DISTORTION OF THE BOUNDARY
UNDER CONFORMAL MAPPING

Robert Kaufman and Jang-Mei Wu

1. Introduction. Let Q be a simply connected domain and a be a point in Q. It has
always been interesting to study the relation between the harmonic measure wd on 92
with reference to @ and the «¢-dimensional Hausdorff measure m, on 9(2.

We recall that in case @ is a Jordan domain and fis a univalent conformal mapping
from the unit disk A onto , together with its continuous extension to dA, satisfying

f(0) = a, then w§(E) is nothing but % -length of f~1(E). If Qis a Jordan domain

with rectifiable boundary, F. and M. Riesz [17; p. 293 vol. I] proved in 1916 that w§
and m; are mutually absolutely continuous. This is not true for @ with nonrectifiable
boundary. In [7; p. 830 and p. 18 in the translation] M. Lavrentiev constructed a
Jordan domain 2, and a set £ S 99 of zero length and of positive harmonic measure.
In [8] Lohwater and Seidel constructed a Jordan domain £ whose boundary meets a
line segment in a set E of positive length and zero harmonic measure with respect to
Q. In [10] McMillan and Piranian simplify the original proof of Lavrentiev and give a
stronger version of the result.

THEOREM (McMillan and Piranian). There is a Jordan domain Q and a set
E<S09Q, so that m(E) =0 but w§(E) =1. Moreover, every univalent conforinal
mapping of the unit disk A onto S has a power series absolutely convergent on A.

For a general simply connected domain @, @ € Q and a Borel set E € 312, it follows
from Beurling’s projection theorem [1] that m;,;(E) = 0 implies w§(E£) = 0. The
example by Lavrentiev or McMillan and Piranian says that m;(E) = 0 does not
imply w§(E) =0.

QUESTION A. Whether m,(E) = 0 for some 1 < o <1 implies that w§(E) = 0.

Towards this long standing question, Carleson has proved the following
theorem [2].

THEOREM (Carleson). (A) There exists a number 3, 3> %, so that if E is a subset
of the boundary of a Jordan domain  and if mg(E) = 0 then w{(E) =0.

(B) If h(t) =texp{(log %)‘}, 0<e<l, then there exist a Jordan domain Q and
E < 0Q with w§(E) > 0 and the h-Hausdorff measure A, (E) = 0.

For the definition of A-Hausdorff measure see [14]. When o > 0 and A (¢) = ¢, A,
is the a-dimensional Hausdorff measure which we have denoted by m,,.

Because the original proof of Carleson’s Theorem (B) is difficult, we give a
simpler, constructive new proof. Our construction leads to a result slightly stronger
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than both McMillan and Piranian’s Theorem and Carleson’s Theorem (B), namely,
we consider a bigger 4 function for A;, and require 9 to be a quasi-circle.

THEOREM 1. There exist a Jordan domain €} whose boundary is a quasi-circle, and
a set F S 0Q so that for any A> 0, A, (F) =0, where h(t) =t exp{ A (log 1)"/?} and
wd(F) =1, for a € Q. Moreover, every univalent conformal mapping of the unit disk
A onto Q has a power series absolutely convergent on A.

We also show that this cannot happen if dQ is required to be starlike, namely

THEOREM 2. If Q is a starlike domain and E S 0Q, then m,(E) = 0 implies that
wd(E) =0.

However, we can construct a Jordan domain © and a set F < dQ having all the
properties in Theorem 1, and Q nearly starlike in a certain sense; see Theorem 4. We
also obtain some other results on the relation between m; and w§ on the boundary of
a starlike domain.

Towards Question A, for a specifically situated set E, (dksendal has proved the
following [12; p. 471]:

THEOREM (@ksendal). Suppose D is a simply-connected domain, a € D. Let K be
a subset of 0D, and assume that there exists a straight line L such that K S L. Then
m(K) = 0 implies that w}H(K) = 0.

The question that he left open is

QUESTION B. Can the straight line be replaced by other curves in the above
theorem?

In view of Theorem 1, the above theorem does not hold if L is a quasi-circle,
however, it holds when L is quasi-smooth.

THEOREM 3. Suppose D is a simply-connected domain, a € D. Let K be a subset
of D and assume that there exists a quasi-smooth curve L such that K € L. Then
m(K) =0 implies that w}H(K) = 0.

