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1. Introduction. Let Q be the field of rationals and let G be a torsion-free group.
If every finitely generated projective QG-module is free we say that G is
Q-projective-free.

Little seems to be known about the class of Q-projective-free groups. The known
examples fall into three classes: G=F, a free group, G=F X C, the direct product of
a free group and an infinite cycle, and G=A, a free abelian group. The first two
results are due to H. Bass [2] and P. M. Cohn [6]. The abelian case to Swan [11,
p. 144]. This set of examples can be enlarged slightly since the class of Q-projective-
free groups is closed under direct limits and, from G. Bergman’s coproduct theorems
[3], free products.

There are two examples of groups which are not Q-projective-free in the literature:
G=(x, y|x*=y3), the group of the trefoil knot, and G/G”, its metabelian version.
These examples are due to M. J. Dunwoody [8] and P. Berridge and M. J.
Dunwoody [4].

We exhibit here a class of groups which are not projective-free.

THEOREM. Let H be a group with a subgroup G such that

a) KH is a domain when K=Q and K=Z/pZ.

b) G has two generators and is not free.

¢) G/G’ is not free abelian of rank 2.

Then QH contains a two-generator nonfree projective left ideal P. However,
P®QH=QH>.

COROLLARY 1. If G is a one-relator, two-generator group whose relation is
neither a power nor a commutator relation, then G is not projective-free.

COROLLARY 2. If G is a torsion-free polycyclic-by-finite group which is pro-
Jjective-free, then G is nilpotent.

As another special case, we have

COROLLARY 3. If G is a torsion-free abelian-by-finite group which is projective
Sree, then G is abelian.

This generalizes a result of D. Farkas and the author and answers a question of
Farkas [9, question #21].

Note in particular that the group G={x, y|x*=y?) is not projective-free. But G
has a free abelian subgroup of index two, and QG is a skew Laurent polynomial

Received November 26, 1980. Revision received April 30, 1981.
Michigan Math. J. 29 (1982).

59



60 JACQUES LEWIN

extension of a principal ideal domain. This is easily seen since G also has the presen-
tation G={a, b|aba'=b"").

Corollary 1 follows immediately from the theorem since KG is a domain for any
field X [12].

If G is polycyclic-by-finite and torsion free then G satisfies a) by theorems of
D. Farkas and R. Snider [10] and G. CIiff [5]. Corollary 2 thus follows from the
following proposition.

PROPOSITION. Let G be a polycyclic-by-finite group such that every noncyclic,
two-generator subgroup H of G has H/H' free abelian of rank 2. Then G is
nilpotent.

Proof. 1t is enough, by a theorem of R. Baer [1] to show that the two-generator
subgroups of G are nilpotent. By induction on the Hirsch number n of H (the
number of infinite factors in a polycyclic series for H), we may assume that for x in
H then gp(H’, x), which has Hirsch number at most n—1, is nilpotent. Thus every x
in H belongs to a normal nilpotent subgroup of A and hence H is nilpotent. O

I thank Warren Dicks for a substantial simplification of my original proof and I
thank Ralph Strebel for showing me how to remove from the statement of the
theorem the unnecessary assumption that G have finite cohomological dimension.

2. To prove the theorem, notice first that the conditions c¢) and d) on G amount to
saying that we can find generators x; and x, for G that satisfy a relation r(x;, x,) that
has positive exponent sum on x;.

We begin more generally with a group G, generated by elements x;, i=1,2,...,
presented via a free group F freely generated by a set X={X;, i=1,2,...]):

1—> N—> F—>G—>1. We assume that the kernel N contains an element
r(X,, X5, ...) with r(X,, 1,1, ...)=X7, n>0.

Let u be any positive integer different from 1 and 2 and let p be a prime divisor of
u—1. Let R be the local ring Z,, of integers localized at the prime ideal pZ. Then
Q=R[p~']. uisinvertible in R and s=1—u"isin pZ,). If R— R=Z,,/pZ, =
Z/pZ is the natural map, then #=1 and §=0.

Let A be a commutative ring and let 4 be the direct sum 4= @y, e xAGOX; of
copies of AG. Then Q4 is also a right A- module. Let o be a homomorphism of F
into the group of units of A. The map X;— 6X; extends to a w —a« derivation
6:AF— Q. i.e. is A-linear, vanishes on A4, and, for f;, f> € F,

S(Nn2) =06(Na(fy) + w(f1)6(f2).

