ANALYTIC MULTIPLIERS OF BERGMAN SPACES

K. R. M. Attele

Basics and introduction. Let /¥ be a nonempty region in the complex plane
and let LP(W) be the usual Lebesgue p-space of complex functions with domain
W, relative to the Lebesgue two-dimensional area measure dm. For 0 < p < oo, let
the Bergman p-space be defined by LI(W) = LP(W)NH (W), where H(W) is the
space of analytic functions on W. For fe L)(W) let

1/p
171, = (SW |f|”a’m> if 0<p<oo

= sup | f(z)| if p=oo.
ze W

The class L7 (W) of bounded analytic functions on W is usually denoted by
H®(W). Let 0< p=oco and let [f,} be a Cauchy sequence in LJ(W). Then by
using a theorem of Hardy and Littlewood ([8], Chapter 3, Lemma 3.7), one
deduces the existence of fin H (W) such that f, - f uniformly on compact sets.
It follows that if p =1 then LZ (W) is a Banach space, and that if 0 < p <1 then
L2(W) is an F-space.

L:(W) is a Hilbert space, with the inner product {f, g)= | fg dm. For each
w e W there exists a unique k,, in L2(W) such that f(w) = | fk, dm for each f
in L2(W). This k,, is called the reproducing kernel associated with w. Let D
denote the unit disc. When W = D, we have

1 1
kw =TT 2
= =wy?
for zeD and we D. Let P be the orthogonal projection from L*(W) onto
L2(W), so that

PN =\ [Edm.

Taking this as the definition of P(f) for each fin L?(D), Zaharjuta and Judovic
[16] (also see [4]) proved that P projects L?(D) onto LE(D) continuously for
1 < p<o. An immediate consequence would be that the dual of LZ(D) can be
identified with LI(D), where 1< p<oand 1/p+1/g=1.

The map P does not project L!(D) to LL(D) continuously. However L'(D) can
be continuously projected onto LL(D) ([3]). In fact, it is not hard to see that
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(1—z|»)

» (I—wz)’ f(z)dm(z) for feLY(D), weD,

RN =2 |

T

continuously projects L!'(D) onto L!(D). Consequently, if v is a harmonic func-
tion in L!(D), then its harmonic conjugate also belongs to L!(D), a fact used in
Proposition 5.1.

Let feLZ(D) and let {z,},=; be any subset of the zeros of f. In general
217 (1—|z,|) does not converge, but Horowitz ([10], Corollary 6.8) proved that
> (1—|z4|)? does converge, from which it follows that

H@) =TI z~—_z,, ) 5 z—_zn )
1 \1—-Zyz 1-7Z,2
converges uniformly on compact subsets of D, and so H is analytic. Horowitz
further proved that f/H is in Lf(D) and that

(SD |f/H|? dm)l/p < c(SD |f|”dm>1/p,

where ¢ is a constant that depends only on p.
Another key theorem used in the paper is the following factorization theorem
of Horowitz. (See [10], Theorem 3.)

THEOREM. Let

. 1
p’p],°°°)pn>0 Wlth —_— =4 — 4 - + .
p b P2 Pn

If fe LE(D), then there exists fi... f, such that each f; e LYi(D), f=11'_, fi, and
n
_El | filpi=cl 15
1=

where the constant ¢ depends only on p, p\, ..., p, and n.

The integral [, fdm will be usually written as just | f. Also ¢ will denote a
constant, not necessarily the same each time, and » will always denote a positive
integer.

1. Let W be a plane region and let v be a function on W. We say that v is a
multiplier of LZ(W) to LY(W) if vLE(W) C LY(W). The multiplication operator
M, LE(W) - LY(W) is defined by M,(f) =vf for fe LX(W).

Lemma 3.7 of Chapter 3 in [8] shows that the linear functionals of evaluation
at a point are continuous and thus an application of the Closed Graph Theorem
shows that M, is bounded.

2. This section is devoted to some examples.

EXAMPLE 1. Let D denote the unit disc. It is known that there are unbounded
multipliers from L2(D) to L*(D). For example, let

S={re"|0=r<1, |0|<(1-r)*



ANALYTIC MULTIPLIERS OF BERGMAN SPACES 309

and let
1
o(z) = EENE Xs(z).