2. Harmonic measure on quasi-smooth curves. A rectifiable Jordan curve L in C
is called quasi-smooth if there exists M < oo so that for any x,y € L
2.1 m (the arc in L\{x, y} with smaller diameter) < M|x— y|.

A Jordan curve L is called a quasi-circle if there exists M < oo so that for any
x,y € L, min(diameters of the two arcs L\{x,y}) <M|x—y|.

A Jordan domain Q is called an (e, ©) domain if whenever x, y € € there is a recti-
fiable arc vy € joining x to y and satisfying

2.2) m(y) < e|lx—y| and

|x—z||y—2z|
elx—y|

2.3) dist(z,dQ) = forall ze€«.
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Clearly a quasi-smooth curve is a quasi-circle. L is a quasi-circle if and only if the
two simply connected domains complementary to L are (e, o) domains for some
e > 0 (see [6] and [9]); in fact ¢ depends only on M.

We denote by A(a,r) the disk {|z—a| <r}. From now on, we let L be a quasi-
smooth curve, Q; or Q, be the interior or the exterior of L respectively, M the constant
associated with L in (2.1); and use ¢ and C to denote constants depending only on M.
It is immediate from (2.1), (2.2) and (2.3), that there exists ry < diam L/(16M?),
depending only on M and diam L, so that for any a € L, 0 <r<ry, we can find a
point A= A(a,r) € 2, where @ =Q, or (,, satisfying

2.4 A € A(a,Cr)\A(a,2r) and
2.5) Clr<dist(4,L) <Cr

for some constant C > 2. Also there is a circle |z — P| = diam L/ (16M?) that is com-
pletely in Q.

Let D be a regular domain. The unique Borel probability measure on dD, denoted
w?%, such that for all continuous functions f on 3D, the solution of the Dirichlet prob-
lem Hf(z) = {3p f(W) dw, (W), is called the harmonic measure on dD, evaluated at z.
See [4; p. 165] for definition of harmonic measure on the boundary of general
domains.

Let = Q, or 2,. We quote two properties of the harmonic measure wg from the
work of Jerison and Kenig [5], where a domain whose boundary is a quasi-smooth
curve is called a chord-arc domain.

THEOREM A. (A, property of wg). For any 0 <e < 1, there exists 6, 0 <6< 1,
depending on M only so that ifa€ L, 0<r<ry, I'=A(a,r)NL and E is a Borel
subset of T, then

m(E) _ . «i(E)

my(T) oF(T) ~°

Sfor any X € Q\A(a, 2r).

THEOREM B. (Doubling property of wg). Suppose a€ L, 0<r<ry and X €
Q\A(a,2r). Then there exists a constant C depending on M only, so that
wi(A(a,r)NL) < Cof(A(a,r/2)NL).

Theorem A is basically Theorem (2.1) in [5]. We state it in a slightly stronger form
by combining statement (2.2), Lemma (2.5), and the proof of Theorem (2.1) in [5].

Theorem B is the combination of Lemmas (4.8), (4.9) in [5] and Harnack’s
inequality.

LEMMA 1. Let Q=Q, or Q,. Supposea€ L, 0<r<ry, A=A(a,r) as in (2.4)
and ES LN A(a,r). If my(E) 2 r/2 then o (E) > ¢ > 0 for some constant c.

Proof. When Q = Q,, the proof follows from the case @ = Q, by a reflection of C
with respect to the circle: |z— P| =diam L/(16M?2). Hence we may assume 2= Q,.
From Theorem A, we conclude that for any 0 <e <1, there exists §, 0<6<1,
depending on M only so that whenever I'=A(a,r) NL for some a €L, 0<r<r
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and FE is a Borel subset of T', then

m(E) _, _ of(E)

2. —_—
(26) my(T) o) €

for any X € Q\A(aq,2r), or

Wi (E) _ _ mi(E)

2.7 —_—
@7 W (D) %7 Tmy(I)

<8,
where a=1—¢e¢ and §=1-6.
Because A € A(a,2r), Lemma 1 follows immediately from (2.7)if B<1.1fg> 1,
we shall use Lemma 2 to reduce 8. The difficulty occurs when I' is not a connected set.
Let 7 be the shortest subarc of L that contains A(a,r) N L, v be a subarc of 7and E
be a Borel set on y. We claim that for any ¢’ > 0, there exists §’, 0 <’ <1, depend-
ing on @ and P so that

m(E) _,,_ @4(E) _
my () of (1) "

2.8)

From (2.1) we can find two disks A(b,p;) and A(b,p,) with b €y, p;=diamy,
p, = diam v/ (16M?) and satisfying

2.9 Fy=A(b,p) NLEYy S A(b,py)NL=T,.
By (2.1) again there exists a constant C; > 0, so that
(2.10) Cr'm(Ty) < my(y) < Cymy(Ty).