Since @, is free on [6X;, X;€ X}, the map 6X;,— x; —a(x;) extends to a homo-
morphism 8, :Q,4 — AG. Since f— 7w (f) —a(f) is also a 7 —« derivation AF—
AG, it follows that Béf==n(f)—a(f). If A=Z and « is the usual augmentation
which maps the free generators of F to 1, then we have the exact sequence of ZG-
modules (Lyndon [13]),

Bz

) 0 — N/N' —Q, 252G = Z — 0.

This sequence splits as Z modules so that applying R (X)z — gives the exact sequence:
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) 0 — R@zNIN' — Oz 28 RG 5 R — 0.

We now consider the exact sequence of RG-modules which arises from the map

a:F— A givenby X, —u, X;— 1 fori>1:

3) 0 — S — 9z 25 RG — Coker Bz —» 0.

The image of (g, the two-sided ideal RG(x;—u)+ Y RG(x;—1) generated as
R-module by the elements 7 (f) —a(f) with fin F is contained, modulo p, in the
augmentation ideal of RG. There is then a surjection Coker 8z — R, and thus
Coker Bz #0. Further, Br6r(X;,X5,...)=w(r)—u"=1—u"=s and so there is a
surjection R/sR —> Coker g. Thus Coker Bz =R/tR with p |t and ¢|s. Now apply
R X r — to the sequence (3). The resulting sequence

(4) O—bR-®RS—>R-®RQR —QR—®RRG—>R®RCO](CI'BR — 0
is
) 0— R@zS — 2% 28’6 S R —o,

since #=1. Since R, a PID, has global dimension 1, (4) is exact except at Qz, where
its homology is Torg (R/fR, R). From the sequence of R-modules

0 — R =+ R — R/IR — 0,
we get
0 — Torg(R/IR,R) — R 5 B —R —0

and hence Tor (R/tR, R)=R. By (2), KerBzg=R®) ;N/N’ so that we have an exact
sequence

6) 0 — R®rS — R®zN/N' <+ R —0

LEMMA. If R®)RS is projective, then G is free.

Proof. Note first that the Tor term R in the sequence (6) is a G-module with trivial
action. For tensoring the sequence

0 — ImBr — RG — Cokerffg — 0
with R gives the sequence
0 — R =Torg(R/tR,R) — ImBr® R > RG — R — 0.

If ae ImBg and j(a®1) =0, then a=pa’ for some a’ in RG. If g==(f), for fEF,
then, since u=1mod p, a(f)=1mod p. Thus
(-1 (a®)=(g—a(f))(a®]) €Im By - a®l=ImBra’p®1=ImBra’@p=0.

Let now ne€ R & zN/N’ with 7(n) =1, and consider the (inner) derivation
D’:G— RQN/N’ given by g— (g—1)n. Then the image of D’ is in ker 7, hence
in R®S. Thus D’ defines a derivation D : G—> R (X) xS which is no longer inner. For



62 JACQUES LEWIN

if Dg=(g—1)m for all g€ G, then (g—1) (n—m) =0 for all g, which forces n=m
since RQN/N' is a submodule of a free RG-module and G is infinite. Thus if RQ S
is projective we can construct, by composing D with one of the projections
R®S— RG, a non-inner derivation G— RG from which it follows immediately
that H' (G, RG) #0. It then follows from the Stallings-Swan theorems [7, I11.4] that
G is free. a

Now, apply QH Q) rc— = QO Q) rRH X) rg— Wwhich is exact (since Q(X) g— is exact)
to (3) to obtain

@) 0 — OH ®rcS — OH Qg2 — OH — 0,

since ¢ is invertible in Q.

Thus P=QH ) g S is QH-projective. This is the module which, in the case that G
has two generators, we show is not free.

