ORIENTATION-REVERSING PL INVOLUTIONS
ON ORIENTABLE TORUS BUNDLES OVER S§!

Paik Kee Kim and Donald E. Sanderson

0. Introduction. In this paper we characterize the orientation-reversing PL involu-
tions on orientable torus bundles over S'. Let M (b) denote the Seifert manifold of
type (b; (n,,2)} (see P. Orlik {12] or P. Conner and F. Raymond [3]). The space
M(0) is the only Seifert manifold of this type which admits an orientation-reversing
PL involution (see [11] or Theorem B below). We also obtain a complete classifica-
tion of these involutions on M (0). Crucial to our study is the following, as well as of
interest in its own right.

THEOREM A. (1) If an orientable torus bundle over S admits a PL embedding of
a Klein bottle K, then it is homeomorphic to a Seifert manifold M(b) for some b.

(2) A union of two twisted I-bundles over K (as an adjunction space) with infinite
first homology group is homeomorphic to M(b) for some b.

We remark that each Seifert manifold M(b) contains a Klein bottle. Thus
Theorem A shows that the family of orientable torus bundles over S! which contain
Klein bottles is identified with the Seifert manifolds M(b). Recall that M(b) and
M (b’) are homeomorphic if and only if b’= +b.

In Theorems B, C we characterize the orientation-reversing PL involutions on ori-
entable torus bundles over S'. In order to do this, we need to define some fibered
3-manifolds. Let R be the set of real numbers and S! the set of complex numbers with
norm 1. The 2-dimensional torus 72 may be represented as T2 ={(z;,2,) | 21,2 € S'}.
Let ¢ be a homeomorphism of 72. We let T2 X R/¢ denote the torus fiber bundle over
S! obtained from T?xR by identifying (x, t) with (¢(x),¢+1) for each (x,¢) €
T2 x R. The elements of 72X R/¢ are denoted by [x, ¢]. Define a homeomorphism
o:T*— T? by o(z1,22) = (2P 11229, zMz35+1) where p, ¢, r, s are integers with

P %= —1and A=p+s. Observe that (?¢)*= (**',™ ). We denote the space 72X R/

by M (’r’ ‘S’) . Then two spaces M (’r’ Z) and M (f,' . ) , different from T2 x S!, are homeo-
morphic if and only if the two matrices (f 7 )2 and (¥ . ‘s’,' )2 are similar (see Lemma 4.1).

Observe that M ((1) _‘l’) ~T?xS'. All PL involutions on 72x S! are known (see

K. Kwun and J. Tollefson [8]). Theorem C provides a complete classification of the
orientation-reversing PL involutions on M(0) (up to conjugation). Note that a space

M (’: ‘s’) is not homeomorphic to M(b) for any b (see Lemma 4.3).
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THEOREM B. Suppose that a torus bundie M=T?xR/¢ admits an orientation-
reversing PL involution h. Then M is homeomorphic to either M (’,’ ‘j) or M(0). Fur-

thermore, if M~ M f‘s’) and p+s#0 (if p+5=0, then M=T?xS'), then h is conju-
gate to a free PL involution h on T> %X R/¢? defined by

hlx, 7] =[¢(x),7+31] for (x7)e€T?*xR

where ¢ is an orientation-reversing homeomorphism of T? with ¢?* isotopic to a con-
Jjugate of ¢.

THEOREM C. There exist exactly six orientation-reversing PL involutions on
M(0), up to conjugation. These may be distinguished by the fixed-point sets:
(1) empty set, (2) one Klein bottle, (3) two Klein bottles, (4) one torus, (5) four points,
and (6) one torus plus four points.

The following is an immediate corollary of Theorem B, and essentially classifies all
orientation-reversing PL involutions on the orientable torus bundles over S! with
nonempty fixed-point set (see Theorem C and [8]).

COROLLARY 1. The spaces T>x S' and M(0) are the only orientable torus bundles
over S' which admit orientation-reversing PL involutions with nonempty fixed-point
set.