We will prove that ¢L2(D) C L*(D). Pick f(z) = 3% a,z" from L3(D). Then

1 1
[ lefl 1 dms= | (§ 5 Jallanlr"+" do )rdr

o (I-r) 0l<(=r2 4 m=0

1
<2 3 lallan| | (a=rr"rar

n,m=0

\a,| |am|
n,fﬂZO (n+m+2)(ﬂ+m+1)

[an|/~2(n+D]l|an|/v2(m+1) ]

<2
!1,)?20 (n+m+1)
Ianlz
=27 X Sn+l)
=13 O

For the last inequality see, for example, [6, p. 48]. Thus M,: L3(D)~ L*(D) is
continuous. In fact one can verify, through a computation quite similar to the
one above, that M, is Hilbert-Schmidt and therefore compact.

The following example was pointed out to me by Sheldon Axler. Let Y = xs.
Clearly M /7 L*(D) —>L2(D) is bounded. Therefore T : LY(D) - L2(D) de-
fined by 7}, = PMW M, | L2(D) is compact, where P is the orthogonal projec-
tion from L2(D) onto L2(D). On the other hand the cluster set of y on D is {0, 1}.
Compare this with Proposition 5 in [13].

EXAMPLE 2. Let D'={ze C|0< |z| <1} and let v(z) =‘log|z| for ze D’. We
claim that vL2(D’) C L*(D’). Since L2(D’)=L2(D) [1], given f in L3(D’), for
some {a,},

) o ) o |g |2
rey= a, r"e"® and |—’—’~—<

Also, pick M such that |log r|?>r <M for all rin (0,1). Then,
1 27 . | o
S S llog rf(re’)|*rdr do = 27rS S (log r)?|a,|>r?+ dr
0Jo 0 2

o 2
<M?2 S 2[:1,1|2 2"a’r<M21r§) (L:-|1) < o,

whence vL2(D’) C L*(D).

Moreover it is not hard to show that 7,: L3(D’) - L3(D’), defined by 7, =
PM, | L3(D’) is compact.

Thus we have an example of an unbounded harmonic function which multi-
plies L2(W) to L*(W) for a suitable region W. However in the case of analytic
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multipliers of LZ(W) to LE(W) we do get the expected result. See [7, Lemma II]
for a more general result.

3.

PROPOSITION 3.1. Let W be a region of finite area, p >0, and suppose
SLE(W)YCLE(W). Then fe Ly (W).

Proof. We may assume that p <co. By the continuity of M : LY(W) — LJ(W)
we have

SW |f|p|g|pdm5cSW |g|? dm for all ge LE(W).
Note that for every positive integer n, we have f"e LJ(W) and so

[, lrrramsc| |51 dm.

Thus,
pn n—1 n»
Swlf] dm=c SW|f| dm,
SO
1/n (n—1)/ I/n
pn n—1)/n p
(§, 1o am) "< eo=om([ 1717 am)

Letting n — co completes the proof with | f]. <c”. O

Note that ¥ may be unbounded. When the region W is the disc we will show
that the harmonic multipliers of LZ(W) to L”(W) must be bounded.

PROPOSITION 3.2. Let v be harmonic, 0 < p <o, and suppose vL{(D)C
LP(D). Then ve L*(D).

Proof. We have that

1/p 1/p
(SD |f|”|v|”dm> scGD |f|"’dm> for all fe LI(D).
Hence |v|” dm is a Carleson measure on the disc [11]. Thus, given « in D,

SD |v|? dm/m(D,!) =<c,
where D, is a hyperbolic disc of radius 1/2 with center «. Therefore by a theorem
of Hardy and Littlewood ([8], Chapter 3, Lemma 3.7) we have that v is bounded.
One notes that the above proof would have gone through had v been subhar-
monic (instead of being harmonic) provided p > 1. (|

4. In order to classify the harmonic multipliers of L2(D’) to L*(D’) we
need the following lemma which surely must be known; nevertheless a proof is
included.
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LEMMA 4.0. Let u be a real-valued harmonic function on D’ ={z |0 < |z| <1].
Then there exists o in R such that u(z) — o log|z| is the real part of an analytic
Sfunction on D’.

Proof. Let

D, =D—-{zeC|z=<0}

D,=D—-{zeC|z=0}
R, ={zeD|Imz>0}
Ry,={zeD|Imz<0].

