HOMOTOPY EQUIVALENCES OF PUNCTURED MANIFOLDS

Darryl McCullough

Let M be a closed (smooth or PL) manifold of dimension n 2 2, and let W be the
punctured manifold obtained by removing from M the interior of a (smoothly or
PL)-imbedded n-disc D, centered at the basepoint m of M. Not surprisingly, the
group G,(M) of homotopy classes of basepoint-preserving degree 1 self-homotopy-
equivalences of M is closely related to the group G(W, dW) of homotopy classes
(rel aW) of self-homotopy-equivalences of W that fix dW. The main theorem of this
paper makes this precise. We begin by stating the theorem and outlining various
applications.

The map r: W— W is a rotation about the boundary sphere of W, described in
Section 1(b). Our main theorem is

THEOREM 3.2. There is a central extension
1l — K — G(W,dW) — G(M) — 1

where K is the subgroup of G(W,3W) generated by (r). Forn=23, K=0 or Z/2
according as {r)= {ly) or {rY# ). Forn=2, K=0if M is the 2-sphere or real
projective plane, otherwise K = Z.

After proving this theorem in Section 3, we apply it to the problem of deforming
homotopy equivalences to homeomorphisms, showing that every element of G,(M)
contains PL homeomorphisms if and only if every element of G(W, aW) does. In
Section 4, we consider the case of M aspherical. In this case, {(r)# (ly), so
G(W,0W) is determined, at least up to extension, by (M, m). In Section 35, we
apply Theorem 3.2 to describe the stabilizers of certain elements in finitely-generated
free groups. In the final section, we show that when M = T", the n-dimensional
torus, the exact sequence of Theorem 3.2 is isomorphic to a well-known sequence
involving the Steinberg group St(n,Z). Thus, the extension need not be trivial.

In the first section, we will discuss a few preliminaries, including the fact that
G(W,aW) is a group. The main lemma, from which Theorem 3.2 follows easily, is
proved in Section 2. The proof uses geometric constructions to simplify a homotopy
between a self-homotopy-equivalence of M and the identity map of M.

I am grateful to R. Alperin, F. Ancel, and G. A. Swarup for helpful discussions.

1. Preliminaries.
l.a. Mapping spaces of manifolds.

We will always work only with basepoint-preserving maps of M, and use the C-O
topology on mapping spaces. If A(N) is a space of mappings from a manifold N to
itself, and X C N, let A(N, X) ={f€ A(N) :f|X is the identity map 1y}. When the
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elements of A(M) are homotopy equivalences, denote by A,(M) the subspace of
maps having degree 1. (The degree of a basepoint-preserving self-homotopy-
equivalence of a nonorientable closed manifold can be defined using the orientable
double cover. Details appear in [11].) We are primarily concerned with A (M) =
E(M), the space of self-homotopy-equivalences of M, which we regard as acting on
the right on M. Note that any element of £ (W, W) is homotopic (rel 3W) to a map f
such that for some collar neighborhood C of W, f|c=1c and f “I(C) = C. We will
frequently assume this condition without mention.

Suppose f: W— W is a map with f|aw = law. We let f: M — M be the map with
f|W fand f]D = 1p. Obviously, f has degree 1.

LEMMA 1.1. f€ E(W,oW) if and only szG E (M).

Proof. For n 2 3, finduces an isomorphism on =, (W) if and only if f” induces an
isomorphism on 7;(M). Also, the universal cover W of W is obtained from the
universal cover M of M by removing the interior of the inverse image D of D. Hence,
by excision, H, (W,dW) = H, (M, D). The lift of f (respectively, f) permutes the
components of 9W (respectively, D), so looking at the long exact homology
sequences of (W,dW) and (M, D), we see that f induces an isomorphism on all
homotopy groups if and only if f does.