We divide the paper into four sections. In Section 1 we study representations of
some fibered torus bundles. In Section 2 we give the proof of Theorem A. In Section 3
we list the (standard) orientation-reversing PL involutions on M (0), and in Section 4
prove Theorems B and C.

Throughout the paper we work in the PL category exclusively. We refer to
J. Hempel [5] for standard 3-manifold terms.

1. Representations of some fibered torus bundles. We always reserve the notations
£, p for the standard elements of w,(7T?) represented by the paths (e, 1) and
(1, e?™), 0<t, 7=<1, respectively. Let ¢ : T>—> T? be a homeomorphism. Then the
map ¢ induces an automorphism ¢, on 7;(T?) such that ¢, (£) =£7p” and ¢, (p) =
£9p° for suitable integers p, g, r, s. Recall that the isotopy classes of homeomorphisms
of T? is a group isomorphic to the multiplicative group of unimodular 2 X 2 matrices

(see [10]). The matrix (f ‘S’) shall be called the matrix of ¢.

We shall denote the torus bundle 72 x R/¢ by M(¢). For each integer b we define a
homeomorphism ¢ (b) : T2—> T? by ¢ (b) (21,2,) = (27}, 27 25 ') . Then the Seifert
manifold M (b) is homeomorphic to M (¢ (b)) (see [12]).

In the following we introduce a space M*(b) for each integer b which is a union of
twisted I-bundles over K. We will see that these spaces can be also fibered over S! with
fiber T2. We let y always denote a map v : T?>—> T2 defined by v (21,2,) = (—21,22) -
Then the orbit space T2/ is a Klein bottle K. Let N(y) denote the twisted I-bundle
over T2/~ which is obtained from T 2 x I by identifying (x, 0) with (y(x),0) for each
x€ T?. By a union of two twisted I-bundles over K we mean an adjunction space,
denoted by M*(f), M*(f)=N(y) UsN(y) where fis an attaching map of T?

(=0dN(v)). We shall denote M*(f) by M* (‘r’ 3) in order to emphasize the matrix of f.
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We may assume that p=0 and |‘,’ ‘jl=l. If f: T>— T? is defined by f(z;,2;) =

(z1,222) , then M*(f) shall be simply denoted by M*(b). Let g: T>—> T?/+ be the
orbit map. We may assume 7 (T2/v) is given as 7; (T%/v) ={o, 8| «Ba~'8=1} and

g.(¢)=ca?and g, (p) =B. Then, letting M*=M* (’: ‘s’) , it follows from Van Kampen
Theorem that the fundamental group =, (M*) is given as

T (M*) = {ay, B1, a2, By | ayBra 18 = 1, ayBr057 18, = 1, of = a#PBE, By = a3965)

(here, corresponding to «, 8 are «;, 3;, respectively). In the following we study some
properties of M*(b) and M(b), which will be used in the later sections. For nota-
tions, if x is an element of a group G, then the image of x in G/[G, G] under the nat-
ural homomorphism shall be denoted by x. The proof of the following Proposition 1.1
uses a similar technique to that used in [13].

PROPOSITION 1.1. Suppose that M () is homeomorphic to M(¢(b)). Then ¢ is
isotopic to a conjugate of ¢ (b).

Proof. Let M=M(¢ (b)) and M'=M(¢). Then =; (M) can be represented by
m(M)=(&p,t|[&p]1=1, tit " '=£71, tpr " '=¢"5p~1} where ¢ is generated by a
simple closed curve which meets each fiber in a single point. Similarly,

(M) = (&, 0t [[E,0']1=1, EV T=9¢, (&), 10t 1 =0,(")].

Let k: M—> M’ be a homeomorphism preserving the base points. Then k, is an iso-
morphism of w; (M) to =, (M’). Let J and J’ be the subgroups of w; (M) and
w1 (M') generated by {£,p) and {£', p'}, respectively. Let we J. Suppose that
k,(w)=w’t’'" for some w’ € J’. Observe that w is an element of Tor (H, (M)). Thus
we see that w’#’" € Tor (H; (M’)). Considering the group structure of H, (M’), it is
impossible unless #=0. Thus one sees that k, (J) =J’. Now it is easy to show that
k. (¢(b)),(w) =9k, (w), and therefore ¢, =k, (¢ (b)) ,k,'. Thus ¢ must be iso-
topic to a conjugate of ¢ (b). O

PROPOSITION 1.2. Let M* be a union of two twisted I-bundles over K. If M* can
be fibered over S, then M* is homeomorphic to M* (,', ?) for some b.

