PROJECTIVE MODULES OVER GROUP-ALGEBRAS OF TORSION-FREE GROUPS

Jacques Lewin

To the memory of David L. Williams.

1. Introduction. Let Q be the field of rationals and let G be a torsion-free group. If every finitely generated projective QG-module is free we say that G is Q-projective-free.

Little seems to be known about the class of Q-projective-free groups. The known examples fall into three classes: G=F, a free group, $G=F\times C$, the direct product of a free group and an infinite cycle, and G=A, a free abelian group. The first two results are due to H. Bass [2] and P. M. Cohn [6]. The abelian case to Swan [11, p. 144]. This set of examples can be enlarged slightly since the class of Q-projective-free groups is closed under direct limits and, from G. Bergman's coproduct theorems [3], free products.

There are two examples of groups which are not Q-projective-free in the literature: $G = \langle x, y | x^2 = y^3 \rangle$, the group of the trefoil knot, and G/G'', its metabelian version. These examples are due to M. J. Dunwoody [8] and P. Berridge and M. J. Dunwoody [4].

We exhibit here a class of groups which are not projective-free.

THEOREM. Let H be a group with a subgroup G such that

- a) KH is a domain when K=Q and K=Z/pZ.
- b) G has two generators and is not free.
- c) G/G' is not free abelian of rank 2.

Then QH contains a two-generator nonfree projective left ideal P. However, $P \oplus QH = QH^2$.

COROLLARY 1. If G is a one-relator, two-generator group whose relation is neither a power nor a commutator relation, then G is not projective-free.

COROLLARY 2. If G is a torsion-free polycyclic-by-finite group which is projective-free, then G is nilpotent.

As another special case, we have

COROLLARY 3. If G is a torsion-free abelian-by-finite group which is projective free, then G is abelian.

This generalizes a result of D. Farkas and the author and answers a question of Farkas [9, question #21].

Note in particular that the group $G = \langle x, y | x^2 = y^2 \rangle$ is not projective-free. But G has a free abelian subgroup of index two, and QG is a skew Laurent polynomial

Received November 26, 1980. Revision received April 30, 1981. Michigan Math. J. 29 (1982).

extension of a principal ideal domain. This is easily seen since G also has the presentation $G = \langle a, b \mid aba^{-1} = b^{-1} \rangle$.

Corollary 1 follows immediately from the theorem since KG is a domain for any field K [12].

If G is polycyclic-by-finite and torsion free then G satisfies a) by theorems of D. Farkas and R. Snider [10] and G. Cliff [5]. Corollary 2 thus follows from the following proposition.

PROPOSITION. Let G be a polycyclic-by-finite group such that every noncyclic, two-generator subgroup H of G has H/H' free abelian of rank 2. Then G is nilpotent.

Proof. It is enough, by a theorem of R. Baer [1] to show that the two-generator subgroups of G are nilpotent. By induction on the Hirsch number n of H (the number of infinite factors in a polycyclic series for H), we may assume that for x in H then gp(H',x), which has Hirsch number at most n-1, is nilpotent. Thus every x in H belongs to a normal nilpotent subgroup of H and hence H is nilpotent. \square

I thank Warren Dicks for a substantial simplification of my original proof and I thank Ralph Strebel for showing me how to remove from the statement of the theorem the unnecessary assumption that G have finite cohomological dimension.

2. To prove the theorem, notice first that the conditions c) and d) on G amount to saying that we can find generators x_1 and x_2 for G that satisfy a relation $r(x_1, x_2)$ that has positive exponent sum on x_1 .

We begin more generally with a group G, generated by elements x_i , $i=1,2,\ldots$, presented via a free group F freely generated by a set $X = \{X_i, i=1,2,\ldots\}$: $1 \longrightarrow N \longrightarrow F \stackrel{\pi}{\longrightarrow} G \longrightarrow 1$. We assume that the kernel N contains an element $r(X_1, X_2, \ldots)$ with $r(X_1, 1, 1, \ldots) = X_1^n$, n > 0.

