INVARIANT PSEUDODIFFERENTIAL OPERATORS
ON TWO STEP NILPOTENT LIE GROUPS

Kenneth G. Miller

Introduction. Let G be a connected, simply connected two step nilpotent Lie group
with Lie algebra G. We shall develop a calculus of right invariant pseudodifferential
operators on G which is based on the representation theory for G.

For p € 8*(G*) define an operator A(p) : S(G) = 8§*(G) by N(p)d = (Fpelog) * ¢,
where 8* denotes the dual of the space of rapidly decreasing functions,
F:8*(G*) — 8*(G) is the Fourier transform, log: G — G is the inverse of the expo-
nential map and * is convolution as determined by the product on G. A(p) is the
right invariant pseudodifferential operator with symbol p, AN(p) being a partial dif-
ferential operator if and only if p is a polynomial. Howe [5] showed that for
arbitrary nilpotent Lie groups the calculus of invariant pseudodifferential operators
““fibers’’ over Z*, where Z is the center of G. In the case of the Heisenberg group this
is essentially equivalent to saying that the calculus fibers over the orbits of the
coadjoint action of G on G*. To be more explicit, if p and g are both in $(G*) let
p#q be that element of S(G*) such that A(p#g) = AN(p)N(q). Then p#qg(¢) depends
only on the values of p and g on that orbit of the coadjoint action that contains £.
Furthermore, as was shown in Howe [4], after making the appropriate identification
the calculus at the orbit level is the Weyl pseudodifferential operator calculus. In
fact, as we show in Section 1, from this it follows easily that the calculus fibers over
the orbits of the coadjoint action and the orbit level calculus is the Weyl calculus for
any step two group G. If 7 is an irreducible unitary representation of G, the Kirillov
theory then allows us to define an operator «(p) for which the Weyl symbol is essen-
tially p restricted to the orbit corresponding to «, and w(p#q) = w(p)7(q).

In Sections 2 and 3 it is shown that the calculus can be extended to classes of
symbols S”(®, G*), where ® is some weight function as defined in Section 2, and
pEST™(P,G*) if p satisfies estimates of the form

|Dy -+ Dy p(£)| < CB(E)™F

where each D; is a vector field which is tangent to the orbits of the coadjoint action.
No assumptions are made about the differentiability of p except in directions tangent
to the orbits. We prove that if p € S and g € S*, then p#qg € S™*¥, and we give an
asymptotic expansion for p#q. In Section 4 it is shown that A\(p) is a bounded opera-
tor on L*(G) if p € S°(®, G*). The main theorems of the calculus are proved by
appealing to Hormander [3] for the corresponding results in the Weyl calculus at the
orbit level and showing that certain estimates are uniform over the orbits.

L? boundedness has been proved by Howe [5], without appealing to a standard
operator calculus, for general nilpotent Lie groups in the case where ®(£) = (1 + |£])?
with 6 > 1/2 and where the derivatives of p satisfy the appropriate estimates in all
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directions. In [11] Strichartz developed a local theory of pseudodifferential operators
for arbitrary Lie groups in which the symbols were functions defined on G*. In [8]
the general calculus of Beals [1] was applied to step two nilpotent groups. The theory
of Nagel and Stein [9] can also be applied to nilpotent Lie groups. The present
approach is independent of these approaches and it differs from them in the use that
is made of the Kirillov theory. This approach seems to be the most natural in dealing
with problems that relate properties of the operator A(p) to properties of its repre-
sentation theoretic ‘‘symbol’’, i.e. to properties of the operators w(p) for irreducible
unitary representations w. For example, in a future paper we will generalize Rock-
land’s criteria for hypoellipticity [10] to the pseudodifferential case and give an orbit-
wise construction of the parametrix.

Some of the techniques used in this paper have also been used recently by Melin [7]
in the case of the Heisenberg group.

I am indebted to the referee for several helpful comments which have been
incorporated into the final version of the paper.

1. Orbits and the calculus for symbols in 8. In this section we present first a very
brief review of some aspects of the Kirillov theory as it pertains to step two groups in
particular. We then prove a proposition which implies that the calculus for symbols
in 8(G*) ““fibers’’ over the orbits of the coadjoint action and that the calculus at the
orbit level is the Weyl pseudodifferential operator calculus. This later fact is at least
implicit in Howe [5]; however, our formulation of it is somewhat different. The
formulation given here will be used in extending the calculus to more general symbol
classes in later sections of the paper.

