Alternatively, we may assume that G is reductive, I' is a rank
one lattice in G, and the pair (G, I') satisfies the conditions of [12, pp. 62-63]. It
is a basic fact [2] that X is diffeomorphic to the interior of a compact manifold
with boundary. The finitely many ends of X are called the cusps. To prove the
polynomial growth of N(\), we will employ an argument similar to the method
used for cylindrical manifolds. In particular, we slice along the individual cusps
and define suitable Neumann comparisons.

More generally, we need only assume that X has finitely many ends and that
each end is isometric to a cusp in a locally symmetric space of rational rank one.
The cusps need not be isometric to each other and may come from different pairs
(G, T'). We prove everything in this greater generality to indicate the basic struc-
ture of our method. The required assumptions about X will now be precisely
described. Suppose that X =W U, X;, where W is a compact manifold with
boundary and X;, i=1, ..., k, are the ends of X. Each X; is required to be iso-
metric to a cusp in some locally symmetric space of rational rank one, which may
depend upon i. Let oW}, i =1, ..., k, be the components of dW, the boundary of
W. One assumes that each X; is attached to W along oW; = d.X;.

Each cusp X; is diffeomorphic to R* x dW;. The metric along the cusp is
explicitly described in [3, p. 247]. Specifically, there is a fiber bundle

N;/F,'ﬂN,‘ - R*x aW;
!
R+XZ,'.

Here Z; and N;/T;NN; are compact manifolds. Associated with this fibering,
one has a local decomposition of the metric

4.1 ds?=dr’+dz?+e 2" dnf(z) +e 01" dni(z).

The constant b, >0 may depend upon i. Of course, both dn(z) and dn?(z) are
supported along the fiber N;/I';NN;. The volume element is given by

4.2) dvol = e ~%2" dr dvol(z) dvol(n).

Again, the constant b, may depend upon i. The symbols dvol(z) and dvol(n)
represent r-independent volume elements along the base and fiber. Note that the
volume element depends on z only from the term dvol(z). Since dvol(n) is inde-
pendent of z, the volume element, dvol, has a simpler z-dependence than the
metric ds?.

Let A be the Laplacian of X and Az ; the Laplacian of Z; with its induced
metric. We record two elementary lemmas for future reference.
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LEMMA 4.3. Suppose that h(r, z) is a function, on the cusp, Rt X dW;, which
depends only upon r and z. Then one has

Ah= —ebZ’—a—<e_”2’-‘2li>+Az i h.
ar or ’

Proof. 1If d is the exterior derivative, with adjoint d*, then, for the Laplacian
on functions of any Riemannian manifold, one may write A =d*d. The lemma
follows from this general fact and the explicit form of the metric (4.1) and the
volume element (4.2). ]

Consider the cylinder Rt x Z; with the standard product metric dr?+dz?. Its
Laplacian is
d2
AR+xz,i= — a7 +Agz,;.

A useful consequence of Lemma 4.3 is the following.

LEMMA 4.4. Suppose that h(r, z) satisfies Ah = wh. Set g(r,z) =e ~"2"?h(r, z).
Then

AR+xz,i8=(w+b;;)8.

Here b; ;<0 is independent of w. If he L*(R* xdW;), with the L? structure
induced by the metric (4.1), then g€ L*(RY X Z;) with the L? structure subordi-
nate to the standard product metric.

Proof. This follows by an elementary calculation using Lemma 4.3. L]

Suppose that ¢ € L2X is an eigenfunction of A with eigenvalue w. For xe
R* X W, one may define

@.5) T, é(x) = S é(xn) dvol(n).
N/T;NN;

The Haar measure on N; may be normalized so that Vol(N;/T;NN;) = 1. Clearly
T; ¢ depends only upon r and z. Moreover, since N; acts isometrically, one has
A(T;¢)=wT;¢. Now set h;=T,;¢ and g;=e "2"/2h;. Applying Lemma 4.4, we
find that AR+XZ,igi = (w+b3,,-)g,-.

Let ¢, ; be the eigenfunctions and y; ;, j=1,2,..., the corresponding eigen-
values of the Laplacian Az ; on the compact manifold Z;. One may expand the
function g; in a series:

gi(r,z)= ‘E| a;j(r)yi j(z).
J‘ =
Applying the argument used for cylindrical manifolds, in Section 3, we see that
a;j(r)=0 when p; ; < w+ b; ;. Thus one may write
(4.6) gi(r,z)= X ai(nyi i(z)

B > w+by
for (r,z)eR* % Z;.
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Following the treatment of the cylindrical manifolds, we formulate integral
conditions ®,, for ¢=0. Suppose that fe L’X = L*W @; L>(R* X dW;) decom-
poses as f= fu@,; f;. We say that f satisfies the conditions @, if one has

“@.7) Ji(r, z, n)y; j(z) dvol(n) dvol(z) =0

Szi SN;/F;'”N«'
for p; j<t+b; ;. Consider the Laplacian A acting on L*W @; L>(R* x Z;) with
Neumann boundary conditions. The additional side conditions (4.7) define a
closed subspace H, of L*W @; L>(R* x Z;). Moreover, H, is A invariant.