Let u be any positive integer different from 1 and 2 and let p be a prime divisor of u-1. Let R be the local ring $Z_{(p)}$ of integers localized at the prime ideal pZ. Then $Q=R[p^{-1}]$. u is invertible in R and $s=1-u^n$ is in $pZ_{(p)}$. If $R \longrightarrow \bar{R} = Z_{(p)}/pZ_{(p)} = Z/pZ$ is the natural map, then $\bar{u}=1$ and $\bar{s}=0$.

Let A be a commutative ring and let Ω_A be the direct sum $\Omega_A = \bigoplus_{X_i \in X} AG\delta X_i$ of copies of AG. Then Ω_A is also a right A- module. Let α be a homomorphism of F into the group of units of A. The map $X_i \longrightarrow \delta X_i$ extends to a $\pi - \alpha$ derivation $\delta: AF \longrightarrow \Omega_A$. i.e. is A-linear, vanishes on A, and, for $f_1, f_2 \in F$,

$$\delta(f_1f_2) = \delta(f_1)\alpha(f_2) + \pi(f_1)\delta(f_2).$$

Since Ω_A is free on $\{\delta X_i, X_i \in X\}$, the map $\delta X_i \longrightarrow x_i - \alpha(x_i)$ extends to a homomorphism $\beta_A : \Omega_A \longrightarrow AG$. Since $f \longrightarrow \pi(f) - \alpha(f)$ is also a $\pi - \alpha$ derivation $AF \longrightarrow AG$, it follows that $\beta \delta f = \pi(f) - \alpha(f)$. If A = Z and α is the usual augmentation which maps the free generators of F to 1, then we have the exact sequence of ZG-modules (Lyndon [13]),

$$(1) 0 \longrightarrow N/N' \longrightarrow \Omega_Z \xrightarrow{\beta_Z} ZG \xrightarrow{\epsilon} Z \longrightarrow 0.$$

This sequence splits as Z modules so that applying $\bar{R} \bigotimes_{Z}$ – gives the exact sequence:

$$(2) 0 \longrightarrow \bar{R} \bigotimes_{Z} N/N' \longrightarrow \Omega_{\bar{R}} \xrightarrow{\beta_{\bar{R}}} \bar{R}G \xrightarrow{\bar{\epsilon}} \bar{R} \longrightarrow 0.$$

We now consider the exact sequence of RG-modules which arises from the map $\alpha: F \longrightarrow A$ given by $X_1 \longrightarrow u$, $X_i \longrightarrow 1$ for i > 1:

$$0 \longrightarrow S \longrightarrow \Omega_R \xrightarrow{\beta_R} RG \longrightarrow \operatorname{Coker} \beta_R \longrightarrow 0.$$

The image of β_R , the two-sided ideal $RG(x_1-u)+\sum RG(x_i-1)$ generated as R-module by the elements $\pi(f)-\alpha(f)$ with f in F is contained, modulo p, in the augmentation ideal of RG. There is then a surjection $\operatorname{Coker} \beta_R \longrightarrow \bar{R}$, and thus $\operatorname{Coker} \beta_R \neq 0$. Further, $\beta_R \delta_r(X_1, X_2, \ldots) = \pi(r) - u^n = 1 - u^n = s$ and so there is a surjection $R/sR \longrightarrow \operatorname{Coker} \beta_R$. Thus $\operatorname{Coker} \beta_R = R/tR$ with $p \mid t$ and $t \mid s$. Now apply $\bar{R} \otimes_R -$ to the sequence (3). The resulting sequence

$$(4) 0 \longrightarrow \bar{R} \bigotimes_{R} S \longrightarrow \bar{R} \bigotimes_{R} \Omega_{R} \longrightarrow \bar{R} \bigotimes_{R} RG \longrightarrow \bar{R} \bigotimes_{R} \operatorname{Coker} \beta_{R} \longrightarrow 0$$

is

$$0 \longrightarrow \bar{R} \otimes_R S \longrightarrow \Omega_{\bar{R}} \xrightarrow{\beta_{\bar{R}}} \bar{R}G \xrightarrow{\bar{\epsilon}} \bar{R} \longrightarrow 0,$$