For n =2, it is still true that finduces an isomorphism on w, (W) if and only if f
induces an isomorphism on 7, (M), the ‘‘if’’ direction using the fact that free groups
are Hopfian. This proves the lemma when M is aspherical. When M is the 2-sphere,
any degree 1 map of M is homotopic to 1,,, while E(W, 3W) is contractible by the
Alexander trick. Finally, when M is the real projective plane, W is a Mobius band.
By [4, Theorem 13.1] and [2, Theorem 3.4], any map of W which fixes dW is homo-
topic (rel 9W) to 1. Therefore, in this case both f and f will be homotopic to the
identity. a

Thus, we obtain an injection E( W, dW) — E,(M) which is easily checked to be an
imbedding. There are analogous imbeddings for the groups of homeomorphisms
Homeo (M), PL homeomorphisms PL(AM), and diffeomorphisms Diff(M), if by
Diff(W,0W) we mean the space of diffeomorphisms of W that are the identity on
some neighborhood of oW.

It is well-known that composition of maps induces a group structure on G(M) =
wo(E(M)), with G (M) = wo(E,(M)) a subgroup of index one or two. That
G(W,0W) = wg(E(W,dW)) is also a group under composition follows from the
next proposition, which was pointed out to me by F. Ancel.

PROPOSITION 1.2. Let A be a closed collared subset of a space X, i.e., suppose
there is a closed imbedding e: AX [0,1] = X such that e(a, 0) = a for each a € A
and e(A X [0,1)) is an open subset of X. If f: X— X is a homotopy equivalence
with f|a =14, then there is a map g: X = X with g|la= 14 and fg = gf = 1x (rel A).

Proof. Identify Ax [0,1] with e(A X [0,1]) for notational convenience, and let
X,=X—-(Ax[0,1)). Define ¢, y: Xx [0,1] > X by qotlxl =1x,, ¢(a,s) =a for
0<s< /2, o (a,s)=(a,(2s—1t)/(2—1¢)) for t/2< s< 1, x,b,[X]: IXI, and ¥,(a,s) =
(a,S(l_t/2)+t/2) for 0 <s< 1. Note ‘DO:,'LO:IX! ll/t(,Dt|Xl/2=1X’/2, and @[\b,zl)(.
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Let g, : X — X be a homotopy inverse for fand #: X X [0,1] = X a homotopy from
1y to g, f. Define g: X — X by g(x) = ¥,8,¢;(x) for x € X,,,, g(a,s) = (a,2s) for
0<s< i, and g(a,s) =y h(a,45—1) for } < s< 1. Note that g|4 =14, and ¢,g¥,
defines a homotopy from g to g;.

We now define homotopies F: f= F|, and H: 1y = gF), both (relA). Let F,(x) =
V. fo,(x) for x € X/, and F,(a,s) = (a,s) for 0< s< 1/2; let H(x) = ¢y 1h,01(X)
for x € X,,,, H/(a,s) =(a,s(t+1)) for 0< s<1/(2(¢+1)), and

H,(a,s) =y h(a,2s(t+1)—1) for 1/(2(t+1))<s< .

These homotopies show that g is a left homotopy inverse (rel A) for f.
Repeating, we obtain a left homotopy inverse (relAd) for g, say f’. Then

Ix=/f'g=f"gfg=fg(relA). O
1.b. Rotation about a sphere.

Suppose S""!xIC M and v:(1,0,1) = (SO(n),1,1) is a loop representing a
generator of m(SO(n),1). We define a homeomorphism 4#: M— M by h(x,t) =
(v()(x),¢) for (x,¢t) € S" I x Tand k(y) =y for y ¢ S"~! x I. The isotopy class of
h does not depend on the choice of v, and any homeomorphism isotopic to 4 is called
a rotation about the sphere S"~'x {0}. For n 2 3, 7,(SO(n),1) = Z/2 so h? is iso-
topic (rel M — (8"7'x (0,1))) to 1y. In fact, |ss-15, generates

7o(Maps(S"~!'x 1,87 'x aI)) = Z/2.

(For n=3, see [5, p. 172]}; for n> 3 use suspension.) For n= 2, h’slxl represents a
generator of my(Maps(S!'x 1, S8!'x dI)) =Z, and h is usually called a Dehn twist
about S!x {0).