Proof. By the above, 7; (M*) may be represented as
T M*) = {ay, B, a2, B2 |y Bra 181 = 1, apBra; 18, = 1, of = ad?B3, B, = a29B5).
Abelianizing the group of «;(M*), then
H(M*) = {a,81, 0,818 =1, Bi=1, of=ad’B}, B =a}Bs,
la, @3] = [B1,82] = [, B;]1 = 1)

where i, j=1, 2. Since H; (M*) is infinite, one can argue that g=0, and M* is homeo-
morphic to M*(} ?) for some b. m]

REMARK. It follows from the above proof that if M*=M* (‘,’ ‘S’) is fibered over S!,
then g=0. We use this fact in Section 4.

PROPOSITION 1.3. M*(}°) is homeomorphic to M(b).
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Proof. The twisted I-bundle N () may be viewed as the orientable annulus bundle
over S! with connected boundary. Let 4 be a fibered annulus. Observe that each
boundary component of A is isotopic to the simple closed curve which generates
p € m (T?) (T?=08N(v)). Let f be the attaching map f:3dN(y) — AN(v). Since
f.(p) =p, we see that the two simple closed curves of f(dA) also bound a fibered

annulus A’ in the other N(v) in M*=M *(1 0). Thus S=AUA’ is a nonseparating

b1
torus in M*. Cut M* along S. Let ¢ be the map of S repairing the cut. Observe that
the fiber structures of the two N () (as annulus bundles) agree on the boundaries up
to isotopy (note that f, (p) =p), and therefore we see that M*=S X I/¢. The torus S
may be parametrized in terms of 72, so that the generator p € ; (T?) can be repre-
sented by a boundary component of A CS (with an orientation). Recall that since
¢|A:A—> A is orientation-preserving and interchanges the two boundary compon-
ents, p must be sent to p~! under the automorphism ¢, : 7; (T2) — 7, (T?). Thus

the matrix of ¢ is given as (‘: _?) for some a’ and ¢’. Since ¢ : S—> S is orientation-
preserving, we see that a’= —1. On the other hand, we see that

T (M*) = {0y, a5, 8| eyBai'B=1, aBas'B=1, af =a3B’).

Thus 7; (M*) is isomorphic to «; (M (b)) (see [12]). Now we conclude that ¢’ = +b,
and therefore the result follows. a

COROLLARY 1.4. (1) M*(b) is homeomorphic to M(b). 2) If M*(b’) is homeo-
morphic to M*(b), then b’'= +b.

Proof. Immediate from Proposition 1.3. m|

2. Proof of Theorem A. Let M be an orientable torus bundle over S! and K a
Klein bottle in M. Crucial to the proof is the following theorem.

THEOREM 2.1. There exists a nonseparating torus S in M such that SNK is a
simple closed curve which is two-sided and nonseparating in K.

LEMMA 2.2. [4]. There are exactly five isotopy classes of simple closed curves in
K. If 71 (K) ={o, B| aBa~'B=1)}, then these can be represented by {1}, a, B, af3, a*.

LEMMA 2.3. Let S be a nonseparating torus in M. Then S splits M into a space M
homeomorphic to T*>x I.

Proof. Since any compressible torus in an orientable irreducible 3-manifold is sep-
arating, S must be incompressible. Now it is not difficult to see that the inclusion
i: S—> M induces an isomorphism i, : 7, (S) — m; (M) (view S C M in the obvious
manner). Thus the result follows from [2]. |

The following must be well known (as the proof is easy). One may use a theorem
of [2] as in Lemma 2.3.

LEMMA 2.4. Let A be an annulus properly embedded in T? X I such that the two
boundary components are not contained in a single boundary component of T 2xI.
If A is not contractible in T?> X I, then A splits T?> X I into a space homeomorphic to
AXxI.