Suppose then that F has two generators X;, X, and that P is free. Then, since QH
has the invariant basis property, we find that, from (7), P is cyclic, say with genera-
tor a. Since Q=R [p '], we may choose a € RHQrGS, a ¢ p(RH)rcS). Thus the
image @ of a in RH®) g S is nonzero. Let v also be in RH X rcS with 90. Then
there is u € QH with ua=v. Write u=p*u’ with u€ RH, h’ ¢ pRH. Then k <0 since
0#0. If k<0 then w'a=p *v=0. However, from (5) we see that RH®R6S=
RH® rcRGRrcS=RHR zc(R®rS) is a submodule of the free RH-module
RH®) 36 Qg - Since by assumption a) RH is a domain, then @0 implies #’'=0, a
contradiction to the choice of #’. Thus k=0. Hence v is in the RH-submodule of P
generated by @ and it follows that RH (X) s S is the cyclic RH-module generated by a.
Since RH is a domain, @ generates a free submodule, so that RH &) z¢S is free on the
basis {a@}. If {1} U (4} is a left transversal for G in H, then RH@RGS is a free RG-
module with basis {a} U {#;a}. Also, RH=RG® Lt;RG as RG-bimodules and thus
RGRrcS=RE S is a summand of RHX)rsS and hence is a projective RG
module.

We conclude from the lemma that G is free, a contradiction to our hypothesis.
Thus P is not a free module.

It remains to show that P is a left ideal of QH. This is almost immediate for, by
(7), QH(x;—u) + (QH) (x,—1)=QH. If Lo=QH(x;—u) NQH(x,—1), then the
exact sequence

8) 0 — Lo —QH(x; —u) ®QH(x; — 1) — QH — 0

gives an isomorphism P=L.

If A<Q, it is clear that AH(x;—u)+AH(x,—1)=AH, as long as both « and s
are invertible in 4, and thus that the corresponding intersection L, is projective.
Since Lo=L,4®Q is not free, neither is L4.

It may not even be necessary for u to be invertible on A. Suppose that
6]‘(X1,X2) =Ty, (SX[ +er (SXZ lies in ZG6X, +ZG(SX2. Then

re (X1 —u) +r,(x—1)=s

in ZG so that Lz(;-1; is a projective Z[s ~'] G-module. This module is not free since
we have again that Lz;-1,®Q=Lg=P. This occurs if for example the relation
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r(Xi, X3) is of the form p, (X;, X;) =p, (X;, X3) where p; (X}, X3) and p, (X;, X3)
are words in which X, and X, occur only with positive exponents. The simplest such
relations are X{'=X}".

Specific relations sometimes lend themselves to specific computations.

Example. Let G be a group generated by two elements x and y which satisfy a
relation y ~!x"y=x™ with m>n and m>0. Suppose also that QG is a domain and
that there is a nontrivial homomorphism G— Z. Then QG has a nonfree projective
left ideal. If further m—n=1, then ZG has a nonfree projective left ideal which
induces a nonfree QG-projective module.

Note that we need not assume that G is a one-relator group.

Apply the sequence (8) with x; =x,x,=y and u=2. Let r(X, Y)=YX "Y1 X",
Then r,=2"""—x""2", From the splitting of (8) it is easily verified that Ly is
generated by the two elements (x—2)r, (y—1) and [s— (y—1)r,](y—1)

Thus, since y—1 is not a zero divisor, Lg is isomorphic to the left ideal generated
by (x—2)r, and s— (y—1)r,.

If N is the normal closure of x in G, N is in the kernel of any homomorphism
G —> Z. Our assumptions then show that y is of infinite order modulo N. QG is then
a skew Laurent polynomial extension of QN via the automorphism induced on N by
conjugation by y. If p(¥)=p,y"+ -+ +pey* with p; in ON, let d(p(»)) =n—k.
Since ON is a domain, d(p(¥)q(¥))=d(p(¥))+d(q(»)). Suppose that P’ is
principal, say P’'=QGa. Since d((x—2)r,) =0, then d(a)=0 as well. But then a
divides both s+r, and r, and it follows that P’'=QGs=QG. Thus L,=0G(y—1)
and since Lg is also contained in QG (x—2) we find that QG(y—1) =QG(x—-2).
Since QG=0G(y—1)+ QG (x—2) it follows that QG=QG(x—2) sothat x—2isa
unit. This cannot happen since x has infinite order. Thus P’ is not principal and so
neither is L.

If m—n=1, then s= —1 is a unit in Z so that L; is indeed projective.
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