When S”~1x I is a collar neighborhood of aW in W, we denote by r: W— W a
rotation about the sphere dW. Since any two collarings of W are ambient isotopic
keeping W fixed, the homotopy class {r) € G(W,dW) does not depend on the
choice of collar.

2. Main lemma.

LEMMA 2.1. Let f € E\(M) with f|p=1p and f~'(D) = D, and suppose f= 1
(rel m). Then there is a homotopy F:f= Fk (rel D) with F~1(D) = DX I, conse-
quently f|w = r* (el aW). If n =2, then k € Z, while if n > 3 then k may be chosen
to be in {0,1}.

Proof. We first treat the case n 2 3. Let G: M X I— M be a homotopy (rel m)
from fto 1,,. By [7, Theorem 2.3], we may assume G is a homotopy (rel D). Without
changing it in a neighborhood of M x aIU m X I, change G to be a transverse to m,
so that G~!(m) consists of mx I and a collection of contractible simple closed
curves in M X (0, 1). Using a standard construction, as in the proof of Theorem 4.1
of [6], we may change G by a homotopy (rel M x 8I) whose effect on G~!(m) is to
replace its components by their connected sum. Because the simple closed curves
were contractible, the arc G~!(/m) will be homotopic (rel m x 3I) to m x I. Since
n 2 3, this implies G ~!(/m) is ambient isotopic (rel M x 3I) to m x I. Changing G by
this ambient isotopy, we may assume G ~!(m) = m x I. The altered homotopy G is,
however, no longer a homotopy (rel D).
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Since G~1(D) is a neighborhood of m x I, we may choose a smaller concentric
n-ball D’ C D so that G(D’ x I) C D. Choose coordinates on D so that D’ is the ball
of radius 1, and let D” be the ball of radius 4. We will define an isotopy of embed-
dings J,: M— M XL If x ¢ D’ let J,(x) = (x, t), while if x € D” let J,(x) = (x,0).
For x€ D'— D", let J,(x) = (x, (4||x|| —1)¢) € DX I The effect of J is to slide
(M—-D’') x {0} upward, holding D” fixed and extending linearly to D’'—D".
We define the homotopy K:f=/f, (relD”) by K(x,t) =G(J,(x)). Observe that
filim-pryup~ is the identity, fi(D'—int(D”)) C D—m, and K~ Y(m) = mx I
Pushing image points radially away from m, we may assume K satisfies the above
conditions and also K ~1(D”) = D” x I and f;(D’—int(D”)) C D’ —int(D”). Now
Si|p'—int(p~) is @ self-map of $”~! x I which is the identity on $”~!x 91, so it is homo-
topic (rel3(D’—int(D")) to the identity or a rotation about dD”. Following K by
the trivial extension of such a homotopy, we obtain a homotopy F satisfying the
conclusion of Lemma 2.1 with £k € {0,1} and D” in place of D. A radial adjustment
in a neighborhood of D completes the proof.

When n =2, the previous argument breaks down because G~!(m) might not
be isotopic to mx 1, so we must proceed differently. Let go=f|w: W— W. By
Lemma 1.1, g is a homotopy equivalence. By a theorem due to Baer and Nielsen [4,
Theorem 13.1], g is properly homotopic to a homeomorphism g. Therefore, there is
a homotopy K: f= g with K~!(m) = m X I. But § = f= 1, (rel m) so 2 is isotopic to
157 (rel m) [2, Theorem 6.3]. Following K by this isotopy, we obtain G: f= 1,; with
G ~1(m) = mx I. We can now continue the argument as in the case n > 3, with the
difference that the homotopy classes of maps of S!x 7 fixed on S!x 4l form an
infinite cyclic group with a Dehn twist about S'x {0} as generator. O

2. The main theorem.
LEMMA 3.1. For f€ E(W,dW), {r){f) = {f)Xr).

Proof. (W x I) = dW x I for some collar
neighborhood of aW. If r’ is a rotation defined using this collar, then {(r){f) =
(' X =Lr'fr=r')y= (). O

THEOREM 3.2. There is a central extension
] — K — G(W,0W) — Gi(M) — 1

where K is the subgroup of G(W,dW) generated by {(r). For n =23, K=0 or Z/2
according as {r)={ly) or {r) # ly). Forn=2, K= 0 if M is the 2-sphere or real
projective plane, otherwise K = Z.