TORUS BUNDLES OVER S! 105

Assume Theorem 2.1 which will be proved at the end of this section. We split M
along S so as to obtain a space M homeomorphic to 72 x I (see Lemma 2.3). Let A be
the annulus obviously obtained from K by the splitting.

LEMMA 2.5. Let N be a regular neighborhood of K in M. Then cl(M—N) is an
orientable twisted I-bundle over K.

Proof. Take a regular neighborhood U of A ir}‘M such that UNdM is a union of
two annuli A, and A,. Since the two boundary components of A are the same in M
after repairing the cut, we may assume that A; meets A4, in this repairing process so
as to obtain a regular neighborhood U of K in M. It follows from Lemma 2.4 that
the closure of the complement of U in M must be homeomorphic to a space Bx /¢
where B is an annulus and ¢ : B— B is an attaching map. Since M is orientable, ¢
must be orientation-preserving. Since ¢ interchanges the two boundary components
of B, we see that B X I/¢ is homeomorphic to the orientable annulus bundle over S!
with connected boundary. Thus the result follows. o

Now it follows from Lemma 2.5 and Propositions 1.2 and 1.3 that the space M is
homeomorphic to M(b) for some b. Thus the proof of Theorem A will follow by the
completion of Theorem 2.1.

Proof of Theorem 2.1. Let S be a fiber in M. Put S in general position with respect
to K. Then the intersection curves are all simple closed curves without branch points.
We let S be so chosen that the number of simple closed curves in SN K is minimal
among all such possible tori S. Let ¢(S) be the number of components of SNK.
Since T2 x I does not admit a Klein bottle, we see that c(S) #0 (cf. Lemma 2.3). We
divide the proof into several cases according to the types of simple closed curves in K
and S. Let ¢ be a simple closed curve in SN K.

Case 1). o is one-sided in K. Since S is two-sided in M, this case cannot occur.

Case 2). o bounds a disk in K or S. Since S and K are incompressible, ¢ bounds
a disk in both S and K. Thus one may find another nonseparating torus S’ with
c(S')<c(S).

Thus SN K consists of only two-sided noncontractible simple closed curves in both
K and S. If SNK contains two simple closed curves o; and o5, it follows from
Lemma 2.2 that the two curves must be parallel in X (and also in §).

Case 3). The union o; U ¢, bounds an annulus A4 in K. Clearly o, U 0, separates S
into two annuli, say A, 4,. Let S;=AUA; (i=1,2). Since S is nonseparating in M,
at least one of S; and S, cannot separate M, say S;. Let U be a small neighborhood of
A in M such that UNK is an annulus and UN S is a regular neighborhood of ¢, U o,
in S.

Subcase 1). S; N U meets both sides of U— (KN U). Let J, J’ be the two compon-
ents of dUN S;. Let E be an annulus in U such that (i) 0E=JUJ’, (ii) Int (E) NS=0,
and (iii) ENK (=ENA) is a simple closed curve. Let S’'=(S;—(UNS,)) VE.
Then we see that ¢(S’) <c(S).

Subcase 2). S; N U meets only one side of U— (KN U). Pulling S; away in U from
K, one may find a new nonseparating S’ with ¢(S’) <c(S).
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Thus the only possibility compatible with our choice of S is that SN K is a noncon-
tractible two-sided simple closed curve o in K.

Case 4). o is separating in K. Let M’ be the space obtained by splitting M along S.
Then M’=T?x1. Note that ¢ splits K into two mdobius bands B, B, and each
B; (i=1,2) is properly embedded in M’. Let F; and F, be the two boundary compon-
ents of M’. By using the identity maps of each F;, we attach two copies of M’ in the
obvious manner so as to obtain a space M homeomorphic to 72x S!. Then obviously
M contains two Klein bottles. However, 72 x S! does not admit an embedding of X
(see [11, [9]).