since $\bar{u}=1$. Since R, a PID, has global dimension 1, (4) is exact except at $\Omega_{\bar{R}}$, where its homology is $\text{Tor}_{R}(R/tR, \bar{R})$. From the sequence of R-modules

$$0 \longrightarrow R \xrightarrow{t} R \longrightarrow R/tR \longrightarrow 0,$$

we get

$$0 \longrightarrow \operatorname{Tor}_R(R/tR, \bar{R}) \longrightarrow \bar{R} \stackrel{t}{\longrightarrow} \bar{R} \longrightarrow \bar{R} \longrightarrow 0$$

and hence $\operatorname{Tor}(R/tR, \tilde{R}) = \bar{R}$. By (2), $\operatorname{Ker}\beta_{\tilde{R}} = \bar{R} \bigotimes_{Z} N/N'$ so that we have an exact sequence

$$0 \longrightarrow \bar{R} \otimes_R S \longrightarrow \bar{R} \otimes_Z N/N' \stackrel{\tau}{\longrightarrow} \bar{R} \longrightarrow 0$$

LEMMA. If $\overline{R} \bigotimes_R S$ is projective, then G is free.

Proof. Note first that the Tor term \bar{R} in the sequence (6) is a G-module with trivial action. For tensoring the sequence

$$0 \longrightarrow \operatorname{Im} \beta_R \longrightarrow RG \longrightarrow \operatorname{Coker} \beta_R \longrightarrow 0$$

with \bar{R} gives the sequence

$$0 \longrightarrow \bar{R} = \operatorname{Tor}_{R}(R/tR, \bar{R}) \longrightarrow \operatorname{Im} \beta_{R} \otimes \bar{R} \xrightarrow{j} \bar{R}G \longrightarrow \bar{R} \longrightarrow 0.$$

If $a \in \text{Im } \beta_R$ and $j(a \otimes 1) = 0$, then a = pa' for some a' in RG. If $g = \pi(f)$, for $f \in F$, then, since $u = 1 \mod p$, $\alpha(f) = 1 \mod p$. Thus

$$(g-1)(a\otimes 1) = (g-\alpha(f))(a\otimes 1) \in \operatorname{Im} \beta_R \cdot a\otimes 1 = \operatorname{Im} \beta_R a'p\otimes 1 = \operatorname{Im} \beta_R a'\otimes p = 0.$$

Let now $n \in \bar{R} \bigotimes_Z N/N'$ with $\tau(n) = 1$, and consider the (inner) derivation $D': G \longrightarrow \bar{R} \bigotimes N/N'$ given by $g \longrightarrow (g-1)n$. Then the image of D' is in ker τ , hence in $\bar{R} \bigotimes S$. Thus D' defines a derivation $D: G \longrightarrow \bar{R} \bigotimes_R S$ which is no longer inner. For

if Dg = (g-1)m for all $g \in G$, then (g-1)(n-m) = 0 for all g, which forces n = m since $\bar{R} \otimes N/N'$ is a submodule of a free $\bar{R}G$ -module and G is infinite. Thus if $\bar{R} \otimes S$ is projective we can construct, by composing D with one of the projections $\bar{R} \otimes S \longrightarrow \bar{R}G$, a non-inner derivation $G \longrightarrow \bar{R}G$ from which it follows immediately that $H^1(G, \bar{R}G) \neq 0$. It then follows from the Stallings-Swan theorems [7, III.4] that G is free.

Now, apply $QH \bigotimes_{RG} = Q \bigotimes_{R} RH \bigotimes_{RG}$ which is exact (since $Q \bigotimes_{R}$ is exact) to (3) to obtain

$$(7) 0 \to QH \bigotimes_{RG} S \to QH \bigotimes_{RG} \Omega_R \to QH \to 0,$$

since t is invertible in Q.

Thus $P = QH \bigotimes_{RG} S$ is QH-projective. This is the module which, in the case that G has two generators, we show is not free.