Proof. Let {(f) € G;(M). By Lemma 1.2 of [11], we may choose f within the
homotopy class so that f|p =1p and S~YD) =D. (The lemma is proved for the
smooth category in [11] but the argument works in the PL category using [3,
Theorem 3] in place of [13, Theorem B].) By Lemma 1.1, f, = f|w € E(W, W), and
(f0)= (f>. Therefore, G(W, 6W) — G, (M) is surjective. If {(fy) is in K, then
Lemma 2.1 applied to fo shows that {fp) = (r)* for some k. Since (r) is in K, this
shows that K equals the subgroup generated by (r), which is central by Lemma 3.1.
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The description of K for n 2 3 is obvious. When M is the 2-sphere or real projec-
tive plane, it is easy to see geometrically that ris isotopic to 1y (rel 9W). Finally, if M
is a closed 2-manifold other than the 2-sphere or real projective plane, then =, (W, w)
is free on at least two generators, and the boundary curve of W represents a nonzero
element ¢ € 7 (W, w). (We choose w € dW.) The induced map

rf s (W, w) = m (W, w)
equals conjugation by c¥, so {{r)¥| k € Z} are distinct elements of G(W, aW). ]

Our first application of Theorem 3.2 concerns the problem of deforming homotopy
equivalences to homeomorphisms.

COROLLARY 3.3. For A =PL or Diff, ny(A(M)) = G,(M) is surjective if and
only if mg(A(W,oW)) = G(W, W) is surjective.

Proof. By Theorem 3.2, G(W,dW) — G{(M) is surjective, so the ‘“if”’ direction
follows from the commutative diagram

To(A(W, W) — mo(A(M))

| }

Gw,aw) —  G(M)

Also by Theorem 3.2, the kernel of G(W, aW) — G,(M) is generated by {r), which
can be represented by an element of A(W, 3W). Therefore, the ““only if’’ direction is
implied by the fact that mo(A(W,dW)) = my(A;(M)) is surjective, which follows
from [13, Theorem B] for A = Diff and [3, Theorem 3] for A = PL. O

4. The case of M aspherical. For n > 3 it can easily happen that {(r) = {1,;). For
example, this occurs when M" = S? x §S9. There is, however, an important case for
which {r) # {1y).

LEMMA 4.1. If M is aspherical, or a connected sum of aspherical manifolds, then
(r)y#Z{ly) in G(W,oW).

Proof. For n = 2, this is part of Theorem 3.2. For n > 3, regard the connected sum
MH#M as two copies W, and W, of W with their boundaries identified. A rotation
about the boundary sphere of W, extends using the identity on W, to a homeomor-
phism of M#M. From the proofs of Theorems 4.5 and 5.3 of [10], the homotopy
class of this homeomorphism is nontrivial in G(M#M). Therefore, the rotation
cannot be trivial in G(W, aW). O

When M is aspherical, the degree of an automorphism of =, (M, m) can be defined
to be the degree of a basepoint-preserving self-homotopy-equivalence of M that
induces the automorphism. Let Aut,(m,(M, m)) be the automorphisms of degree 1.
Combining Theorem 3.2 and Lemma 4.1, and the isomorphism of G(M) with
Aut(m; (M, m)) [14, Theorem 8.1.9], we have
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COROLLARY 4.2. Suppose M is aspherical.
(@) If n=2, there is a central extension

I — Z — G(W,oW) — Auty(m (M, m)) — 1

in which the kernel is generated by a Dehn twist about oW.
(b) If n =3, there is a central extension

1 — Z7/2 — G(W,dW) — Aut|(m;(M,m)) — 1
in which the kernel is generated by a rotation about oW.

In the next two sections, we will see examples for which the extensions of Corol-
lary 4.2 are nontrivial; in fact, I do not know an aspherical example for which the
extension is trivial.