If 7 is any unitary representation of G, = will also denote —i times the derived
representation of G, that is

. d
(1.1) 7(x) = —l—di—vr(exp tx) t=0.

G is step two nilpotent throughout the paper.

Given ¢ € G*, a subspace V of G is said to be maximally subordinate to £ if V=
{x: (&, [x,y]) =0 for all y € V}. Let V be any subspace of G such that G=V@ V.
Given t €V and x € G there exist unique #(#,x) € V and v(t,x) € V such that
exp fexp x = exp ¥(f, x) exp v(f, x). Define the representation 7, . y of G on L*(V) by

we v, p(expx) f(£) = eXEDEDf(y(1, x)).

Whenever we refer to w; p p in this paper it is assumed that ¥ is maximally sub-
ordinate to &.

It is shown in Kirillov [6] that every irreducible unitary representation of G is uni-
tarily equivalent to some m; y, p, and that ¢y, p, is unitarily equivalent to ¢, y, p,
if and only if there is an x € G such that (expadx)*¢, = &,. Since G is step two nil-
potent, (expadx)(y) =y+[x,y].

For £ € G* the orbit of £ under the coadjoint action of G, that is °

{(expadx)*t:x € G},
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will be denoted O, or O, where m = m; y, p. O; is an affine subspace of G* and has a
natural associated symplectic form ¢ which can be defined as follows: Let n and { be
elements of G* which are parallel to O;. Then there exist y and z in G such that
(expady)*t=Et+17n and (expadz)*&t=E(4+¢. Let o(n, ¢) =<, [y,2]). It can be
easily checked that ¢ is well-defined and non-degenerate.

Given an orbit O of the coadjoint action we shall briefly describe a choice of £ € O,
¥ and V such that the irreducible unitary representation Ty, has a particularly
simple form. Let §=G,® G, where G, D [G, G]. We may assume that an inner
product has been given on G;. It is shown in [8] that there is an orthonormal basis
B={y1,.-- - Vas-+-+Y2as--->,¥Yn} for Gy, depending on O, such that for all £ €O,
(&, 197, Yj+al> = N;> 0 for j < d and <&, [y, 1> = 0 for all other choices of j < k.
Here d =dim O/2. Let V=span{y,,..., ¥4}, V=G, ®span{y;,1,...,yn} and R =
G,®span{¥r441,..-,Yn}. For any £ €0, ®R={x: (& [x,y]) =0, for all y € G}.
Hence if £ and &, are both in O, then £|m = El|m. As shown in [8], thereisa £ € 0
such that if # = m; y, 7, then

a(y;)f(t) = —idf/oy;,  j<d;
(1.2) T(Yir ) () =Nt f(8), j<d;
T(x)f(1) =&, x0f(t), x€EQR.

Here (t,,...,t;) are the coordinates of ¢t € ¥V with respect to the basis {y,,...,y,]).

Let 7 = m; y, p, for V any subspace maximally subordinate to £ (not necessarily of
the form of the preceding paragraph). Let sym w(x) denote the Weyl symbol of the
differential operator w(x). The correspondence between symbol ¢ and operator
Q= qg"(t,D) in the Weyl calculus is given by

Qu(t) = Se“’"‘”q(%s+ Lt,T)u(s)dsdr

where ds = (27) ~*2ds, k= dim V. Since G is step two nilpotent, sym «(x) is a real
valued affine function defined on VX V*. (Hence the Weyl symbol of w(x) is the
same as the standard symbol.)

Define a map y,: VX V* = G* by

Yo (8, 7), x> =symw(x)(¢, 7).

PROPOSITION 1.1. ¢, is an affine symplectomorphism from V X V* onto the orbit
O,.

Proof. Let y = .. If v € Vand w € V, then it follows from the Campbell-Baker-
Hausdorff formula that {J(¢,7),v+w) = (§'(t,7), v+ w) + (§£,w), where

(1.3) W, 7), v+ w) =LE [, wl + 508, 0] + (7, 0).