Suppose then that F has two generators X_1 , X_2 and that P is free. Then, since QH has the invariant basis property, we find that, from (7), P is cyclic, say with generator a. Since $Q=R[p^{-1}]$, we may choose $a \in RH \bigotimes_{RG} S$, $a \notin p(RH \bigotimes_{RG} S)$. Thus the image \bar{a} of a in $\bar{R}H \bigotimes_{RG} S$ is nonzero. Let v also be in $RH \bigotimes_{RG} S$ with $\bar{v} \neq 0$. Then there is $u \in QH$ with ua=v. Write $u=p^ku'$ with $u \in RH$, $h' \notin pRH$. Then $k \leq 0$ since $\bar{v} \neq 0$. If k < 0 then $u'a=p^{-k}v=0$. However, from (5) we see that $\bar{R}H \bigotimes_{RG} S = \bar{R}H \bigotimes_{\bar{R}G} \bar{R}G \bigotimes_{RG} S = \bar{R}H \bigotimes_{\bar{R}G} (\bar{R} \bigotimes_{R} S)$ is a submodule of the free $\bar{R}H$ -module $\bar{R}H \bigotimes_{\bar{R}G} \Omega_R$. Since by assumption a) $\bar{R}H$ is a domain, then $\bar{a} \neq 0$ implies $\bar{u}' = 0$, a contradiction to the choice of u'. Thus k=0. Hence v is in the RH-submodule of P generated by a and it follows that $\bar{R}H \bigotimes_{RG} S$ is the cyclic $\bar{R}H$ -module generated by \bar{a} . Since $\bar{R}H$ is a domain, \bar{a} generates a free submodule, so that $\bar{R}H \bigotimes_{RG} S$ is free on the basis $\{\bar{a}\}$. If $\{1\} \cup \{t_j\}$ is a left transversal for G in H, then $\bar{R}H \bigotimes_{RG} S$ is a free RG-module with basis $\{\bar{a}\} \cup \{t_j\bar{a}\}$. Also, $\bar{R}H = \bar{R}G \oplus \sum t_j \bar{R}G$ as RG-bimodules and thus $\bar{R}G \bigotimes_{RG} S = \bar{R} \bigotimes_{\bar{R}} S$ is a summand of $\bar{R}H \bigotimes_{RG} S$ and hence is a projective $\bar{R}G$ module.

We conclude from the lemma that G is free, a contradiction to our hypothesis. Thus P is not a free module.

It remains to show that P is a left ideal of QH. This is almost immediate for, by (7), $QH(x_1-u)+(QH)(x_2-1)=QH$. If $L_Q=QH(x_1-u)\cap QH(x_2-1)$, then the exact sequence

(8)
$$0 \longrightarrow L_Q \longrightarrow QH(x_1 - u) \oplus QH(x_2 - 1) \longrightarrow QH \longrightarrow 0$$

gives an isomorphism $P \cong L_O$.

If $A \leq Q$, it is clear that $\overline{A}H(x_1-u)+AH(x_2-1)=AH$, as long as both u and s are invertible in A, and thus that the corresponding intersection L_A is projective. Since $L_Q = L_A \otimes Q$ is not free, neither is L_A .

It may not even be necessary for u to be invertible on A. Suppose that $\delta r(X_1, X_2) = r_{x_1} \delta X_1 + r_{x_2} \delta X_2$ lies in $ZG\delta X_1 + ZG\delta X_2$. Then

$$r_{x_1}(x_1-u)+r_{x_2}(x_2-1)=s$$

in ZG so that $L_{Z[s^{-1}]}$ is a projective $Z[s^{-1}]$ G-module. This module is not free since we have again that $L_{Z[s^{-1}]} \otimes Q = L_Q \simeq P$. This occurs if for example the relation

 $r(X_1, X_2)$ is of the form $p_1(X_1, X_2) = p_2(X_1, X_2)$ where $p_1(X_1, X_2)$ and $p_2(X_1, X_2)$ are words in which X_1 and X_2 occur only with positive exponents. The simplest such relations are $X_1^n = X_2^m$.