By (2.2), (2.3), (2.4), (2.5), (2.10), the Harnack principle and Theorem B, we can find
a constant C, > 0 so that

(2.11) wf (T)) € Gyof (T) < Cyof (7)),
(2.12) wf P (E) < Cywf (E) and 0§ (T') < Gw§®P) (E).

Given ¢’ >0, let e=C;3’, 8 =6 be the number depending on e as chosen
in (2.6). If m(E)/m;(vy) <é’, then m;(E)/m (")) <é by (2.9). 1t follows from
(2.6), (2.11) and (2.12) that

A A(b, py)
wi (E) 3 wh PV (E) 3_ .,
— < <eCs=
wf () g ey T
This proves (2.8), which implies that
§(E E
@.13) wf (E) , . mi(E) <pB

o () % T Tm(y)

where o’ =1—¢’ and B8’ =1—-6'. Because harmonic measure and m; measure are
mutually absolutely continuous on L [5], using arc length as the parameter and
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applying Lemma 2 n-times, we obtain

wf (F) <<a'>2"ﬁ my (E)
wf () 2 my ()

The set E in our lemma satisfies m(E)/m(I) = (r/2)/(2rM) =1/(4M); letting n =
[log(log(4M)/(—log )] +1, y=1I in (2.14) we conclude that w§ (E)/wf (I) >
¢ > 0 for some constant c. By [5; Lemma 4.2)], wd (I) = wf (LN A(a,r)) >.c> 0 for
some constant c¢. Hence w§ (E)>c>0 for some constant c¢. This completes
the proof. O

(2.14) <B?.

LEMMA 2. Suppose » is a Borel measure on an interval I, which is mutually abso-
lutely continuous with respect to m,. Suppose there exist 0 < a <1, 0< <1 so that
Sor any Borel set E and subarc v, satisfying ESy <1,

W(B) _ _ m(E)

2.15
(2.15) w(y) * my ()

<B.

Then

w(E) < o’ _, m(E)

2
o 2 " T <P

Proof. The technique used in this proof is borrowed from Calderon-Zygmund
decomposition [16; p. 17]. Suppose

2
2.16) W(E) < O‘CTw(v).

We subdivide vy into two subintervals of equal w-measure. If there is a subinterval v,
on which w(ENy’)/w(y’) 2 a/2, we select v’ in our collection S. Subdivide each
remaining interval into two subintervals of equal w-measure. Select each subinterval
v’ with the property

EN~y’
@.17) ENY) o

w(y’) 2
Continue this process indefinitely or stop at a finite step if the w-measure of E in each
of the remaining intervals is zero. Write S = {+v;]}, where v;’s are mutually disjoint.
By a variant of Vitali’s theorem

(2.18) (U y,NE) = w(E).

For each v’ in S, there is an interval v” containing +’, with w(y”) = 2w(vy’), so that
W(ENy")/w(y”) < a/2. Therefore

W(ENy') _ o(ENY")  wly”)
o(v) T wly”) w(v’)

<—g—-2=a.

Hence

(2.19) my(ENy’) <Bm(y").
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By (2.16), (2.17) and (2.18), (a/2) Lw(y;) S w(Uvy,NE) =w(E) < («?/2)w(y), which
says that w(Uv;) <aw(y). By (2.15), we have m;(Uv;) <Bm;(vy). Combining
with (2.19) we see that m;(Uvy;NE) < 82%m,(y). Because w(E\NU~;) =0, by
absolute continuity of m, with respect to w, m;(E\U ;) = 0. Therefore, m,(E) <
B2my (v). g

3. Proof of Theorem 3. Let 2, and {2, be the interior and exterior of L respectively.
We let J=LND, D;=DNQ; and w*(E) = wh(E), wf(E) = wh (E) for i=1 or 2.

Let x be any point in D; (i =1 or 2). Then by the Poisson integral in D;, o*(K) =
fruk w*(K) dwf(z). Because D; € ©;, by the maximum principle and the F. and M.
Riesz Theorem, we have w/(K) < wﬁi (K) = 0. Hence,

G.1) W (K) = SJwZ(K) do? (2).