The only remaining possibility is that ¢ be two-sided and nonseparating, which
completes the proof. ]

3. Orientation-reversing involutions on M{(0). We list the (standard) six orienta-
tion-reversing involutions on M (0) as claimed in Theorem C. In the following list we
view M(0) as T?>x1I/$(0) (see Section 1 for ¢(0)). We denote by [z, 2,, 7] the
image of (z;,22,7) € T? x I under the identification map of T2x I to T?x1I/¢. Let
F;=Fix(h;).

D) ~ylzy, 22, 7] = [2), —22, 715 Fy =&,

) hylz1,22,7] = (2,21, 71 B =K,

B3) mlz1, 22,71 = [Z1,22,7]; B =KUK,

@) hylzy,22, 7] = [21, 2,1 — 7]; Fy=T*U SO'U s,
(5) hslz1,22,7) = [—21,2,7]; Fs = T?,

6) hglz1,22,7] = [—21,%,1 —7]; Fg=S8°U SO0

4. Proofs of Theorems B and C. We use the same notations as in Section 1. Let ¢
be an orientation-reversing homeomorphism of 72. Then the matrix of ¢ may be

=—1.

given as (‘,’ ‘S’) with

LEMMA 4.1. If a torus bundle M(¢) is homeomorphic to M($*) (#T?*xS'),
then ¢ is isotopic to a conjugate of ¢*.

P q
rs

Proof. By computation, the matrix of ¢? is given as ("’;‘:' x:‘jfl) where A=p+s.

Thus we see that 7, (M (¢?)) can be represented by
T (M(¢?)) = (&0, t|[E 0] =1, t&t7'= ENFHIGN  prp =1 = ENgphs LY

Observe that £*=1=p4" where £, p are the images of £ and p under the natural
homomorphism of ; (M(¢?)) to H; (M($?)). Obviously if A=0, then M(¢?) =
T2 x S!. Thus A#0, and one completes the proof by doing in the similar manner to
the proof of Proposition 1.1. |

The proof of the following is elementary and is omitted.

LEMMA 4.2. Let A, B be any unimodular 2 X 2 matrices and C= (:2 _(:) IfA%=
BCB™, then b=0.
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LEMMA 4.3. M(¢?) is not homeomorphic to M(b).

Proof. If M($?%) = T?x 81, the result is obvious. So assume that M(¢?) #T?x S!.
Suppose the contrary that they were homeomorphic. Then it follows from Lemma 4.1

that the matrix of ¢2 is similar to (:L -(1)) Furthermore, by Lemma 4.2, we see that

# —1, which is a

b=0. Thus (* 9)*= ("} _%). Now one can easily argue that |° ¢

contradiction. ]

Let g be an involution on 72. Then g is conjugate to one of the following involu-
tions (as is well-known):

£1(z21,22) = (21, —22), £2(21,22) = (—21,22)
83(21,22) = (21, 22), 84(21,22) = (21, 22)
85(21,22) = (22,21).

The following lemma is a special case of [7].

LEMMA 4.4. Let k be an involution on T? X I. Then there exists a product structure
on T?>xI and a map g with g®=1 such that k is given by k(x,t)=(g(x),t) or
(g(x), 1—1t) for each (x,t) € T>xI.

LEMMA 4.5. Let h be an involution on M. Then there exists a nonseparating torus
S in M such that either h(S) NS=@ or h(S)=S and S is in a general position with
respect to Fix(h).

Proof. This essentially follows from the proof of Theorem B of [8] (also see [7]).
Note that the torus in each construction in the proof there can be chosen to be
nonseparating. O

Let & be an orientation-reversing involution on M=M(¢). If Fix(h) #@ then it
follows from Lemmas 2.3, 4.4 and 4.5 that Fix (4) contains 72, K, isolated points, or
their combinations. In case each component of Fix (/) is 2-dimensional, Fix (/#) con-
tains at most two components. We will prove Theorems B and C simultaneously. The
proof will be divided into several cases according to the types of fixed-point sets.