Specific relations sometimes lend themselves to specific computations.

Example. Let G be a group generated by two elements x and y which satisfy a relation $y^{-1}x^ny=x^m$ with m>n and m>0. Suppose also that QG is a domain and that there is a nontrivial homomorphism $G \rightarrow Z$. Then QG has a nonfree projective left ideal. If further m-n=1, then ZG has a nonfree projective left ideal which induces a nonfree QG-projective module.

Note that we need not assume that G is a one-relator group.

Apply the sequence (8) with $x_1 = x$, $x_2 = y$ and u = 2. Let $r(X, Y) = YX^{-n}Y^{-1}X^m$. Then $r_y = 2^{m-n} - x^{-m}2^m$. From the splitting of (8) it is easily verified that L_Q is generated by the two elements $(x-2)r_y$ (y-1) and $[s-(y-1)r_y](y-1)$

Thus, since y-1 is not a zero divisor, L_Q is isomorphic to the left ideal generated by $(x-2)r_y$ and $s-(y-1)r_y$.

If N is the normal closure of x in G, N is in the kernel of any homomorphism $G \rightarrow Z$. Our assumptions then show that y is of infinite order modulo N. QG is then a skew Laurent polynomial extension of QN via the automorphism induced on N by conjugation by y. If $p(y) = p_n y^n + \cdots + p_k y^k$ with p_i in QN, let d(p(y)) = n - k. Since QN is a domain, d(p(y)q(y)) = d(p(y)) + d(q(y)). Suppose that P' is principal, say P' = QGa. Since $d((x-2)r_y) = 0$, then d(a) = 0 as well. But then a divides both $s+r_y$ and r_y and it follows that P' = QGs = QG. Thus $L_Q = QG(y-1)$ and since L_Q is also contained in QG(x-2) we find that $QG(y-1) \leq QG(x-2)$. Since QG = QG(y-1) + QG(x-2) it follows that QG = QG(x-2) so that x-2 is a unit. This cannot happen since x has infinite order. Thus P' is not principal and so neither is L_Q .

If m-n=1, then s=-1 is a unit in Z so that L_Z is indeed projective.

REFERENCES

- 1. R. Baer, Engelsche Elemente Noetherscher Gruppen. Math. Ann. 133 (1957), 256-270.
- 2. H. Bass, Projective modules over free groups are free. J. Algebra 1 (1964), 367-373.
- 3. G. Bergman, Modules over coproducts of rings. Trans. Amer. Math. Soc. 200 (1974), 1-32.
- 4. P. Berridge and M. J. Dunwoody, *Nonfree projective modules for torsion-free groups*. J. London Math. Soc. (2) 19 (1979), no. 3, 433-436.
- 5. G. Cliff, Zero divisors and idempotents in group rings. Canad. J. Math 32 (1980), no. 3, 596-602.
- 6. P. M. Cohn, On the free product of associative rings III. J. Algebra 8 (1968), 376-383; correction, ibid. 10 (1968), 123.
- 7. W. Dicks, *Groups, trees and projective modules*, Lecture Notes in Math., 790, Springer, Berlin, 1980.
- 8. M. Dunwoody, Relation modules. Bull London Math. Soc. 4 (1972), 151-155.
- 9. D. Farkas, *Group rings: an annotated questionnaire*. Comm. Algebra 8 (1980), no. 6, 585-602.
- 10. D. Farkas and R. Snider, K_0 and Noetherian group rings. J. Algebra 42 (1976), no. 1, 192–198.

- 11. T. Y. Lam, Serre's conjecture, Lecture Notes in Math., 635, Springer, Berlin, 1978.
- 12. J. Lewin and T. Lewin. An embedding of the group algebra of a torsion-free one-relator group in a field. J. Algebra 52 (1978), no. 1, 39-74.
- 13. R. C. Lyndon, Cohomology theory of groups with a single defining relation. Ann. of Math. 52 (1950), 650-665.

Department of Mathematics Syracuse University Syracuse, N.Y. 13210