Now since D, and D, are simply connected, for i =1, 2, there exist analytic maps
h; on D; such that Re h; = u on D;. Hence there exist constants ¢; such that

ImAj—1Imhy=c, on R,
and
Im hl_ Im l’l2=C2 on R,.
Pick b on {z e D |z =<0} and let  be a smooth curve that lies in D’ and joins b

to b while passing once around the origin. Let us prove that {. (du/dn) is inde-
pendent of vy. Pick b;e yNR;, i =1,2. Then

du ou ou
N
byto byony N byto byony dn

Y an
=Im hy(b;) — Im hy(b;) + Im hy(by) — Im hy(b3)
=Cr—Cy,

and thus the asserted independence is proven.

Incidently, note that we also proved that |, (du/dn) =0 provided that - does
not enclose the origin.

Hence, if v is a curve that lies in D’ and if either vy does not enclose the origin
or goes only once around it, there exists ¢ in R such that

du a
—— —1 =0.
SY on ”Sa, an 108l

[Notice that {. (8/dn) log|z| =2 or 0]. Pick z € D’. Let y be a simple curve that
joins b to z. Then there exists a single valued function f: D’ — C such that

Re f(z)=u(z)—alog|z| and Im f(z)= —SY —;;(Ref).

Let us show that f is analytic on D’. Since u(z)—alog|z| is harmonic on D,,
there exists an analytic function A, on D, such that Re h,(z) = u(z) —alog|z|. Let
v be a curve lying in D, which joins b to z. Then

9
Im hy(z) — Im hy(b) = —S ——(u(2)—alog]z)).

¥
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Since the definition of f does not depend on vy, f= A, + Im A, (b) on D, and thus
fis analytic on D,. Similarly, fis analytic on D—{iy| y =0} and thus the analy-
ticity of f on D’ is established. O

PROPOSITION 4.1. Let D'={zeC|0<|z|<1}. Suppose v is a real val-
ued, harmonic function and vL:(D’)C L*(D’). Then there exists a such that
v(z)—alog|z| e L*(D’).

Proof. In view of Lemma 4.0 and since log|z| L2(D’) C L*(D’) [§2, Example 2],
we may assume that v is the real part of an analytic function f on D’ and prove
that v e L*(D). The Laurent expansion of f gives

ity _ v nonio , & Pn_pig
S(re’®y= Y a,r’e"+ 3 — e,
n=0 n=17r
Hence,

_ 0 5 . ©
v=f+f= Y (a,,r"+r—:>e"’0+ >
n=1 =

n=1

b . _
((T,, r'"+ ﬁ)e‘”"’+ao+ao.

But v eLZ(D’), SO

and so for every n,
7 12

b
a,,r"+7f7 rdr<o.

1
Js
Hence for all n =1, we have b, =0 which shows that v extends to be a harmonic
function on D. By Proposition 1 of [1] L3(D’) = L3(D), whence vL2(D) C L*(D),
and now the proposition follows from Proposition 3.2. . O

5. Suppose v is a harmonic function on D. If v e L!(D), then unlike the case
of the circle its harmonic conjugate is also in L'(D). (See the introduction and
also Theorem 1 of [15].) We will use this fact below.

PROPOSITION 5.1. Let 1= p=<oo, let v be harmonic on D, and suppose
vL2(D) C L\(D). Then ve L"(D) where 1/p+1/r=1.

Proof. By Proposition 3.1 and the above remark we may assume that 1< p,
and to avoid a triviality, let p < oo, We have

1/p
{10111 sc(S |f|”> for all fe LA(D).
Hence, we may assume that v is real-valued, and it also follows that

f—»S vf forall feL{(D)

is a continuous linear functional on LZ(D). Thus by [16], for some g € L,(D) we
have 2 {vf=(gf for all fe LE(D).
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But, as remarked at the beginning of the section, v = Re 4 for some h e L}(D).
Thus,

Shf+§5f=§gf for all fe H(D).
Let
h(z)= io] a,z" for |z]<1
and "=
' g(Z)=n§Obnz" for |z|<1.

Put f=z"for m=1to get a,,/(m+1)=b,,/(m+1) for all m=1. It follows that
g—g(0) =h—h(0), whence he L, (D). Thus ve L'(D). O

PROPOSITION 5.2. Suppose v is harmonic, 1 < q< p, and vLZ(D) C LY(D).
Then ve L'(D) where 1/p+1/r=1/q.

Proof. We may assume that g > 1. Pick ¢’, r’ such that
1 1 1 1

— _1’ —_ — —

4

q q r o r
Then by Theorem 3 of [9], LA(D)LY (D)=L} (D). But then vLZ(D)LY(D)C
LYD)LY (D). Hence, vL’, (D) C L'(D). Now invoke Proposition 5.1 to complete
the proof. O

PROPOSITION 5.3. Let v be a harmonic function on D, q> p >0, and sup-
pose vLE(D)C LY(D). Then v=0.