S. Boundary-preserving automorphisms of free groups. For g 21 let F,, be the
free group on 2g generators {a;,b,a,,...,b,} and let ¢, =11%_,(a;, b;]. For
X € Fy,, let Aut(F;,,, x) be the stabilizer of x in the automorphism group of F,; that
is, let Aut(F,,,x) = {9 € Aut(Fy,) | o(x) = x}. In [9], an effective procedure is
given for obtaining a presentation for the group of automorphisms stabilizing a finite
tuple of cyclic, or ordinary, words in a finitely-generated free group. Using combina-
torial methods, the authors of [1] find generators for the stabilizers of certain com-
mutators, and obtain a simple presentation for Aut(F;, [a;, b;]). As an application
of Theorem 3.2 we prove the following theorem. Let T, be the closed orientable
surface of genus g.

THEOREM 5.1. For g 2 1 there are nontrivial central extensions
1 — Z — Aut(Fyg, ¢25) — Aut (m(T,)) — 1
where the kernel is generated by conjugation by c¢,,.

Proof. Let W, be T, with an open disc removed, and choose a basepoint w € dW,.
Generators for m;(W,,w) = F,, can be chosen so that the boundary curve of W,
represents ¢,,, and in this case a Dehn twist about the boundary of W, induces the
automorphism conjugation by ¢,,. The central extension exists by Corollary 4.2(a)
and the following lemma, which is easily proved using asphericity of W,:

LEMMA 5.2. The function sending {f) to fy: m (W4, w) = m(W,,w) is an iso-
morphism from G(W,,0W,) onto Aut(Fy,, cz;).

The extension is nontrivial since Aut;(x;(7T,)) contains torsion, while Aut(F,g, c2g)
is torsion-free by [8, Proposition 1.5.5]. a

The case g =1 will be discussed further in the next section.
Using nonorientable surfaces, one obtains a similar theorem for the stabilizer of
ITX, a? in the free group on k generators {a;, a,,...,a;}, for kK > 1.

6. Homotopy equivalences of the punctured n-torus. We now specialize to the
case where M is the n-torus 77" =[]%,S!. Let X" denote the punctured n-torus
T" —int(D"), with basepoint x € dX". Since m;(T", m) = Z", Corollary 4.2 becomes
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LEMMA 6.1. There are exact sequences
1 — Z — G(X?*03X?* — SL(2,Z) — 1
1—Z/2 — G(X",0X") — SL(n,Z) —1 (n=23)
in which the kernels are generated by a rotation’ about the boundary sphere.

As far as I know, the next theorem arises not from any deep connection between
Steinberg groups and groups of homotopy equivalences of punctured manifolds, but
merely indicates the paucity of extensions of Z/2 by SL(n,Z).

THEOREM 6.2. (a) There is an isomorphism of exact sequences

1—Z— St(2,Z) — SL(2,Z) —1

| fee }=
1 — Z— G(X%0X?%) — SL(2,Z) — 1.
(b) For n 2 3 there are isomorphisms of exact sequences

11— Z/2 — St(n,Z) — SL(n,Z) —1

L e I-

1 —27Z/2 — G(X",0X") — SL(n,7) — 1.

Proof. For n22, regard T" as (II}-,[—3,3])/~, where (x;,%,.. ,(3),-,...,x,,)~
(X15Xg5eees (=3)j5eey X)) fOr €ach (Xy,...,Xi_1,Xiz1r---»X,) € [1751[—3,3]. Let

={xeT"||x| < 1}, C={x€eT"|1< |x| <2}, and regard X" as T"—int(D).
For 1<, j< n, i#j, and e= %1, we define ff;: T"— T" by

(X155 X,) if xeD
G =fi(x1, %2, %) =3 (X, x5+ (x| = 1Dx;,...,x,) if xe€C
(Xt e s X+ Xiy ooy X)) if x¢ DUC.