Suppose we can find a constant 8 <1 so that
(3.2) w(K)<pB<1 forevery z€J.

Then by (3.1) and (3.2), we have w?(K) <8 <1 for every a € D. This is possible only
when harmonic measure of K is zero with respect to D.

To complete the proof of the theorem, we need only to show (3.2).

For a fixed z € J, let J, be the component of J that contains z and let a, b be the
end points of J, so labeled that |@—z| < |b—z|. Let M be the constant associated
with the quasi-smooth curve L, r=min{|z—a|/(16M),ry}, A, =A(z,r), C,=
{w:|w—z| =r}. It follows from the definition of quasi-smoothness that

(3.3) A(z,4r) N (L\J) = @.

By the properties (2.2) a}nd (2.3) of Q;, there are a number 8, 0 < § <1, depending on
M only, and subarcs T, of C, in {; such that

(3.4 m(T}) =arxr  and
(3.5) dist(T7,L) > ér.

We denote T} U T2 by T, and observe that TN D, =@, T)ND; =@ and T,NL = 3.
However, T, or A, may meet D€,

For z € J, by (3.4) and the maximum principle, and the fact, following from (3.3),
that aDNKNA(z,r) = O,

(3.6)

wZ(K)sSCHDwW(K)dwgz(w)sl—a+% sup w"(K)+ = sup  w”(K).

: wET,ND, 2 weT,ND,

Because T,NL = @, we have T,N D= (T,ND,) U (T,ND,). Suppose we T, N D,
then by (3.1)

(.7) w"(K) = SJw"(K)dw,-W(x).
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Suppose we can prove that there is a constant 8y < 1, so that

(3.8) Mini sup w'(J), sup wi”(J)} < Bo-
wET,ND, wET,ND,

Letting 83 =1— (a/2) + (afy/2), we conclude (3.2) from (3.8). Now it remains to
show (3.8).

Let w be a point in T, N D;. Let V be the component of D\(L\J;) that contains z.
V is simply connected.

First, we assume that wis not in V. We see from (3.3) that A(w, 2r) N (L\J,) = &.
Let D,, be the component of D; that contains w. D,, is simply connected and

(3.9) aD,NLNA(w,2r) = 2.

Therefore, there is a cross cut iy in A(w, 2r) that separates w from z; and y S D, \L.
Hence, by (3.9), the maximum principle and a solution to the Carleman-Milloux
problem [11; p. 107] we obtain wp_ (3D, \L) > 5, > 0 for some absolute constant 7,.
Hence,

(3.10) wi"(dD\J) 2 wp, (3D, \L) > 5> 0.

Next, we assume that w € V, VN D, is simply connected and ¢(D; N V) is formed
by disjoint arcs {J; ;}; of J of maximal lengths and a closed subset of 3D. By the
maximum principle,

wl'(J) = w;s,.ny(u J,-,,-) < wa:.(u J:,j)-
Jj j
Let S; = L\U; J; ;. We have
(3.11) w’ (3D \J) 2 wg (S;).

By the simple-connectedness of D, each point y € J\J, can be a boundary point
of, at most, one of the regions D; NV or D,N V. This says that (U;J, ;\J;) N
(UJJ2.J\JZ) =g or

(3.12) S US, =L\J,.

Recall that a is one of the end points of J, on L. It follows from (3.2) that
(3.13) mi(ACa,r)NS;) =2r/2 or

(3.14) m(A(a,ryNS,) 2 r/2.

Let iy be the index of S for which (3.13) or (3.14) holds. From (2.2), (2.3), (3.5),
(3.11), (3.13), (3.14), Lemma 1 and the Harnack principle, it follows that

(3.15) w0l (ADN\) 2w (S) > 12> 0

for some constant 5, depending, at most, on M and r,. Letting 8y =1 —max{y;, 15},
we conclude (3.8) from (3.10) and (3.15). This completes the proof. 0

4. Proof of Theorem 1.

LEMMA 3. Given a sequence of integers 0 <n, <n,<---, let f and fy be the
analytic functions on A = A(0,1) satisfying f(0) = fy(0) =0 and
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@4.1) f(2) = exp<e k;:_oJl zznk>

N n
4.2) Sa(z) = exp(ekz_)l z? k).
If 0<e<1/16, then f and fn are univalent, 3f(A) is a quasi-circle and dfn(A) is
analytic.