Thus ¢ is affine with linear part . _
For w € Vdef_inefw € V* by f,,(v) = (&, [v,w]). Since Vis maximally subordinate
to &, {f,,:w€ V} = V*. Hence given (¢,7) € VX V* there is an s € ¥ such that

(1.4) & [s,0]) = = 3<&, [, 0]) +<7,0), forall vEV.
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Then (expad(s+1))*¢=E&+4+y¢'(L,7), so ¥'(¢,7) is parallel to O, for all (¢, 7).
Choosing wy € V so that (&, v) = (&, [v,w,]) for all v € V, we see that ¥(0,0) =
(expadwy)*&£ € O,. Thus ¢,.: VX V*— O,. The bijectivity of y, follows from the
fact that dim O, = 2dim V. For (f,7) € VX V* and (»,19) € VX V* choose s € V so
that (1.4) holds and z € V so that <%, [z, v]) = — <&, [y, v]) + {9, v), for all vE V..
Then

o' (6, 1), ' (y,m) =(& [s+6,y+zD) =L7,9)— (9, D),
so Y is a symplectomorphism. O

Since G is nilpotent we may, and throughout the paper shall, take for Haar
measure on G the push forward via the exponential map of the measure dx on G.
Thus if ¢ € 8(G) and 7 is a unitary representation of G,

() = Sg o(exp x) w(exp x) dx.

DEFINITION. If p € §(G*) and = is a unitary representation of G, define w(p) to
be w(p-log), where

PO =FP) &) = | e~ 0p(&) dt.

PROPOSITION 1.2. For any irreducible unitary representation = = w; v y, the Weyl
symbol of ©(p) is poy,.

Before proving this we show that it yields immediately the fibering of the pseudo-
differential operator calculus for symbols in 8 as described in the introduction.
Given p and q in $(G*), if p#q is the function for which A(p#g) = AN(p)A(q) then
F(p#q)-log= (F(p)-log) * (F(q)log), hence w(p#q) = n(p)w(q). If O is any orbit
of the coadjoint action, let = = m; p,  be a representation corresponding to O. Then

(1.5) phqlo = [(po ¥ ) #(qo¥)] Y7 !

where the # on the right-hand side refers to the composition product of symbols in
the Weyl pseudodifferential operator calculus on V.

Proof of Proposition 1.2. If G is a Heisenberg group the result is well-known ([4],
[12]), at least in slightly different guises. Indeed, if 7 is a one-dimensional rep-
resentation, i.e. O ={£}), then the result is trivial, w(p) being multiplication by
p(£); while, if 7 is a representation satisfying (1.2) with Ay =---=A;=A>0,
and @ and G* are identified with R2*! by means of the corresponding basis
{V1se- s Y20, V1, Vasr11) and its dual, then ¥ (¢, 7) = (7, A, N\) and

w(pelog) = Sef*(b'f“”'b/”p(a, b, ¢)f(t+ a) da dbdc

- §e"f“—~‘>p(r, NS+ £)/2,\) f(s) ds dr.
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For general step two G let R ={x: (&, [x,y]) =0, for all y€ G) and let Gy =
(xER:{£,x)=0]. Then G/G, is either Abelian or a Heisenberg algebra. Let
p:G— G/G, be the natural projection. Define 5 € (G/Gp)* by n(x+ Gy) = §(x),
and let m; = 7, pV.0P- Then « = 7, o p (identifying V and pV’), and hence ¥, = p* yb,,l
By the Fourier inversion theorem, for any x € G and p € $(G*), ]90 D(x+y)dy=
(p°p*) (px), from which it follows that w(p) = m(pep*). Since the proposition is

true for m, it is true for =. ]
2. Classes of symbols. Let | | be a norm on the step two nilpotent Lie algebra
G=G,®G,, where G, D[G,G]. | | will also denote the dual norm on G*. For

Eegrlett’'= £|92. A weight function on G* is defined to be a continuous function
® on G* for which there exist constants ¢> 0 and C 2 1 such that

2.1 |€ —n| <cP(f) implies ®(£) < CP(yn), and
(2.2) c(1+[£D2 < ®(¢), forall £ € G*.

Note that if (2.1) holds, then | —7| < cC~1®(£) implies |£ — 7| < c®(n) which
implies ®(n) < C®(£). Also if (2.1) holds, then |£| < c®(£) implies #(&) < CP(0),

so ®(£) < ¢~ ¢|+ C®(0). Thus (2.1) and (2.2) are equivalent to the following (with
new ¢ and C):

2.1’ |E—9| < c®(§) implies c®(£) < ¥(y) < CP(£),

(2.2)’ c(1+[EDV2 < ®(E) < C(1+|E)).