Case 1). Fix(h) contains a separating torus in M. It follows from Lemma 4.5 that
there exists a nonseparating torus S in M such that either #(S)NS=@ or A(S)=S
and S is in general position with respect to Fix(4). Since Fix (#) contains a separat-
ing torus we must have #(S) =S. By Lemmas 2.3 and 4.4 there exists a fiber structure
T2 x R/¢ for some equivariant map ¢ such that # is given by A[x, 7]1=[g(x), 7] where
g is an involution on 72. Observe that Fix (g) is invariant under ¢. Since Fix (4) con-
tains a separating torus, we see that Fix(g) contains two components, and g is
equivalent to g,. Thus, we may assume that M=T?Xx R/ and A[x, 7]= [g4(x), 7]
for a suitable equivariant map @: T?>— T?2. Let ¢y, c, be the components of Fix (g,).
Then ¢, Uc, separates T2 into two components A4,, A, (we view ¢;,c, CM in the
obvious manner). Since Fix(#) contains a separating torus, we see that ¢(c;)=c,
(therefore, Fix (k) is the torus). By the same reason, one sees that @(A4;)=A4;
(i=1,2). Thus we may assume that @, (p) =p !, and the matrix of @ is given as
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(_bf _‘1’) for some integer b’. On the other hand, since g4& = @g, is required, one sees

that b’=0. Now, given two such involutions, one may easily find an equivalence ¢
between them by lifting a suitable homeomorphism between their orbit spaces in a
usual way. Thus 4 is conjugate to As.

Case 2). Fix(#) =K. Let N be a regular neighborhood of K. Then the complement
N’ of Nin M is a twisted I-bundle over K (see Lemma 2.5). Then it may be assumed
that M=N(y) Uy, N(v), where f; is an equivariant attaching map. Let hy=h|N(y)
(=N) and hy=h|N(y) (=N"). We let [x, 7] denote the image of (x, 7) under the
identification map of 72x1I to N(vy). Since Fix(4,)=K and Fix(4,) =¢, we may
assume (see [6], [14]) that M and h; are given as M = N(y) UsN(v) and
h[x, 11=[v(x), 71, hy[x, 7] = [vg, (x), 7] where f: T>— T? is a suitable equivari-

ant map. Here, we may further assume that the matrix of f is given as (,1] ‘1’) (see Sec-

tion 1). Since f is an equivariant map, we see that b=0. Observe that the orbit space
is homeomorphic to a twisted /-bundle over K. Thus, given two such involutions, one
may find an equivalence between them by lifting an appropriate homeomorphism
between their orbit spaces. Therefore 4 is conjugate to A,.

Case 3). Fix(h)=KUK. As before, we may assume that M is given as M=
N(v) UsN(y) and 4 is split into two involutions hy, by on N (y) such that

hix, 71 = [y(x), 7], hlx, 7] = [v(x), 7]

where f: T2 — T? is a suitable equivariant map. Since fy=1f, we may assume that
the matrix of f is given as ((‘) ?) Now one sees that the orbit space is a product

I-bundle whose boundary is the projection of Fix (7). Thus it is easy to show that any
two involutions # on M with Fix (#) = KUK are conjugate. Therefore # is conjugate
to h3 .

Case 4). Fix(h) contains either a nonseparating torus or isolated points (or both).
In any case it follows from Lemmas 2.3, 4.4 and 4.5 that there exists a fiber structure
T2 x I/¢ for an attaching map ¢ : 72— T2 such that 4 is given by

[ki(x),3 —7] 0=
[kZ(x))% - T] % =

where k; (i=1,2) is an involution on 72 (if Fix () contains a nonseparating torus T,
then split M along 7. Note that 4 interchanges the sides of T'). Obviously ¢ =k,k;.
Since ¢ is orientation-preserving and A is orientation-reversing, we may assume that
(1) Fix(k;)=T? and Fix(k;)=@, (2) Fix(k;)=4 points and Fix(k,) =@, (3)
Fix (k,) = T? and Fix (k,) =4 points, or (4) Fix(k;)=T? and Fix (k) = T>.