Proof. 1t is a result of Becker [13; p. 172 and p. 294] that if f'(0) # 0 and
(1—|z|»1zf"(2)/f'(2)| < 1, z € A, then f(z) is univalent in A; and that if £(0) =0
and f'(0) =1 and

4.3) (1= [z |zf"(2)/f' ()| < k<1, ZEA

then df(A) is a quasi-circle.
To prove this lemma, we need only to show (4.3) if 0 <e< 1/16.

zfﬂ' ( z) oo ke ] 1
- =le ) 2%z?"| <2 "< .
S (2) kzz:l Emgl 12l 4(1—|z}%)
This proves (4.3). Similarly we can prove (4.3) for fy, and these inequalities give the
lemma. a

LEMMA 4. Let 0<nm <ny<ny<---, and f, fn be the same as in Lemma 3. If
0<e<1/16, then for z,w € A,

4.4 I/ ()] <—|z])7 <1 —|z])7V?,
<=z~ < —|z])"Y*  and
4.5) |f(2) — f(w)]| < 25|z—w|?3, |fn(z) — fn(w)| < 25|z—w[?3
|f(z) —f(w)| < 25[z—w|'2,  |fn(2) —fn(W)] < 25|z—w]V2
Proof. Let z = re® and obtain
o 1

log|f'(z)|<se L r2<2e §© < —log——.

k=1 m=1 m 3 1—|z|
Hence, |f'(z)| < (1 — |z|) ~V3. The proof of the second inequality in (4.4) is similar.
(4.5) follows from (4.4) by a classical theorem of Hardy and Littlewood [17; p. 263
vol. I}, the constant 25 can be found by straightforward calculation. |

LEMMA 5. Let 0<e<1/16 and fy, f be the functions defined in Lemma 3.
Given 7, 0<% <1/4, there is a number K(n) =20+ 6log(1/n) so that if ny >
max{ny,K(n)} then |fyy—f| <n uniformly on |z| = 1.

Proof. Because 0 < e < 1/16, by Lemma 3, f and fy can be extended to be homeo-
morphisms on A. Suppose ny,; > max{ny,K(n)} and r =1 — 52/10000. It is easy to
check that r2"*'< p<1/4 and e L., r¥"¥ < 1/48. From Lemma 4, it follows that
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[n(e®) — ()] < | fn(e®) = fn(re®)| + | fu(re®) — f(re®)| + | f(re?) — f(e?)]
<SOVI—r + 50 I (te®®) — £ (1e™) | dt

< —"2—+ Sr | [ (re™)] l—exp(e z (te"")z"") dt
0 k=N+1
n AP i0 2N +1 U] 1
< = ®y| dt-2 < —+— <7
> +S0|fN(te )| dt-2er > + g <7 O

Proof of Theorem 1. Fix a sequence of integers 0 < n; <n, <n; <---, such that
on an infinite subsequence ny;, we have

(4.6) , 2N> ny
4.7) Ay > max{ny, K(10~Y))

foreach N=N;, j=1,2,..., where K(n) =20+ 6log(1/9). Such a sequence can be
constructed explicitly as the sequence of integers in the following blocks:

1,[40,2-40—1]1,[40%,2-40%—1],[40%,2-40°—1],...

By the central limit theorem on lacunary trigonometric series of Salem and
Zygmund [15; p. 333], it follows that for any Borel set F < [0,27), with m, (F) > 0,
—o < x< 0,

N
(4.8) my{0 € F: ) cos(2"0) < xNN/2 } = a(x)m(F), N> o,
1

where a(x) is the Gaussian distribution with mean value 0 and variance 1; we note
that 0<a(x) <1.Let 0<e<1/16.

N
4.9) Ey=1{06€[0,27) :k);l cos(2%0) < —3(A+1) VN/e}

By (4.8), m(EN) > 0, for large N.
Define f and fy as in Lemma 3. Let @ = f(A),

(4.10) E= N UExn
m=1j=m

From Lemma 3, we see that a9 is a quasi-circle and f can be extended to a homeo-
morphism on A. From Lemma 4, we see that fand fo Tare in Lipschitz class A,,;, for
any Mobius transformation of A onto A. It follows from a theorem of S. Bernstein
[17; p. 240 vol. 1] that f and f T have power series converging absolutely on A.