Note that the definition of weight function is independent of the choice of the norm.
We shall usually assume that the norm is associated with an inner product on G and
also satisfies

(2.3) lx, ¥1] < |x]ly]-

Two weight functions ® and ®, are equivalent if there exist C and ¢ > 0 such that
c®(§) < @,(¢) < CP(¢) for all £. As in [2], given a weight function @, there is an
equivalent weight function & that is smooth and satisfies

@.1)” |d*®(£)] < @' (%),

where d*® is the kth derivative of .
Also, given a norm on § and a weight function &, satlsfymg (2.2)’ there is an
equivalent weight function ®(¢) = ¢~ !®,(£) satisfying

2.2)" (1+]EDV2 < ®(8) < CU+]E).

Given a continuous function p on §*, x € G and ¢ € G*, define D, p(§) by
Dyp(&) =’}in})k"[p(£+hadx*£) —-p(§)],

when the limit exists. Note that D, p(§) is a derlvatlve of p in a direction parallel to
the orbit O;.
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If @ is a weight function on G* we say that p € S™(®, G*) if for every k and every
choice of xi,...,x in G, D, - Dy, p(§) exists and is continuous on G* and
ox(p, S™(®,G*)) is finite, where p; (p, S™(®, G*)) is defined as

k
sup $477()| Dy, + - - Dy p(£)| I [(ad X)) [,

the supremum being taken over all £ € G* and all xy,...,x; € G. Note that if p is k
times continuously differentiable with kth derivative d*p, then Dy, ---D, p(§) =
d*p(t;adxit,. .., adxtE).

If & is equivalent to ®,, then

S"™(®,G*) =S5"(2,,G%).

PROPOSITION 2.1. Let an inner product be given on G with norm satisfying (2.3).
Let & be a weight function satisfying (2.2)". Let w = m; v, be any of the irreducible
unitary representations defined in Section 1, let y.: W=V X V* — O, be the affine
map defined in Section 1 and let ;. be its linear part. For each x € W let g, . be the
quadratic form on W given by

Erx(W) = Y (W)PR(Y,(x) 2

For any real number m, let m_ (x) = ®(Y,(x))". Then in the terminology of
Hormander [31, g, is slowly varying, o temperate, i, is o, g, temperate and g, < g;.
Furthermore the constants ¢ and C in equations (2.4), (2.5), (4.5) and Definition 4.1
of [3] can be chosen to depend only on the constants in (2.1) and (2.2) above and
hence may be assumed to be independent of «. If p € S™(®,G*), then

sup pi(pevy; Sy, £:)) = pi (03 S™(®,8*)),

where py(q; S(7, g)) = sup|d¥q(x; ty,..., )| m(x) " Tl g.(¢) V2

Proof. The last assertion is an immediate consequence of the definitions of the
seminorms py, the fact that each Y, ¢ is parallel to O, and hence for any y € W,
Y. tj=adx}y,y for some x; € G, and the fact that then

d¥(pov) Wity s tg) = Dy - Dy p(Ye ¥).

Also that g, is slowly varying and /7, is g, continuous are immediate consequences of
(2.1)" and (2.2)" above.

Suppose that 7y = g, v, p, and m = g, y, p, are unitarily equivalent. Let W; =
VXV, gj= 1//,,j, g =& and m; = m,, for j=1,2. By Proposition 1.1 there is an
affine map S='S"+ Sy: W, — W,, where S’ is linear and symplectic and §; is con-
stant, such that ¥, = ¢, S. Then g,, (W) = g15x(S'W), g52(w) = g{4,(S'w) and 7, =
m; »S. It is easily seen that if g, is o, temperate and /71, is oy, g, temperate then g, is g,
temperate and /1, is 0,, g, temperate with the same constants ¢ and C. Thus to com-
plete the proof of the proposition it suffices to consider only those representations
satisfying (1.2).
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Let 8 ={y,...,¥n}, V, V, ®, N and £ be as described in the paragraph preceding
(1.2). Let {yf,..., %) be the dual basis on G{. For ¢ € V'let At denote that element of
V with coordinates (A, f,...,Ngy) Wwith respect to the basis {y,...,y4). Define
¢: V— Gt by o(¥)) =y 4. Let Y=, g= g, M= rm,. Then (1.2) implies that

(2.4) W(t,7) =7+ (N + &|a;
so ¥'(t,7) = 7+ ¢(At). Since {y;,...,yn] is orthonormal,