Subcase 1). Fix (k;) = T? and Fix (k,) =@. Since ¢ =k,k;, we see that the matrix of
@ is given as ((') ‘1’) (note that k, is the identity and k, is conjugate to g,). Thus the

space M in this case is homeomorphic to 72 x S!.
Subcase 2). Fix(k;) =4 points and Fix (k,) =@. Since ¢ =k,k;, one can compute

to see that the matrix of ¢ is given as ("(1, _‘l’) (note that k,, k, are conjugate to g3, g1,

respectively). By suitable choices of k, and ¢, we may assume that k; =g; (observe
that the matrix of ¢ does not change (see Proposition 1.1)). Since &, and g, are con-

hix, 7] = {
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jugate, there exists an equivalence 8: 72— T? such that k,8=3g,. It is easy to find
a homeomorphism g8’: 72— T? isotopic to 8 such that 8’ commutes with g;. Let J
be an ambient isotopy with J; =88"~'. We let M, denote the space T>x I/g,g;, and
ho the involution on M, defined by

[g3(x),1—7] 0=<7=<],
g1 (x),3—7] 1=<7r=1

ho[x, 7'] = i

We define a homeomorphism & : My — M by

[x, 7] / 0
blx, 7] =< [J(x, 47 — 2), 7]
[kyJ (g (x),4 — 47), 7]

B =

It is checked that ® is well defined and it is, in fact, an equivalence between k4, and h
(recall that k; =g;). Therefore A is conjugate to 4.

Subcase 3). Fix (k;) = T? and Fix (k,) =4 points. By doing in the same spirit as in
the above (Subcase 2), one can show that the matrix of ¢ is given as ("(‘, _?) and 4 is
conjugate to hy.

Subcase 4). Fix (k;)=T? and Fix(k,) =T?2. Since ¢ =k,k,, one sees that ¢ is iso-
topic to the identity, and M is homeomorphic to 72 x S!.

Case 5). Fix(h) =@. It follows from Lemma 3.3 that there exists a nonseparating
torus S in M such that either 2(S) NS=@ or A(S)=S.

Subcase 1). £(S) N S=@. Then SU A(S) separates M into two components Q;, Q,,
each of which is homeomorphic to 72 x I. If h(Q,) =Q,, then we see that there exists
a fiber structure 72X R/¢ for a map ¢ : T?>—> T2 such that # is given by

hlx, 7] = [k(x),7+1] for  (x, 7)€ T?°XR

where k is a map of T? with k2=¢. Since k is orientation-reversing, it follows from
the proof of Lemma 4.1 that M is homeomorphic to M (’,’ ‘j) for some integers
D, q, 1, s With |‘,’ ﬂ = —1. Therefore it follows from Lemma 4.3 that M # M (b) for any

b in this case, and the Seifert manifolds M (b) do not admit orientation-reversing
involutions of this type. Now we assume that #(Q;) =Q; (i=1,2). We can treat this
case as an additional subcase of Case 4. That is, Fix(k;) =@. Since 4 is orientation-
reversing and ¢ is orientation-preserving, one sees that k; k, are orientation-preserv-

ing. Thus the matrix of k; can be given as ((‘, ‘l’) , and ¢ is isotopic to the identity, and
M is homeomorphic to 72x S!.

Subcase 2). £(S) =S. We may assume that 4 does not interchange the sides of S (if
so, one may return to the Subcase 1). By Lemma 4.4, one sees that there exists a fiber
structure T2xXR/¢ for an equivariant map ¢: 72— T2 such that 4 is given by
hix, 71=[g(x), 7] where g is an involution on 72. Furthermore, we may assume that
g is given by g(z1,22) = (—2z;, %) for each (z;,2;) € T?. Since pg=gg, we see that

the matrix of ¢ must be given as (‘(’) _?) Thus, the classification of these involutions
depends on the various possible equivariant maps ¢. However, since the matrices of
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such ¢ must be ("(‘) _‘1’) , any two such equivariant maps are isotopic. Thus it follows

from [15] that & is conjugate to A; (note that Fix(g)=@).
Observe that if M=M (‘f ‘s’) (p+s7#0), then subcase 1 of Case 5 can only occur.
Consequently, the above completes the proofs of Theorems B and C.
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