We claim that m,;(E) = 2=. Otherwise, the set ®= {0 € [0,27) : 0 is in finitely
many E, s} has positive m; measure. Hence, for some integer i, the set &;=
f6e[0,27): 0¢EN, J 2 i} has positive m; measure. Applying (4.8) to F= rb,,
x=-3(A+ 1)\/—_/6, we can easily get a contradiction. This proves that m;(E) = 2=.
Because f is a homeomorphism on A, by the conformal invariance of harmonic
measure, wq(f(E)) = 1. Let F= f(E); it remains to show that A,(F) =0
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For each integer N, consider a covering Sy of Ej by those intervals I,, of the form
2m(m—1)4"N < 0 < 2mw4~" that meet Ey. There are most 4" of them. For any
positive integer J, U;», SN is a covering of E by (4.10), hence, U;, U,eSN f) is
a covering of F.

Let N= N, for some j 21, § € Iin Sy. There is a point §, € IN Ey. Hence,

N N 27 d N
Y cos(2"0) < Y cos(2™0y) + —77 sup| —— X cos(2"0)
k=1 k=1 4 1| do ¥=

< —3(A+1)VN/e+ %2 2mN

< —3(A+ 1) VWN/e+4dr < —2(A+1) VN /e.

In the above inequalities we used (4.6) and (4.9). Therefore, |f¥(e®)| < e~2A+NVN,
which shows that m, (fy(1)) <274~Ne=2(4+DW _From (4.7) and Lemma 5, we see
that |fy(e®) —f(e®)| <10~". Hence,

diam(f (1)) < 274 Ne=2A+DVN 4 5 10~N < 4=N+3,-2(A+DVN

for sufficiently large N.
For large integer J, we have

8

Ay(F)< ¥ Y diam(f(I)) exp(A|logdiam f(1)|"/?)

=JI€S,
Jj= N;

< ¥ aNi(47N+3e 24+ DNy exp(AVlog (4N —3e2 4+ VR, )

< e“/ﬁf

W 3
\M 8 ~

J

Letting J — oo, we obtain A, (F) = 0, which implies that m,(F) = 0. This completes
the proof. O

5. Harmonic measure on starlike domains. First we give the proof of Theorem 2.
Let the origin be the center of the starlike domain Q, and f: A — Q be a univalent
function with f(0) = 0. Because (2 is starlike about 0, we have [13; p. 42]

zf (z)
f(z)

Hence, by a theorem of Lusin and Privalov [17; p. 253, vol. I}, zf"(z)/f(z) has non-
zero nontangential limit /7; — a.e. on dA. Because f({ % < |z] <1}) omits a neighbor-
hood of the origin, by a theorem of Plessner [17; p. 203, vol. II], f has nonzero non-
tangential limit m, —a.e. on dA. Hence, f’(z) also has nonzero nontangential limit
m;—a.e. on dA. Let S be a set on dA with m;(S) = 2x, on which fand f’ both have
nonzero nontangential limits.

Let G be any compact subset of f(S) N E. Let T, be the smallest convex set con-
taining |z| < 1 and having e’ as a boundary point. Given any ¢ > 0, by the Egorov
theorem there is a compact subset F of f~1(G), so that m,;(f~1(G)\F) <eand f, f’
converge uniformly as z € U= U, s Ty approaches F. Hence, f can be extended to

a C! function on U [17; pp. 199-201, vol. II]. Because U is a Lipschitz domain, by

>0.
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the Whitney extension theorem [16; Chap. VI] f can be extended to a C! func-
tion g on C. Suppose m(F) >0,

0< Ll g(;g(e"*) db < m(g(F)) =m(f(F)) € m(E)
which contradicts the assumption m;(E) = 0. Therefore, m,; (F) = 0. Since ¢ is arbi-
trary, m,(f ~1(G)) = 0.

Suppose u(w) = wd(G) >0 for w € Q. Let v(z) =u-f(z) on A. We must have
v> 0 on A. Suppose v has positive radial limit at some point e” € S. Because f has
radial limit at e?®, u(w) has a positive limit as w — f(e'®) along the image of the ray
0,e?®. This is possible only when f(e) € G, because G is compact. Hence,
e’ € f~1(G). However, m;(f~'(G)) = 0, which implies that v = 0, a contradiction.
Therefore, wq(G) =0, and thus wq (f(S)NE) =0.