W (6, )P = |7+ NP =L of+ Nt

Thus g, , (£,7) = (|7]*+ | M| (Y (x, 7)) "*and g2, (¢, 7) = (N~ 72+ |1 2 (Y (x, 7))
To prove that g < g7 it suffices to show that

(2.5) N < @(Y(x,m)? forall (x,7) €W, all j<d

Let ¥, (¢, 7) be the restriction of ¥(¢,7) to G,. Since ¥(¢,7) € Oy, Y (t,7) =£|g,.
Thus (Y, (¢,7), [¥j,Yj+q]> = \; for j < d. Consequently, by (2.2)” and (2.3),

N < |2 (4 DIlgeal = W2 (8 D] < 2L, 7))

Thus g < g°.
To prove that g is o temperate, i.e.

g2, <Cgl,(1+g7 (t—x,n—1))*" for some N,
it suffices to prove
(2.6) B(Y(x,7))% < C2RY(1, 7)1+ (W (t, T2 (Ix— t2+ N1 (g — ) P)).
If |y (x, 1) — (¢, 7)[? < c2@(Y(x, 7)), then B(Y(x,n))* < C2®(Y (¢, 7))?; otherwise
2B(Y ()2 < Y n) =y, D= Ax— N>+ [n— 72
<@L, N (x—tP+ N (= 1))
by (2.5). This proves (2.6). The same argument gives
2.7) &(Y(x,7))* < C2R(Y(1, (14 B(W(x, )2 (|x— 2+ N (n— D),
which implies
(2.8) (W) € Cpym(w)(1+ g5, (w—wy))"/2m

for m = 0, while (2.6) implies (2.8) for m < 0. Thus m is ¢, g temperate. This com-
pletes the proof of Proposition 2.1. O

DEFINITION. Given p € $”(®, G*) and a sequence {p;} in S (®,G*) we say that
{p;} converges weakly to p in §"(®,G*), if {p;} is bounded in S™(®,G*) (with
respect to the seminorms p;), and if for all x,,...,x; € G and every compact K C G*,

D,, - - D,, pj converges to Dy -- Dy p uniformly on K.
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Let H(G*) denote the vector space of all continuous functions p defined on G*
with compact support for which D, - D, p exists and is continuous for all
xl,...,inng. :

PROPOSITION 2.2. Given p € S™(®,G*) there is a sequence {p;} in D(G*) con-
verging weakly to p in S"(®,G*).

Proof. Let ¢ € CZ(G*), ¢;(§) = ¢(j'£). Since ®(£) < C, (|| +1) < Cj on the
support of D%¢;(£) =j~|*D%¢(j =), there is a C, such that D*¢;(£) < C,®(£)
for all £ and all j. Thus {¢;p} converges weakly to p in S”(®, G*). O

3. The symbol product. If p € S™(®,G*) and g € S¥(®,G*) it is shown in this
section that there is a p#q € S™**(®, G*) such that A(p)N\(q)u = N(p#q)u (for uin a
certain space of functions containing 8(G)). Theorem 3.3 deals with an asymptotic
formula for p#gq.

Let m = m; y, 7 be any of the irreducible unitary representations described in Sec-
tion 1, let . : VX V* — O, be the map defined in Section 1, and define g, and 7, as
in Proposition 2.1.

DEFINITION 3.1. If p € $™(®,G*), w(p) is the pseudodifferential operator on V
with Weyl symbol peo .

By Proposition 1.2 this is consistent with the previous definition, w(p) = w(p-log),
when p € $(G*). Let g € S¥(®, G*). By Theorem 4.2 of [3] and Proposition 2.1
above there is an element, denoted (poy,)#(g°¥,), in S((m+ k)7, g,) which is the
symbol in the Weyl calculus for the operator n(p)n(q).

DEFINITION 3.2. If p € $™(®, G*) and q € SX(®, G*), p#q is that function on G*
which is defined on each orbit O, by

PHqlo_= (Po¥)#(gey)) oy .