An unpublished result of Sheldon Axler says that for regions of finite areas, if
g > pand fLE(W)C Li{(W), then f=0. The proof for the case of the disc is quite
simple.

Proof. The continuity of M,: L?(D) - LY(D) implies the existence of ¢ such
that '

1/q I/p
(SD |v]qlg|"dm) sc(SD |g|"dm) for all ge Ll(D).
Hence, by Theorem 2.2 of [11], for each ain D

SD 0|7 dm < c(1—|a|2)297,

2

where D, is a hyperbolic disc of radius 1/2 with center «, and c is some constant.
Now there exist constants ¢; and ¢, such that

o< D) _
T a-e?)? T
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(See [12], p. 4.) Moreover
ip, lv]”
p <t
clv|P(a) = (Do)
(see [8], Chapter 3, Lemma 3.7). Hence

|v|.0(a)5c(1_|a|2)2(q—P)/p_
Therefore v(a) » 0 as jo| -1, and so v=0 on D. 0O

6. We now want to show that if 0<g< p=<1and if fLE(D)C LI(D), then
fe Ly(D), where 1/p+1/r=1/q. The proof is harder than for the previous cases,
and will be accomplished through a series of lemmas. Be reminded that ¢ will de-
note a constant, perhaps not the same in each occurrence and n will always de-
note a positive integer.

LEMMA 6.1. Let 0< g < p and suppose fLE(D)C Li(D). Then
| F1V"LIP(D) C L"9(D) for every n.
Proof.

1/q I/p
(S |f|"|gi") SC(S |g|”> for every ge L?(D).

Let n> 0 be an integer. Then given g € L}”(D), we have g"e L?(D), so

I/nq I/np
(urar) e

that is, | f|/"L"P(D) C L"Y(D). O

PROPOSITION 6.2. Suppose f has finitely many zeros, 0 < q < p, and fLE(D) C
Li(D). Then fe L (D), where 1/p+1/r=1/q.

Proof. Let b be the Blaschke product formed by all the zeros of f. Then since b
is a finite Blaschke product

My: L{(D) - Li(D),

the multiplication operator by b has closed range ([13], Proposition 22) and so
there exists ¢ > 0 such that for each g in LJ(D) for which g/b is analytic

g9 I/q ‘ l/q
(18 ) =<(] a1")
Hence
g | 1/q I/q
(S lf_b_ ) SC(X |gh|‘7> for every ge LI(D);
but then

(f17181) < 1er?)
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SO

a\Vaq i/p
) < c(S Iglp) for every ge L?(D),

()%

whence
(f/b)LE(D) C LY(D).

Now pick n such that np, ng>1. By the previous lemma and since f/b has no
Zeros,

f i/n
<E> L'"(D) C L'(D).

Now the proposition follows from Proposition 5.2. O]

LEMMA 6.3. Let fe L, (D) and suppose

nfr (n—1)/r
(S Ifgl’/") SC(S |g|’/("“”> for all ge L'/""~1)(D)

Jor some n>1. Then | f|, < c. Here c denotes the same constant.

Proof. Since fe L(D), we have f"~'e L/"~1(D). Whence,

(S |f|r/n|f|("_”’/”>n/rsc(g Ifl,)("—l)/r
(Jrf"e(fior)™
(Jusr)" e ]

LEMMA 6.4. Suppose fL/"~Y(D)c L//"(D) for some r>0 and n>1. Then
felLl(D).

Proof. Let |z)| <|z] < --- be the zeros of f. Let

Z— 2k Z—Zk
bi(z) = 2 Tk
e(2) (1—Zk2)< 1—5k2>

or

that is,

and
Bk= H bj.
j=k
By Horowitz ([10], §7.9) there exists ¢ such that given g in L/"(D) with g/B is
analytic,
i rin\n/r i nfr
(S By ) =¢ S el .

The constant ¢ does not depend on k. Whence for some constants indepen-
dent of k,
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ol

B, " >n/r < C(S | /g r/n>"/’,
({

rin\n/r (n—=1)/r
) SC(S |g|’/(”‘”) for every ge L/"~V(D).