Arguing as in the last paragraph, we can show that wgq(E\f(S)) =0. Hence,
wq (E) = 0. This completes the proof of Theorem 2. O

It is pointed out to us by J. Brennan and Chr. Pommerenke that Theorem 2 also
follows from McMillan’s Nontwist Point Theorem {13; p. 326].

Suppose §2 is a starlike domain. Theorem 2 says that sets of linear measure zero on
dQ must have harmonic measure zero. We can think of @ as a domain so that 9{2
meets each line in a certain family ¥ = {lines passing through the center of 2} at
exactly two connected components. In this sense, dQ is not too big. Parametrizing
lines on § by 6, where 0 < 0 < 7 is the angle between / and the x-axis, we denote lines
in § by /;. Simple examples show that there exists starlike domain £2, so that
m; (32N ) > 0 on a set of # with positive m; measure. In this sense, dQ is not too
small.

Given any Hausdorff measure A, with 7(¢#) t, 7(0) = 0, we call a simply connected
domain Q nearly starlike corresponding to 7(¢) if A, (a2 N /) = 0 for every line / in the
complex plane.

In general, the boundary of a nearly starlike domain Q can be bigger than that of a
starlike domain regarding the number of components of /N a2, but much smaller
than that of a starlike domain regarding the Hausdorff measures of /M 3Q2. We ask
whether a set F on the boundary of a nearly starlike domain with zero m;-measure
must have zero harmonic measure. The answer is negative and we have the following
example.

THEOREM 4. Given any increasing function 7(t) for 0 < t < oo with 7(0) = 0, there
exist a Jordan domain Q and a set F < 8Q with all the properties in Theorem 1, and

5.1 A (INAQ)=0
Sor every line l in the plane.

QUESTION. Is Theorem 4 still true if we require (5.1) to hold for all curves / with
some uniform smoothness property, for example C? or real-analytic?

A closed set of Hausdorff measure A, zero for every increasing 7 with 7(0) =0,
must be countable, [14, p. 67].
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QUESTION. Can we find a Jordan domain , a set F € 32 with all the properties in
Theorem 1 and yet 32N/ is countable for every line / in the plane?

Proof of Theorem 4. Suppose finite sequences 0 <N; <N, <---<N; and
0<n <ny<---<ny, are found so that

(5.2) 2]Vj+l>an+l
(5.3) n,\,j+1>max[an,K(mvj)}, where K(n) =20+6log(1/9),

for 1 £ j< J—1 and given TN, 1<j<J-1.
Let N= N, and fy be as in (4.2). We shall define N;,; and ny, N;+1< k< Ny, ;.
Since dfny(A) is analytic, we can subdivide dfy(A) into P = P(N) arcs so that any
subarc I'=T'(p), 1 < p< P(N), after a rotation if necessary, can be represented as
the graph of a real analytic function: y = g(x), a< x< b and

5.4 lg’(x)| <2, asx<b.
Because dfy(A) is not a line, g(x) is not linear. Hence, g” has, at most, finitely many
zeros on a < x< b; call them x,,,, 1< m< M= M(p). Let xo=a, xp+1=b. Given

7 > 0, the exact size to be determined later, let S = {z: dist(z, S) < n) for any set S.
For any given line /, we shall study the set /N I'". In case / is a vertical line

(5.5) m(INT7) < 2.

So we shall assume that / is defined by y = Ax+ B. Choose ¢ > 0 so small that the
arcs v,, =g((x,, — ¢, x,, + ¢) N [a, b]) are disjoint, the exact choice of ¢ be deter-
mined later. There exists 6 > 0, such that

(5.6) [e”(x)| >8>0 on TI'\[y,}ML.

Let 7, be the components of I'\{vyo,v1,-.-,Yar+1}. Itisclear that U,, vy, U U, 71 =
rm.

From (5.4) it is clear that
;.7 diam(/N~},) <4c+2q.

To estimate /N 7]} we consider points (x, g(x)) on 7,, whose distances to the line / are
at most 7, that is |g(x) —Ax— B| <n(1+ A2)1/2. We suppose first that |4| > 3, so
that |g’(x) — A| is never less than [4]/3 but (1+ A2)!/2 < $A4. Hence, by the mean-
value theorem, the set of x’s in question is an arc of length <8%, and

(5.8) diam(73N 1) <34y, if |A4|>3.