We must first show that for any orbit © the definition of p#q|e is independent of
the choice of the representation m; p  for the orbit 0. If 7 = wg, v, and O, =0,
then x = ¢ 1oy, : ¥} X Vi*— VX V* is an affine symplectic map. Using the formula

atay(x, £) = ms @ (x+72, £+ Oay(x+1, £+ 7) expl2ia(t, 73 2, O} dz di dt dr

given in [3] for the symbol of the composition of two pseudodifferential operators on
V in the Weyl calculus (o being the symplectic form on V' X V*), it is easily seen that
(a1#ay) o x = (a;ex)#(ay°x). Thus p#q as defined by Definition 3.2 is a well-defined
function on G*.

THEOREM 3.1. The map (p,q) — p#q is a continuous bilinear function from
S™(®,G*) x S¥(®,G*) to S™¥(®,G*). Furthermore if p; € H(G*) converges
weakly to p in S"(®,G*) and q; € D(G*) converges weakly to q in S¥(®, G*), then
pi#q; converges weakly to phq in S™*(®,G*).

~ Proof. We begin by deriving some integral formul~as for p#q when p and q are in
D(G*). Note that Proposition 1.2 holds for p € H(G*), thus n(p) = w(p-log),
pig=F~1((pelog * golog) -exp) and therefore
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pHq(n) = Sg Sge""””ﬁ(x)c?(log(exp(—x) expy)) dxdy.
Making the change of variables exp z = exp(—x) expy we obtain
3.1) phq(n) = Xg Sg eftmxtexpad(/20() b (x) § (2) dx dz.

If pis defined on G and y € G let D, p(x) = 4 p(x+ tad yx)|,=o when the derivative
exists. If p € D(G*), then D, Fp(x) exists for all x and y in G and

d .
(D) FD,p(x) = —- | e EPp(E+ tady*E) df

t=0

= dit Se—i(sﬂad(—y)‘s,np(g) dt

=D_,Fp(x).
=0

Let f(n,x,2) =expi{n, x+exp ad(%x)z) and let D), f(n, X, z) denote the result of
applying the operator D, to f as a function of %. Define D,(,, and D, similarly.
Because of the step two nilpotence of G,

Dy(r])f(nyxa z) = i(’?, [J’,x'l‘ Z}>f(n’xs z) = Dy(x)f(n’x, Z) +Dy(z)f(n,x) Z)-

Thus (3.1) and an integration by parts imply that

D, (ptg)(n) = || £(n, %, DID_, p(x) + D_, 4()] dxdz.

It now follows from (3.2) that
(3.3) D, (p#q) = (D, p)#q + p#D,q
for p and g in D(G*).

Applying the Fourier inversion theorem to (3.1) yields

(3.4) pha(n = | | e"1=69p(8) glexpad(fx) ) dxdE.

Given 5 € G*, let ® = {x: {n, [x,»]) =0 for all y € G}. Let G, be a subspace so that
G =Gy ®®R. We may identify G§ with ®*, the annihilator of ® in G*, and ®* with
Gg - Let =9+ 7, with 5, € ®* and 3, € G¢. If x; € &, then

g(expad(3(x+x,))*n) = g(expad(3x) *9).
so applying the Fourier inversion formula on ® and using Fubini’s Theorem, (3.4)

implies

p#q(n)=S K e m=&0p (& +q,)g(expad(ix)*n) dx dt.

5V So

Since O, = G§+ (7}, this can be written as
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(3.5) phat = | | e rE9p(e)q(expad(hx) ) dxdt.

n 7

Integration by parts shows that for any M € N,

3.6 pg(m =| | e ED A+ ) MU= A)MIp(E+m) (L4 [my— £ M]

S6 Y So
X (I—A)Mg(expad(ix)*y) dxdt.

Note that A, g(expad( %x) *1) involves derivatives of g only in directions parallel to
0,. Consequently if M is sufficiently large, the integral on the right-hand side of (3.6)
converges absolutely for any p € S™(®, G*) and any q € S¥(®, G*).

Suppose {p;} € D(G*) converges weakly to p in S”(®,G*) and {q;) € D(G")
converges weakly to g in SX(®, G*). Let O, be any orbit of the coadjoint action of G
on G* and let Y = y,. By Theorem 4.2 of [3], (p;#q;) -y = (pje¥)#(gj° ) converges
uniformly on compact subsets of V' X V* to (pey)#(g-y) = (p#q) -y. Thus for any
orbit O, p;#q; converges uniformly on compact subsets of O to p#q. We want to
show that p;#g; converges uniformly on compact subsets of G* to p#q. To show this
it suffices to show that p;#g; converges uniformly on compact subsets of G* to some
function. But it can be seen that p;#g; converges uniformly on compact subsets of G*
to the function given by the integral on the right-hand side of (3.6). Using (3.3) and
repeating the above argument inductively shows that for any x;,...,x, in G,
D, - - - Dy, (p;#q;) converges uniformly on compact subsets of G* to Dxl -+ - Dy, (pi#tq;).
In particular Dxl- -+ Dy, (p#q) is continuous. Also (3.3) holds for all p € S™(®, G*)
and g € S¥(®, G*).