We interpret the coordinates (mod 6) so that f,,(x) € T" It is not hard to check that

i is well-defined and continuous, and that f,j and f,j are inverse homeomorphisms.
Letf, _f,J|Xn X"— X". For n 22, St(n,Z) has generators {x;|1< i, j< n and
i#j}. We define o, : St(n, Z) - G(X",0X") by o, (Xj;) = (fij).

Proof of (a): From [12, pp. 82-83], we know that St(2,Z) has presentation
{X12, X1 : X12X31 ' X12 = X531 ' X12 051 ) and that the top sequence of part (a) is exact with
kernel generated by (x5x5;'x;2)%. Let w= (0, —1) be the basepoint of X?2. Define
a:I—> X2 by a(t) = (6t,—1) and B:I—> X% by B(¢t) = (—~1—(6f—1)2 , 61—1)
for0< < % and 3(¢) = (0,6¢—1) for } < #< 1, interpreting the coordinates (mod 6).
Observe that (X2, w) is generated by a= {a) and b={8), and that [a, b] is
represented by the boundary curve of X?2. It is easy to see that ( J12)s(a) = ab,
(f12)#(D) = b, (f21)4(a) =a, and (fy;)s(b) = ba. Since (fi12/51 12)s = (51 S 51D
Lemma 5.2 implies fi, 51 fi2 = fo1 V121! (rel 3X2), so «, is well-defined. The right-
hand square commutes, where we regard SL(2,Z) as acting on the right on

w1 (T2, m). Moreover, (f1,/f351'/12)# equals conjugation by [a, b], so (fi2/51 f12)? is
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homotopic (rel 3X?2) to a Dehn twist about 3X2. Therefore, «, induces an isomor-
phism on kernels, so a5 is an isomorphism.

Proof of (b): For n =2 3, St(n, Z) has relations

(1) [xij,x]=1forj#kandi#]

(2) [x,-j,xjk] = Xik for i # k.
According to Theorem 10.1 of [12], the top sequence of part (b) is exact with kernel
generated by (x;5x5;'x;5)4. We first check that «,, is well-defined. For type (1) rela-
tions, we have [ fi;, fis] = 1xn 50 o, ([ X5, Xx1]1) = {1w). For type (2) relations, recall-
ing that E(X",dX") acts on the right, we have ([f;, fix 1) (x1,...,X,) =

el p g e+ (x| - D2xg,. .0, x,) if xEC
Sk~ i (ff"(f'f(x"'”’x”))))_{ (XL ooy X F Xiy e e ey X) if x¢C
Since

(X150 X+ (x| =12 '%,...,x) if x€C

(X1y oo X+ XiynoosXn) if x¢C

Ft(xl’--"xn) = {

defines a homotopy (rel 3X™) from [f;;, fjx] to fix, we have o, ([X;, Xjx 1) = otn(Xix),
so «a, is well-defined. It is straightforward to check that the right-hand square
commutes.

We now prove inductively that «,, ((x;,X5; 'X15)*) is represented by a rotation about
the boundary sphere of X”. For n = 2, this was established in part (a). For n = 3, it is
convenient to regard X" in the following way. Let X"~ !x S!= (X"~ !x I)/~, where
(x,0) ~ (x,1). Now §"~2=3D" 1= 3X"~1; using this identification we glue D"~ x
[1,3]to X"~ !'x S in the obvious way to form X". By induction, o,_ ((X12X51 'x12)*)
is represented by r: X"~!— X"~!  a rotation about the boundary sphere of X",
Consideration of the definition of f;; shows that «,((x;2x51'X;;)?) has a representa-
tive which equals rX 1g1 on X?~1x S! and equals the identity on D" x [1,3]. It is
not difficult to see that this map is homotopic, in fact, isotopic, to a rotation about
the boundary sphere of X". O

Recalling that each fj; is a homeomorphism of X" and noting that F; is an isotopy
from [fi;, fix] to fix, we can factor «, as a composite

St(n,Z) — mo(Homeo(X",3X")) - G(X",3dX").
We conclude
COROLLARY 6.3. The natural homomorphism
wo(Homeo (X", 0X")) = G(X",dX")

has a section.
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