If |A4| < 3, we divide the arc 7, into three arcs (some may be void), defined by the
inequalities (i) g’'(x) —A< —(18)"2, (i) |g’(x) —A| < (#6)"2, (i) g'(x) —A >
(76)'/2; we call the arcs 7y, 742, 7n3. The set of x’s in 7,,; has length <2526 ~1/2; for
7,1 and 7,3 we use the inequality (14 A42)!? <4 to find an upper bound 89'/25~1/2,
Thus

(5.9) diam(77,N/) < 329267 V2429, i=1,2,3.

We recall that ¢ and é are independent of %; § depends on ¢. We may choose ¢, in
this order so that
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(5.10) 0<np<107N and

P -1
(5.11)  7(6¢) + 7(347n) + 7(329Y267 V2 +29) < 2""’( 35”: (2M(p) +4)) .
p=

We recall that N=Nj; let q5, =7 as defined in (5.10). It is easy to choose Ny,
and ng, N;+1< k< Ny, to satlsfy the conditions (5.2) and (5.3). Continuing this
process indefinitely, we may find 0 <n; < n, <--- with properties (5.2) and (5.3),
1w, With properties (5.10) and (5.11) for all suff1c1ent1y large J.

Let /0= f(A) and F be defined in the same way as in the proof of Theorem 1,
after 0 < ny < n,- - - are fixed. The properties of 32 and F in Theorem 1 follow by the
same proof.

It remains to show (5.1). Because of (5.3) and Lemma 5, |fy—f| < nn uniformly
on z = 1. Hence, for large N = Nj,

P(N) .
(5.12) N c U1 {z:dist(z,T(p)) < nn).

p:
It follows from (5.5), (5.7), (5.8), (5.9), (5.11) and (5.12) that A,(/N3Q) < 2~V
Hence, A, (/N 3dQ2) = 0. This completes the proof. O

THEOREM 5. There exist a starlike Jordan domain Q@ whose boundary is given by
r=r(9), and a set E € 0Q of angular measure 0 and harmonic measure 1.

Proof. Let N\ be a singular probability measure on [0,27], positive on every
interval, and Holder-continuous, e.g., AM(a, b) < c(b—a)?(0< a < b < 27). Define

2T . .
w(z) = u(z) +iv(z) = SO (e’ +z) (e —z) " dN(8);

2f(2)/f(z) =w(z), or f(2)/f(z)=z""w(z)—1)+z"L

Then f(0) = 0, and f’ has no zeroes, since the right side in the last equation has resi-
due 1 at z = 0. From the equation 8/30 arg f(re’?) = u(re®®) > 0 and our remark that
f’#0, we conclude that f is a conformal mapping onto a starlike domain 2. We
proceed to show that f is continuous on the boundary and that df is given by
r=r(6).

The first point is a consequence of the Holder-continuity of N\, which yields the
bound f7(z)/f(z) = O(1 — |z|)~V2, and so f is Holder-continuous for |z| < 1. For
the second point, we observe that to each e there is a 6 > 0 so that A(8, 8+ ¢) = 6 for
every 0; the interval (6, 8+ €) is, of course, placed on the circle of length 2#. From
this it follows that [§*€u(re’) d¢t > 6 when 0 < r <1, and therefore, f(ee)/f(e®)
has argument at least . This shows that dQ is a Jordan curve r = r(8); it is not diffi-
cult to obtain measures A for which »(8) is Holder-continuous.

Now A is singular, so there is a set F € [0, 27], of measure 27, but argf(e"’) maps
Fonto a set of length 0; we take E = r(F). Observe that £ must have positive length,
so that r must be of infinite variation. (]

6. Concluding remark. What are the metric properties of sets of zero harmonic
measure on a quasi-circle or on the boundary of a starlike domain?
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REMARK. For any v, 1< vy <2, there exist a Jordan domain @, whose boundary
is a quasi-circle (or which is starlike), and a set E<dQ so that m,(E) >0 but
we(E)=0.

The reason is simple. Gehring and Vaisala [3] proved that there exists a quasi-circle
I" of Hausdorff dimension y+¢, 0 <e <2—1. Hence, I' has non-o-finite 7, measure.
By a theorem of Besicovitch, generalized by Davies and Larman [14; p. 124], T con-
tains uncountably many compact subsets each of positive m, measure. Therefore, at
least one of these subsets must have zero harmonic measure with respect to the
interior of I'. The starlike case is similar.
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