To prove the second statement of the theorem it now suffices to prove the first
statement, since continuity will imply that { p;#g;} is bounded in SmHE(P, O*) if { p;)
and {g;} are bounded in $”(®, G*)and Sk(®, G*) respectively.

As in Section 2, p; denotes the jth seminorm either in S”(®, §*) or in one of the
spaces S(/7,, g;). Let w be any of the representations 7; y . By Theorem 4.2 of [3]
and Proposition 2.1 above, given i there exist J and C such that

(3'7) p,-(p°¢,r#CI°¢,r;S((m+k);,g,,))

J J -
< C%ﬂj(pc'\br;s(mrr’gw)) %:pj(Q°¢1r;S(k1r’g7r))-

The J and C in (3.7) can be chosen independently of w, since the ¢ and C in (2.4),
(2.5), (4.5), and Definition 4.1 of [1] can be chosen independently of . By Proposi-
tion 2.1

pi(p#q; S™*) = sup pi(pe Y #qe v, S(m+ k)7, g,))-
Thus (3.7) implies
J J
pi(pHq; S™H¥) < CEOZp,-(p;S'") %p,-(q;S"),

which completes the proof of Theorem 3.2. 0
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We wish now to show that A(p#q) = N(p)N(q), but there is a problem in that A(g)
does not map S(G) into 8(G). Therefore we introduce the following larger space of
functions: we say that u € S~ (&, G) if

it=F"Y(u-exp) € N S¥(®,G*).
k

For pe S"(®,G*) and u € S (P, G) define
AN(p)u= F(p#u)-log.

By Theorem 3.1, A(p) : S™%(®, G) = S~ (®, G). We wish to show that this defini-
tion of A(p)u agrees with the original definition, N(p)u = p-log * u, when u € $(G).
This is clear if p € H(G*), since Proposition 2.2 holds for p € D(G*). If p€
S™(®,G*), let {p;} be a sequence in D(G*) converging weakly to p in S™($, G*).
Then p;#ii = (p;jolog*u)~ converges to (pelog*u)~ in 8*(G*) as j— . By
Theorem 3.1 p;#@1 converges uniformly on compacts to p#ii. Hence F(p#i1)-log =
Delog *x u, for u € 8$(G).

PROPOSITION 3.2. If p € $"™(®,8*) and q € S¥K(®,8*), then Np#q)u=
ANpPINQQ)u for all ue S~ (®, G).

Proof. The # product is associative, so N(p#qg)u = F(p#qtii)-log = Np)N(g)u.
O

Let V and V] be finite dimensional vector spaces, W= V@ V*, W, =V,®V}", and
let ¥ be an affine symplectic map from Wto W;. For F= F(x, £;y,m) € C*(W® W)

let 2 2
o(DF=L ( agfay, - axfan,- )F'
Then o(D)(Fo (¢ X ¢)) = (a(D)F) X , and consequently,
(3.3 a(D) (Fe (¥ X)) = (a(D)*F)e (Y X )
for all k € N. For fand g in C® (W) let
(/,8)j(x, §) = a(D)Y(f®g)(x, £;x,§).

(3.8) implies that

(3.9) {f°¢,g°¢}j={fag]j°¢-

Note that {f, g}, is the usual Poisson bracket and { f, g}, = fe.
Let p € S™(®,G*) and g € S¥(®, G*) and let O be an orbit of the coadjoint action
of G on G*. Let w = m; y, p where £ € O. Define { p, g}; on O by

(P, @)jlo = (PoYa,qova)jo vl

Proposition 1.1 and (3.9) imply that { p, g} ilﬂ is defined independently of the choice
of the particular representation w corresponding to the orbit O. The asymptotic
expansion for the symbol of a composition in the Weyl calculus (Theorem 4.2 of [3])
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should therefore yield the following well-defined asymptotic expansion in our
calculus:

phg~ X 2D~ p,q}; /).