There is a particularly interesting subspace of H,. Suppose that f= fiy @, f;, as
above. One says that f is cuspidal if T; f; =0, for all i. Here T; is defined by the
formula (4.5). It is proved in [5] that A has pure point spectrum when restricted
to the closed subspace spanned by the cuspidal functions. Note that a cuspidal
function satisfies (4.7), for any ¢.

Let S; be the set defined by S, = {g;, ; | pi, j > ¢+ bs,;}. Suppose that y,(¢) € S, is
an eigenvalue, on some particular Z;, satisfying

w(t)— b3, =min{p; j—b3 i [pi, ;€ S}
ivJ
Clearly, such a p,(¢) exists and one has p,(¢)—b3,; > ¢.
Given these preliminaries, we may derive the following.

LEMMA 4.8. The essential spectrum of A, restricted to H,, is the half line
(wi(2) — b3, ).

Proof. If f=fy@®; f;, then define O; f=e~%272T; f;. Clearly 0;: L*X —
L*(R* x Z;) is a bounded linear map. Here L2(R* X Z;) has the L? structure sub-
ordinate to the standard product metric. Let X be the intersection of the kernels
of the O;. That is, X is the space of cuspidal functions. According to [5], A has
pure point spectrum in . If fis in the orthocomplement of X, then f;, =0 and
T; f;= f; for all i. Thus {O;} defines an isometric isomorphism from the orthocom-
plement of X onto @; L2(R* x Z;). This intertwines the respective Laplacians,
after shifting by the constant b; ;, according to Lemma 4.4. Therefore, one is
reduced to computing the essential spectrum for the product Laplacian on each
R* x Z;, with the induced conditions. That is, a function g(r, z) must satisfy the
boundary conditions (dg/dr)(r,0)=(—b,/2)g(r,0), on 0x Z;, and side condi-
tions compatible with (4.7), in order for g(r, z) to be in the domain of the prod-
uct Laplacian. As observed in the study of cylindrical manifolds, the remaining
details are elementary. O

Also, one has the following.

LEMMA 4.9. Let N(\) be the number of eigenvalues of A, acting on
LW @; L2 (R* X Z;) which are less than \. Suppose that m is the dimension of X.
For \>0, one has N(\) < C,\"/?,

Proof. We use the notation of the proof of Lemma 4.8. It was proved in [5]
that the number of cuspidal eigenfunctions, with eigenvalues less than A, is
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bounded by a constant multiple of N2, Since {O;} defines an isometric isomor-
phism from the orthocomplement of ¥ onto @; L*(R* X Z;), we are reduced to
an elementary computation. Consider the Laplacian of the product metric on
R* x Z;, with the induced boundary conditions (dg/dr)(0,z)=(—b,/2)g(0, z),
on 0x Z;. One readily verifies that its eigenfunctions are in the space spanned
by functions of the form e 22"/ 2l,l/,-, j(z). Since dim Z; <m, for all i, the result
now follows from the standard asymptotic formula [10] on the compact mani-
folds Z;. L]

By analogy with Proposition 3.5, one may formulate the following.

LEMMA 4.10. Let M(\, t) be the number of eigenvalues of A, acting in [*X,
which are less than \ and contained in the interval [¢, p(¢t)— b3 ;). Then, one has
M(\, t) < N2, for \>0.

Proof. If ¢ € L*X is an eigenfunction of A, with eigenvalue we [¢, ,(¢)— bs ),
then (4.6) shows that ¢ satisfies the conditions @, of (4.7). Thus M(\, ¢) < N;(\)
in the notation of Proposition 2.3. In other words, every eigenfunction of A,
with eigenvalue in the interval [¢, y;(¢#)—b; ), must satisfy the conditions ®,.
Using Lemma 4.8 and Proposition 2.3, we obtain N,(\) < N,(\). However, one
clearly has N,(\)<N(\), since H, is a subspace of L*(W)@®; L*(R* X oW}).
Lemma 4.9 gives N(\) < C; N2, In summary, M(\, £) < N,(\) = N,(\) = N(\) <
C; N"/2, This proves Lemma 4.10. 1

Let p; be the dimension of Z; and p = max; p;. The main result of this section
is the following.

THEOREM 4.11. Suppose that X has finitely many ends and each end is iso-

metric to the end of a locally symmetric space of rational rank one. Then N(\) <
C, \m+p)/2

~ Proof. One follows the proof of Theorem 3.6, but uses Lemma 4.10 instead of
Lemma 3.5. Cd

This proves Theorem 1.1, part (ii). Note that Theorem 4.11 is well-known for
symmetric spaces of real rank one, ([7, 11]). In the real rank one case, we have
p=0.

To prove Corollary 1.2, one needs to study the Laplacian acting on sections of
equivariant vector bundles, associated to representations of K, by a standard
reformulation ([4, 5, 11]). Our methods carry over to this vector bundle context
without requiring any significant modification.

ADDED IN PROOF. R. P. Langlands has recently obtained another proof of
the trace class property, for locally symmetric spaces of Q-rank one. His method,
which relies upon earlier work of J. Arthur, is substantially different from ours.
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