SO

J8
By

So
BiLf/‘"—”(D) C LY/"(D).
k

But then f/B, has only finitely many zeros, and

=) =)

Hence by the corollary to Lemma 6.1, f/B,e L, (D). Now by Lemma 6.2
| f/Bx|, < c, where c is the constant occurring in (*). Apply Fatou’s Lemma to
deduce that | f|, <c. O

LEMMA 6.5. Let oLE(D) C LY(D) for some nonnegative function ¢. Then for
all n>0 we have o"LP/"(D) C LY"(D).

Proof. Fix g in L?"(D). Then by Theorem 1 of [9] there exist ¢, and g, ..., g,
in LZ(D) such that

n
g=Ig and 3 gl <ailglf/n-

Here ¢, is independent of g, and depends only on p and n. Since M,,: Lj(D) -
LY(D) is continuous, for all i we have | | f]?|g;|7 < c({ |&|”)¥?, so

fuo( S tei)=er S ()

Now the arithmetic-geometric inequality gives

n
% |gi|?=nlg|"",
=

and so
p\a/p
n{ 1118l < e 3 (’ Haly
n q/p
=c q/p ( g S |gi|p> .
Thus
q|ola/n e il
|f’ |gl = n/p "g"ﬂ/n

LEMMA 6.6. Let 0< g < p and suppose fL?(D)C LZ(D). Then
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JLY"=D(DyC Lf"(D)
for some integer n> 1, where 1/r=1/q—1/p.
Proof. By Lemma 6.1, for all n=1,
| /1L (D) C L"U(D).
Pick n>1 so that np, ng >1 and such that there exists positive R with

1 1 1
ng "R _r
Then
| f1/"L2(D) LE(D) C L"(D) LR(D) C L"(D).
Now
1 1 1 1 1
R g TR
1 1 1

Hence, by Theorem 3 of [9],
LiP(D)L§(D)=LY"~/"(D),
SO
ALY Dy C L' (D).

Thus by Lemma 6.4,

| fILY "~ (D)c LDy,
and so

SLY"N(D) C LY"(D). O

THEOREM 6.7. Let £>0 be a rational number, 1> p>q >0, and suppose

| fIELA(D) C LYD) for some analytic function f. Then fe Lif(D), where
I/p+1/r=1/q.

Proof. Apply Lemma 6.5 for the obvious integer and then Lemma 6.6 and
Lemma 6.5. O

7. We now return to the question of determining the subharmonic multipliers
of L2(D) to L'(D). Must they be in L?>(D)? A partial solution to this question is
provided by the following proposition.

PROPOSITION 7.1. Let v >0 be subharmonic on D and vL(D)C LY(D). Let
M(v, p) = (1/27) {Z" v(pe™®) db. Then

M(v, p)V1—p=0().

Proof. Since M,: L2(D) — L'(D) is continuous, we have



318 - K.~R. M. ATTELE

1/2
g lv| |z"| deCG Esd dm) for all n=0.
D D

1 1 r2« : 1 1/2
S r"“(—g v(re"’)d())drsc(S r2”+la’r> )
0 27 Jo 0

Since v is subharmonic, M(v, r) increases with r. Hence,

So

n+2
—p

1
<
n+2 S J2nt2

hence M(v, p)<cVn/(1—p") for all n=1and for all pin (0, 1). Put n= [1/(1—p)],
the greatest integer less than or equal to 1/(1— p). Then 1—p” is bounded away
from zero as p — 1. Thus, M(v, p) <c/~/1—p.

As a corollary we have that ve L2(D) for all p in (0,2). One may ask “does
the subharmonic function z —1/4/1—|z| for z€ D multiply L%(D) to LY(D)?”
This was answered by Dr. Daniel H. Luecking, whose proof is given below.

1
M(v, p)

for 0<p<l,

PROPOSITION 7.2. The subharmonic function 1// 1 —|z| on D does not mul-
tiply L3(D) to L\(D).

Proof. First suppose (1/+/1—|z|)L2(D)C LY(D). Then the operator

f(z)(1—z|»)"?
(1—zw)3

S(f)(w)= SD dm(z) for weD,

maps L2(D) to LL(D) (see the introduction). By computing what S does to coeffi-
cients (using | (1—r)/2r?"*1dr ~ n=3/2), it is easy to verify that S maps L2(D)
onto L21(D), where

L(D) = 7e HD) | [ LA~ e dm(z) <),

Hence L2 !(D) < L}(D), which is false since the derivative of an H* function is
always in L>!(D) but not necessarily in LL(D) ([14], Theorem II).
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