We wish to obtain estimates for the remainder

(3.10) f1=p#q—§ (2i)~{p,q);/1j!.

LetteG* letr=n;ppandlet Yy =yY,, g=g,, m=m,, k = k, be defined as in
Sections 1 and 2. According to Theorem 4.2 of [3], r;ey € S(mkh’ , &) where
h(x,m)?=supg, /g,

Using the coordinate system introduced in the proof of Proposition 2.1 and the
formulas given for g, , and g7, just after equation (2.5) we obtain

h(x,m)% = @(Y(x,m) " sup( 72+ NP /(N7 P+ 1)
= ®(Y(x, 7)) " max|\;%
j<d
Here N\; = (¢, [¥;,)j+4]) where y; and y;, 4 are certain unit vectors in G as in the
paragraph preceding (1.2). Using (2.3) we see that max|\;| < |£’[, where ¢’ = £lg,-

Thus
h(x,n) < ®(¥(x, 1)) "2|E"].

The techniques used to prove Theorem 3.1 can be applied again to prove the
following:

THEOREM 3.3. Let p € S™(®,G*) and q € S¥(®,G*). For J€ N define r; by
(3.10). Then given M € N there is a Cyy such that

Dy, -+ - Dy, 1 (E)| < Cug £/ B(£)mHH~2 MHladx*EI
SJorall £ € G* and all x,,...,xy €G.

Note that if £'=0, then O; = {£}, which implies that p#q(§) = p(£)q(§) and
hence r;(£) =0 for all J € N.

If x is linear on G*, i.e. if x € G, and A is the left regular representation of G, then
A(x) as defined by AN(x)u = (Fxe-log) * u is the same as AN(x) as defined by (1.1).
Also if m = m; y, p, then w(x) as defined by Definition 3.1 is the same as w(x) as de-
fined by (1.1). If x; and x;, are in G, then Proposition 3.2 and Theorem 3.3 imply that

AxX2) = MxDNX) + FINEX], x2))
is a right invariant partial differential operator on G and
T(X1X) = w(x) (X)) + ir({x), x}).

Proceeding by induction and making use of the Birkhoff-Poincaré-Witt Theorem it
follows that:
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PROPOSITION 3.4. The map p — P = N(p) is a bijection from the vector space of
polynomial functions on G* onto the space of right invariant partial differential
operators on G. If w is any of the representations ;v y then w(p) as defined by
Definition 3.1 is the same as the operator w(P) (as defined, say, in [10]).

4. L? boundedness.

THEOREM 4.1. If p € S%(®, G*), then there is a C such that ||N(p)u| < C| u| for
all u € 8(G), where || | is the L* norm.

Proof. Let = be any of the irreducible unitary representations m; y p. If p€
D(G*) and u € S(G),

4.1) T(Mp)u) = w(pelog % u) = w(pelog) w(u) = n(p)w(u).

By the Plancherel Theorem for G there is a measure ¢ on the set of equivalence
classes of irreducible unitary representations of G such that

@.2) lul? = { |z dn, ueL2(G),

where || || is the Hilbert-Schmidt norm on the Hilbert space of the representation .

By Proposition 2.1 n(p) € S(1, g;) for all 7= 7, y p, with seminorms indepen-
dent of 7w and where the constants in (2.4), (2.5), and (4.5) of [3] are independent of
w. By Theorem 5.3 of [3] there is a C independent of 7 such that

(4.3) I=(p)¢ll < Clloll,

for all ¢ € L2(V,). By (4.1) | m(Mp)u)o| < C||w(u)é]| for all u € $(G) and ¢ €
L*(V,). Summing over an orthonormal basis for L?(V,) gives ||m(N(p)u)| <
C||w(u)||, where C is independent of =. It now follows from (4.2) that if p € D(G*),
then there is a C such that | w(p)u| < C|lu||, for all u € $(G).

If p is an arbitrary element of S°(®, G*) and {p;} in D(G*) converges weakly to p
in S°(®, G*), then there is a C such that | A(p;)u|| < C| ul| for all u € $(G) and all
J, for the C in (4.3) can be chosen independently of p for p in a bounded subset of
SO%(®,G*). For u € $(G), hence it = F~!(u-exp) € $(G*), it can be seen using (3.6)
that p;#@ converges to p#ir in L2 Hence N(p;)u converges to Mp)u in L?, so
Nl < Clul. 0
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